Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. DISCRETE MATH. © 2021 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 546-574

PARAMETERIZED APPROXIMATION SCHEMES FOR STEINER
TREES WITH SMALL NUMBER OF STEINER VERTICES*

PAVEL DVORAK?, ANDREAS E. FELDMANN, DUSAN KNOP$, TOMAS MASARIKY,
TOMAS TOUFAR', AND PAVEL VESELY!

Abstract. We study the STEINER TREE problem, in which a set of terminal vertices needs to be
connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively
studied from the viewpoint of approximation and also parameterization. In particular, on one hand
STEINER TREE is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number
of nonterminals (Steiner vertices) in the optimum solution. In contrast to this, we give an efficient
parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover,
our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS)
for the considered parameter. We further study the parameterized approximability of other variants
of STEINER TREE, such as DIRECTED STEINER TREE and STEINER FOREST. For none of these is an
EPAS likely to exist for the studied parameter. For STEINER FOREST an easy observation shows
that the problem is APX-hard, even if the input graph contains no Steiner vertices. For DIRECTED
STEINER TREE we prove that approximating within any function of the studied parameter is W[1]-hard.
Nevertheless, we show that an EPAS exists for UNWEIGHTED DIRECTED STEINER TREE, but a PSAKS
does not. We also prove that there is an EPAS and a PSAKS for STEINER FOREST if in addition
to the number of Steiner vertices, the number of connected components of an optimal solution is
considered to be a parameter.

Key words. Steiner tree, Steiner forest, approximation algorithms, parameterized algorithms
AMS subject classifications. 68W25, 05C85, 68Q25

DOI. 10.1137/18M1209489

1. Introduction. In this paper we study several variants of the STEINER TREE
problem. In its most basic form this optimization problem takes an undirected graph
G = (V, E) with edge weights w(e) € R{ for every e € E, and a set R C V of terminals

*Received by the editors September 4, 2018; accepted for publication (in revised form) November 13,
2020; published electronically March 29, 2021. The research was done while the authors were at
Charles University. An extended abstract of this manuscript was presented at STACS 2018.

https://doi.org/10.1137/18M1209489

Funding: This work was partially supported by project SVV-2017-260452. The fourth author
was supported by project 17-09142S of GACR. The second author was supported by the Czech
Science Foundation GACR (grant 17-10090Y) and by the Center for Foundations of Modern Computer
Science (Charles University project UNCE/SCI/004). The second, fourth, fifth, and sixth authors
were supported by project GAUK 1514217. The third author is supported by the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16.019/0000765, “Research Center for Informatics.” The sixth
author was supported by European Research Council grant ERC-2014-CoG 647557. The first author
was supported by Czech Science Foundation GACR (grant 19-27871X). The research leading to
these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 616787.

TComputer Science Institute, Charles University, Prague, 118 00, Czech Republic (koblich@
inuk.mff.cuni.cz, toufar@iuuk.mff.cuni.cz).

IDepartment of Applied Mathematics, Charles University, Prague, 118 00, Czech Republic
(feldmann.a.e@gmail.com).

8Faculty of Information Technology, Czech Technical University, Prague, 16000, Czech Republic
(dusan.knop@gmail.com).

TFaculty of Mathematics, Informatics and Mechanics of University of Warsaw, 02-097 Warsaw,
Poland, and Department of Applied Mathematics, Charles University, Prague, 118 00, Czech Republic
(masarik@kam.mff.cuni.cz).

I Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK, and Computer
Science Institute, Charles University, Prague, 118 00, Czech Republic (vesely@iuuk.mff.cuni.cz).

546

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/18M1209489
mailto:koblich@iuuk.mff.cuni.cz
mailto:koblich@iuuk.mff.cuni.cz
mailto:toufar@iuuk.mff.cuni.cz
mailto:feldmann.a.e@gmail.com
mailto:dusan.knop@gmail.com
mailto:masarik@kam.mff.cuni.cz
mailto:vesely@iuuk.mff.cuni.cz

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 547

as input. The nonterminals in V' \ R are called Steiner vertices. A Steiner tree is
a tree in the graph G, which spans all terminals in R and may contain some of the
Steiner vertices. The objective is to minimize the total weight ZeeE(T) w(e) of the
computed Steiner tree T' C G. This fundamental optimization problem is one of the 21
original NP-hard problems listed by Karp [25] in his seminal paper from 1972 and has
been intensively studied since then. The STEINER TREE problem and its variants have
applications in network design, circuit layouts, and phylogenetic tree reconstruction,
among others (see the survey [23]).

Two popular ways to handle the seeming intractability of NP-hard problems are
to design approximation [32] and parameterized [11] algorithms. For the former, an
a-approximation is computed in polynomial time for some factor « specific to the
algorithm, i.e., the solution is always at most a multiplicative factor of o worse than
the optimum of the input instance. The STEINER TREE problem, even in its basic
form as defined above, is APX-hard [10], i.e., it is NP-hard to obtain an approximation
factor of o = 3% ~ 1.01. However, a factor of a = In(4) + & ~ 1.39 can be achieved in
polynomial time [6], which is the currently best factor known for this runtime.

For parameterized algorithms, an instance is given together with a parameter p
describing some property of the input. The idea is to isolate the exponential runtime
of an NP-hard problem to the parameter. That is, the optimum solution is computed
in time f(p) - n®M), where f is a computable function independent of the input size n.
If such an algorithm exists, we call the problem fized-parameter tractable (FPT) for
parameter p. Here, the choice of the parameter is crucial, and a problem may be FPT
for some parameters but not for others. A well-studied parameter for the STEINER
TREE problem is the number of terminals |R|. It is known since the classical result of
Dreyfus and Wagner [15] that the STEINER TREE problem is FPT for this parameter,
as the problem can be solved in time 3/% . nOW if n = |V|. A more recent algorithm
by Fuchs et al. [18] obtains runtime (2 + §)I#l . n9 () for any constant § > 0. This
can be improved to 217 . nO©W) if the input graph is unweighted via the algorithm of
Nederlof [28] (using results of Bjorklund et al. [2]). A less-studied parameter somewhat
complementary to the number of terminals is the number of Steiner vertices in the
optimum solution, i.e., p = |[V(T)\ R if T is an optimum Steiner tree. It is known [14]
that STEINER TREE is W[2]-hard for parameter p and therefore is unlikely to be FPT,
in contrast to the parameter |R|. This parameter p has been mainly studied in the
context of unweighted graphs. The problem remains W[2]-hard in this special case
and therefore the focus has been on designing parameterized algorithms for restricted
graph classes, such as planar or d-degenerate graphs [24, 31].

In contrast to this, our question is, What can be done in the most general case, in
which the class of input graphs is unrestricted and edges may have weights? Our main
result is that we can overcome the APX-hardness of STEINER TREE on one hand and
on the other hand also the W[2]-hardness for our parameter of choice p, by combining
the two paradigms of approximation and parameterization.! We show that there is an
efficient parameterized approxzimation scheme (EPAS), which for any & > 0 computes
a (14 e)-approximation in time f(p,e)-n®M for a function f independent of n. Note
that here we consider the approximation factor of the algorithm as a parameter as well,
which accounts for the “efficiency” of the approximation scheme (analogous to an effi-
cient polynomial time approximation scheme or EPTAS). In fact, as summarized in the
following theorem, our algorithm computes an approximation to the cheapest tree hav-
ing at most p Steiner vertices, even if better solutions with more Steiner vertices exist.

I This area has recently received growing interest (cf. the Parameterized Approximation Algorithms
Workshop).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://sites.google.com/site/aefeldmann/workshop
https://sites.google.com/site/aefeldmann/workshop

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

548 DVORAK ET AL.

THEOREM 1. There is an algorithm for STEINER TREE, which given an edge-
weighted undirected graph G = (V, E), a terminal set R CV, € > 0, and an integer p
computes a (1+¢)-approzimation to the cheapest Steiner tree T C G withp > |V(T)\ R|
in time 20(P°/€") . ,00) 2

It is worth noting that here we treat the actual value of p as a parameter, not
as a “hard constraint.” That is, the solution returned by our algorithm may contain
more than p Steiner vertices and only its quality (cost) is compared to the cost of
the cheapest solution that contains at most p Steiner vertices. This is true for all our
approximation algorithms.

Many variants of the STEINER TREE problem exist, and we explore the applicability
of our techniques to some common ones. For the DIRECTED STEINER TREE problem
the aim is to compute an arborescence, i.e., a directed graph obtained by orienting
the edges of a tree so that exactly one vertex, called the root, has in-degree zero
(which means that all vertices are reachable from the root). More concretely, the input
consists of a directed graph G = (V, A) with arc weights w(a) € R{ for every a € A,
a terminal set R C V, and a specified terminal » € R. A Steiner arborescence is an
arborescence in G with root r containing all terminals R. The objective is to find
a Steiner arborescence T' C G minimizing the weight . 47 w(a). This problem

is notoriously hard to approximate: no O(log? ¢ (n))-approximation exists unless
NP C ZTIME(nPoW!ee(™)) [20]. But even for the UNWEIGHTED DIRECTED STEINER
TREE problem in which each arc has unit weight, a fairly simple reduction from the
SET COVER problem implies that no ((1 —¢) Inn)-approximation algorithm is possible
unless P = NP [12, 20]. At the same time, even UNWEIGHTED DIRECTED STEINER
TREE is W[2]-hard for our considered parameter p [24, 27], just as for the undirected
case. For this reason, all previous results have focused on restricted inputs: Jones
et al. [24] prove that when combining the parameter p with the size of the largest
excluded topological minor of the input graph, UNWEIGHTED DIRECTED STEINER
TREE is FPT. They also show that if the input graph is acyclic and d-degenerate,
where degeneracy is measured in the underlying undirected graph, the problem is FPT
for the combined parameter p and d.

Our focus again is on general unrestricted inputs. We are able to leverage our
techniques to the unweighted directed setting, and obtain an EPAS, as summarized
in the following theorem. Here, the cost of a Steiner arborescence is the number of
contained arcs.

THEOREM 2. There is an algorithm for UNWEIGHTED DIRECTED STEINER TREE,
which given an unweighted directed graph G = (V, A), terminal set R C V, root
r € R, ¢ >0, and integer p computes a (1 + €)-approzimation to the cheapest Steiner
arborescence T C G with p > |V(T) \ R| in time 20"/ . n°W) (see footnote 2).

Can our techniques be utilized for the even more general case when arcs have
weights? Interestingly, in contrast to the above theorem we can show that in general
the DIRECTED STEINER TREE problem most likely does not admit such approximation
schemes, even when allowing “nonefficient” runtimes of the form f(p,e) - n9 @) for any
computable functions f and g. This follows from the next theorem, since setting ¢ to
any constant, the existence of such a (1 4 ¢)-approximation algorithm would imply
WI1] = FPT.

21f the input to this optimization problem is malformed (e.g., if p is smaller than the number of
Steiner vertices of any feasible solution), then the output of the algorithm can be arbitrary (cf. [26]).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 549

THEOREM 3. For any computable function f, it is W[l]-hard to compute an
f(p)-approzimation of the optimum Steiner arborescence T' for DIRECTED STEINER
TREE parameterized by p = |V (T') \ R| if the inputl graph is arc-weighted.

Another variant of STEINER TREE is the NODE WEIGHTED STEINER TREE
problem, in which the Steiner vertices have weights, instead of the edges. The aim is to
minimize the total weight of the Steiner vertices in the computed solution. A reduction
similar to the one used to prove Theorem 3 (from DOMINATING SET) shows that also
in this case computing any f(p)-approximation is W[1]-hard, even if all Steiner vertices
have unit weight.

Other common variants of STEINER TREE include the PRIZE COLLECTING
STEINER TREE and STEINER FOREST problems. The latter takes as input an edge-
weighted undirected graph G = (V, E) and a list {s1,s}}, ..., {sk, s},} of terminal pairs,
i.e., the set of terminals is R = {s;,s} | 1 <4 < k}. A Steiner forest is a forest F' in G
for which each {s;, s}} pair is in the same connected component, and the objective is
to minimize the total weight of the forest F'. For this variant it is not hard to see that
parameterizing by p = |V (F) \ R| cannot yield any approximation scheme, as a simple
reduction from STEINER TREE shows that the problem is APX-hard even if the input
has no Steiner vertices (see subsection 2.1). For the PRiZE COLLECTING STEINER
TREE problem, the input is again a terminal set in an edge-weighted graph, but the
terminals have additional costs. A solution tree is allowed to leave out a terminal but
has to pay its cost in return (cf. [32]). It is also not hard to see that this problem is
APX-hard, even if there are no Steiner vertices at all.

These simple results show that our techniques to obtain approximation schemes
reach their limit quite soon: with the exception of UNWEIGHTED DIRECTED STEINER
TREE, most common variants of STEINER TREE seem not to admit approximation
schemes for our parameter p. We are, however, able to generalize our EPAS to
STEINER FOREST if we combine p with the number ¢ of connected components in the
optimum solution. In fact, our main result of Theorem 1 is a corollary of the next
theorem, using only the first part of the above mentioned reduction from STEINER
TREE (cf. subsection 2.1). Due to this, it is not possible to have a parameterized
approximation scheme for the parameter ¢ alone, as such an algorithm would imply
a polynomial time approximation scheme for the APX-hard STEINER TREE problem.
Hence the following result necessarily needs to combine the parameters p and c.

THEOREM 4. There is an algorithm for STEINER FOREST, which given an edge-
weighted undirected graph G = (V, E), a list {s1,s1},...,{sk, s} C V of terminal
pairs, € > 0, and integers p,c computes a (1 + &)-approzimation to the cheapest
Steiner forest F C G with at most ¢ connected components and p > |V (F) \ R| where

R={s;,s;|1<i<k}, in time (20)0((p+c)2/€4) -nOW (see footnote 2).

As mentioned for Theorem 1, our algorithm might compute an approximate
solution with more than p Steiner vertices. Analogously, it may also compute a forest
with more than ¢ components, even if its cost is compared to the best one containing
at most p Steiner vertices and ¢ components only.

A topic tightly connected to parameterized algorithms is kernelization. We here
use the framework of Lokshtanov et al. [26], who also give a thorough introduction to
the topic (see subsection 2.2 for formal definitions). Loosely speaking, a kernelization
algorithm runs in polynomial time and, given an instance of a parameterized problem,
computes another instance of the same problem, such that the size of the latter
instance is at most f(p) for some computable function f in the parameter p of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

550 DVORAK ET AL.

input instance. The computed instance is called the kernel, and for an optimization
problem it must be possible to efficiently convert an optimum solution to the kernel
into an optimum solution to the input instance.

A fundamental result of parameterized complexity says that a problem is FPT if
and only if it has a kernelization algorithm [11]. This means that for our parameter p,
most likely STEINER TREE does not have a kernelization algorithm, as it is W[2]-hard.
For this reason, the focus of kernelization results had previously shifted to special
cases again. By a folklore result, STEINER TREE is FPT for our parameter p if the
input graph is planar (cf. [24]). Of particular interest are polynomial kernels, which
have size polynomial in the input parameter. The idea is that computing the kernel in
this case is an efficient preprocessing procedure for the problem, such that exhaustive
search algorithms can be used on the kernel. Suchy [31] proved that UNWEIGHTED
STEINER TREE parameterized by p admits a polynomial kernel if the input graph is
planar.

Our aspirations again are to obtain results for inputs that are as general as
possible, i.e., on unrestricted edge-weighted input graphs. We prove that STEINER
TREE has a polynomial lossy (approximate) kernel, despite the fact that the problem
is W[2]-hard. An a-approximate kernelization algorithm is a kernelization algorithm
that computes a new instance for which a given S-approximation can be converted
into an aB-approximation for the input instance in polynomial time. The new instance
is now called a (polynomial) approzimate kernel, and its size is again bounded as a
function (a polynomial) of the parameter of the input instance.

Just as for our parameterized approximation schemes in Theorems 1 and 4, we
prove the existence of a lossy kernel for STEINER TREE by a generalization to STEINER
FOREST where we combine the parameter p with the number ¢ of connected components
in the optimum solution. Also, our lossy kernel can approximate the optimum
arbitrarily well: we prove that for our parameter the STEINER FOREST problem admits
a polynomial size approzimate kernelization scheme (PSAKS), i.e., for every € > 0
there is a (1 + ¢)-approximate kernelization algorithm that computes a polynomial
approximate kernel. An easy corollary then is that STEINER TREE parameterized only
by p also has a PSAKS, by setting ¢ = 1 in Theorem 5 and using the above-mentioned
reduction from STEINER TREE to STEINER FOREST (cf. subsection 2.1).

THEOREM 5. There is a (1 + €)-approzimate kernelization algorithm for STEINER
FOREST, which given an edge-weighted undirected graph G = (V, E), a list of terminal
pairs {s1,81}, ..., {sk, 8.} CV, and integers p,c computes an approzimate kernel of

o(1/¢)
size ((p + ¢)/e)* if for the optimum Steiner forest F C G, we have p > |V(F)\ R|,
where R = {s;,s; | 1 <1i <k}, the number of connected components of F is at most c,
and € > 0 (see footnote 2).

Analogous to approximation schemes, it is possible to distinguish between efficient
and nonefficient kernelization schemes: A PSAKS is size efficient if the size of the
approximate kernel is bounded by f(e) - pPM) | where p is the parameter and f is
a computable function independent of p. Our bound on the approximate kernel
size in Theorem 5 implies that we do not obtain a size efficient PSAKS for either
STEINER FOREST or STEINER TREE. This is in contrast to the existence of efficient
approximation schemes for the same parameters in Theorems 1 and 4. We leave open
whether or not a size efficient PSAKS can be found in either case. Interestingly, we also
do not obtain any PSAKS for the UNWEIGHTED DIRECTED STEINER TREE problem,
even though by Theorem 2 an EPAS exists. In fact, we prove the following theorem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 551

THEOREM 6. No (2 — ¢)-approzimate kernelization algorithm exists for the
UNWEIGHTED DIRECTED STEINER TREE problem parameterized by the number
p = |V(T) \ R| of Steiner vertices in the optimum Steiner arborescence T for any
e > 0, unless NP C coNP/Poly.

1.1. Used techniques. Our algorithms are based on the intuition that a Steiner
tree containing only a few Steiner vertices but many terminals must contain either a
large component induced by terminals or a Steiner vertex with many terminal neighbors
forming a large star. A high-level description of our algorithms for UNWEIGHTED
DIRECTED STEINER TREE and STEINER FOREST therefore is as follows. In each
step a tree is found in the graph in polynomial time, which connects some terminals
using few Steiner vertices. We save this tree as part of the approximate solution and
then contract it in the graph. The vertex resulting from the contraction is declared
a terminal and the process repeats for the new graph. Previous results [24, 31] have
also built on this straightforward procedure in order to obtain FPT algorithms and
polynomial kernels for special cases of UNWEIGHTED DIRECTED STEINER TREE and
UNWEIGHTED STEINER TREE. In particular, in the unweighted undirected setting it
is a well-known fact (cf. [31]) that contracting an adjacent pair of terminals is always
a safe option, as there always exists an optimum Steiner tree containing this edge.
However, this immediately breaks down if the input graph is edge-weighted, as an
edge between terminals might be very costly and should therefore not be contained in
any (approximate) solution.

Instead, we employ more subtle contraction rules, which use the following intuition.
Every time we contract a tree with £ terminals we decrease the number of terminals
by £ — 1 (as the vertex arising from a contraction is a terminal). Our ultimate goal
would be to reduce the number of terminals to one—at this point, the edges that we
contracted during the whole run connect all the terminals. Decreasing the number of
terminals by one can therefore be seen as a “unit of work.” We will pick a tree with
the lowest cost per unit of work done and prove that as long as there are sufficiently
many terminals left in the graph, these contractions only lose an e-factor compared
to the optimum. As soon as the number of terminals falls below a certain threshold
depending on the given parameter, we can use an FPT algorithm computing the
optimum solution in the remaining graph. This algorithm is parameterized by the
number of terminals, which now is bounded by our parameter. For the variants of
STEINER TREE considered in our positive results, such FPT algorithms can easily be
obtained from the ones for STEINER TREE [2, 15, 18]. Adding this exact solution to
the previously contracted trees gives a feasible solution that is a (1 4 £)-approximation.

Each step in which a tree is contracted in the graph can be seen as a reduction rule
as used for kernelization algorithms. Typically, a proof for a kernelization algorithm
will define a set of reduction rules and then show that the instance resulting from
applying the rules exhaustively has size bounded as a function in the parameter. To
obtain an a-approximate kernelization algorithm, additionally it is shown that each
reduction rule is a-safe. Roughly speaking, this means that at most a factor of « is
lost when applying any number of a-safe reduction rules (see subsection 2.2 for formal
definitions).

Contracting edges in a directed graph may introduce new paths, which did not
exist before. Therefore, for the UNWEIGHTED DIRECTED STEINER TREE problem, we
need to carefully choose the arborescence to contract. In order to prove Theorem 2,
we show that each contraction is a (1 + €)-safe reduction rule. However, the total size

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

552 DVORAK ET AL.

of the graph resulting from exhaustively applying the contractions is not necessarily
bounded as a function of our parameter. Thus, we do not obtain an approximate
kernel.

For STEINER FOREST the situation is in a sense the opposite. Choosing a tree to
contract follows a fairly simple rule. On the downside, however the contractions we
perform are not necessarily (1 + ¢)-safe reduction rules. In fact there are examples
in which a single contraction will lose a large factor compared to the optimum cost.
We are still able to show that after performing all contractions exhaustively, any (-
approximation to the resulting instance can be converted into a (14 ¢)3-approximation
to the original input instance. Even though the total size of the resulting instance
again cannot be bounded in terms of our parameter, for STEINER FOREST we can go
on to obtain a PSAKS. For this we utilize a result of Lokshtanov et al. [26], which
shows how to obtain a PSAKS for STEINER TREE if the parameter is the number of
terminals. This result can be extended to STEINER FOREST, and since our instance
has a number of terminals bounded in our parameter after applying all contractions,
we obtain Theorem 5.

To obtain our inapproximability result of Theorem 3, we use a reduction from
the DOMINATING SET problem. It was recently shown by Srikanta, Laekhanukit, and
Manurangsi [30] that this problem does not admit parameterized f(k)-approximation
algorithms for any function f, if the parameter k is the solution size, unless W[1] = FPT.
We are able to exploit this to also show that no such algorithm exists for DIRECTED
STEINER TREE with edge weights, under the same assumption. To prove Theorem 6
we use a cross composition from the SET COVER problem, for which Dinur and Steurer
[12] proved that it is NP-hard to compute a (1 — ¢) In(n)-approximation. We are able
to preserve only a constant gap; thus, we leave open whether stronger nonconstant
lower bounds are obtainable or whether UNWEIGHTED DIRECTED STEINER TREE has
a polynomial size a-approximate kernel for some constant o > 2.

1.2. Related work. As the STEINER TREE problem and its variants have been
studied for decades, the literature on this topic is huge. We present only a selection of
related work here that was not mentioned above.

For general input graphs, Zelikovsky [33] gave the first polynomial time approxi-
mation algorithm for STEINER TREE with a better ratio than 2 (which can easily be
obtained by computing a minimum spanning tree on the terminal set). His algorithm is
based on repeatedly contracting stars with three terminals each, in the metric closure
of the graph, which yields an 11/6-approximation. This line of work led to the Borchers
and Du [4] theorem, which states that for every STEINER TREE instance with terminal
set R and every € > 0 there exists a set of subtrees (so-called full components) on at
most 20(1/¢) terminals from R each and with all leaves being terminals, such that their
union forms a Steiner tree for R of cost at most 1 + ¢ times the optimum. As a conse-
quence, it is possible to compute all full components with at most 20(1/¢) terminals
(using an FPT algorithm parameterized by the number of terminals [15, 18]), and then
find a subset of the precomputed solutions, in order to approximate the optimum. This
method is the basis of most modern STEINER TREE approximation algorithms and is,
for instance, leveraged in the currently best (In(4) + ¢)-approximation algorithm of
Byrka et al. [6]. The Borchers and Du [4] theorem can also be interpreted in terms of
approximate kernelization schemes, as Lokshtanov et al. [26] point out (cf. proof of
Theorem 5). Tt is interesting to note that our algorithms are also based on finding
good subtrees. However, while computing optimum full components is NP-hard, the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 553

subtrees we compute in each step can be found in polynomial time, regardless of how
many terminals they contain.

For planar graphs [5] it was shown that an EPTAS exists for STEINER TREE. For
STEINER FOREST a 2-approximation can be computed in polynomial time on general
inputs [1], but an EPTAS also exists if the input is planar [16]. If the UNWEIGHTED
STEINER TREE problem is parameterized by the solution size, it is known [13] that no
polynomial (exact) kernel exists, unless NP C coNP/Poly. If the input is restricted to
planar or bounded-genus graphs it was shown that polynomial kernels do exist for this
parameterization [29]. It was later shown [31] that for planar graphs this is even true
for our smaller parameter p.

For the DIRECTED STEINER TREE problem it is a long-standing open problem
whether a polylogarithmic approximation can be computed in polynomial time. It is
known that an O (| R|®)-approximation can be computed in polynomial time [7] and
an O (log2 n)-approximation in quasi-polynomial time [7]. Feldmann and Marx [17]
consider the DIRECTED STEINER NETWORK problem, which is the directed variant of
STEINER FOREST (i.e., a generalization of DIRECTED STEINER TREE). They give a
dichotomy result, proving that the problem parameterized by |R| is FPT whenever the
terminal pairs induce a graph that is a caterpillar with a constant number of additional
edges, and otherwise the problem is W[1]-hard. Among the W/[1]-hard cases is the
STRONGLY CONNECTED STEINER SUBGRAPH problem (for which the hardness was
originally established by Guo, Niedermeier, and Suchy [19]), in which all terminals
need to be strongly connected. For this problem a 2-approximation is obtainable [8]
when parameterizing by |R|, and a recent result shows that this is the best possible [9]
under the gap exponential time hypothesis.

In the same paper, Chitnis, Feldmann, and Manurangsi [9] also consider the
BIDIRECTED STEINER NETWORK problem, which is the directed variant of STEINER
FOREST on bidirected input graphs, i.e., directed graphs in which for every edge uv the
reverse edge vu exists as well and has the same cost. These graphs model inputs that
lie between the undirected and directed settings. From Theorems 1 and 5, it is not hard
to see that the BIDIRECTED STEINER TREE problem (i.e., DIRECTED STEINER TREE
on bidirected inputs) has both an EPAS and a PSAKS for our parameter p, by reducing
the problem to the undirected setting. Since the PSAKS for parameter p follows from
the PSAKS for parameter |R| given by Lokshtanov et al. [26], it is interesting to note
that for parameter |R|, Chitnis, Feldmann, and Manurangsi [9] provide both a PSAKS
and a parameterized approximation scheme for the BIDIRECTED STEINER NETWORK
problem whenever the optimum solution is planar. This is achieved by generalizing the
Borchers and Du [4] theorem to this setting. As this is a generalization of BIDIRECTED
STEINER TREE, it is natural to ask whether corresponding algorithms also exist for
our parameter p in the more general setting considered in [9].

2. Preliminaries.

2.1. Reducing STEINER TREE to STEINER FOREsT. By a folklore result, we
may reduce the STEINER TREE problem to STEINER FOREST. For this we pick an
arbitrary terminal r of the STEINER TREE instance, and for every other terminal v of
this instance, we introduce a terminal pair {v,r} for STEINER FOREST.

If we want to construct an instance without Steiner vertices, we can add a new
vertex w’ for every Steiner vertex w of STEINER TREE and add an edge ww’ of cost 0.
Additionally, we introduce a terminal pair {w,w’} to our STEINER FOREST instance.
Hence, R =V in the constructed STEINER FOREST instance (i.e., there are no Steiner
vertices), but an optimum Steiner forest in the constructed graph costs exactly as much

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

554 DVORAK ET AL.

as an optimum Steiner tree in the original graph. As STEINER TREE is APX-hard, the
same is true for STEINER FOREST, even if all vertices are terminals.

2.2. Lossy kernels. We give a brief introduction to the lossy kernel framework
as introduced by Lokshtanov et al. [26]. See the latter reference for a thorough
introduction to the topic.

For an optimization problem, a polynomial time preprocessing algorithm is a pair
of polynomial time algorithms: the reduction algorithm R and the solution lifting
algorithm L. The former takes an instance I with parameter p of a given problem
as input and outputs another instance I’ with parameter p’. The solution lifting
algorithm £ converts a solution for the instance I’ to a solution of the input instance
I: Given a solution s’ to I’, £ computes a solution s for I such that s is optimal for I
if ' is optimal for I’. If additionally the output of R is bounded as a function of p,
i.e., when |I'| + p’ < f(p) for some computable function f independent of |I|, then
the pair given by R and L is called a kernelization algorithm, and I’ together with
parameter p’ is the kernel. If the reduction and solution lifting algorithms get an
input that is not an instance of the problem (for example, if the parameter does not
correctly describe some property of the optimum solution), then the outputs of the
algorithms are undefined and can be arbitrary.

An «-approximate polynomial time preprocessing algorithm is again a pair of
a reduction algorithm R and a solution lifting algorithm £, both running in time
polynomial in the input size. The reduction and solution lifting algorithms are as
before, but there is a different property on the output of the latter: if the given solution
s’ to the instance I’ computed by R is a S-approximation, then the output of £ is
a solution s that is an afB-approximation for the original instance I. Analogous to
before, an a-approzimate kernelization algorithm is an a-approximate polynomial time
preprocessing algorithm for which the size of the output of the reduction algorithm
is bounded in terms of p only. The output of R is in this case called an approximate
kernel, and it is polynomial if its size is bounded by a polynomial in p.

In the context of lossy kernels, a reduction rule is a reduction algorithm R. It is
called «a-safe if a solution lifting algorithm L exists, which together with R forms a
strict a-approximate polynomial time preprocessing algorithm. This means that if s’
is a S-approximation for the instance computed by R, then £ computes a (max{«; 5})-
approximation s for the input instance. As shown in [26], the advantage of considering
this stricter definition is that, as usual, reduction rules can be applied exhaustively,
until a stable point is reached in which none of the rules would change the instance
any longer. The algorithm resulting from applying these rules, together with their
corresponding solution lifting algorithms, forms a strict a-approximate polynomial time
preprocessing algorithm (which is not necessarily the case when using the nonstrict
definition; see [26]).

3. The weighted undirected STEINER FOREST and STEINER TREE prob-
lems. In this section we describe an approximate polynomial time preprocessing algo-
rithm that returns an instance of STEINER FOREST containing at most O ((p + ¢)?/e?)
terminals if there is a Steiner forest with at most p Steiner vertices and at most ¢
connected components. We can use this algorithm in two ways. Either we can proceed
with a kernelization derived from Lokshtanov et al. [26] and obtain a polynomial size
lossy kernel (Theorem 5), or we can run an exact FPT algorithm derived from Fuchs
et al. [18] on the reduced instance, obtaining an EPAS running in single exponential
time with respect to the parameters (Theorems 1 and 4). In both cases we use the
combined parameter (p, ¢).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 555

STEINER FOREST
Input: A graph G = (V, E), with edge weights w(e) € RT for each ¢ € E,
and a list {s1,s1}, ..., {sk, s}.} of pairs of terminals.
Solution: A Steiner forest F' C G containing an s;-s; path for every i € [k]

3.1. Algorithm description. We first rescale all weights so that every edge
has weight strictly greater than 1. Using a standard preprocessing procedure, we also
take the metric closure of the input graph, i.e., every edge of the graph is present
and its weight is equal to the shortest path distance of the endpoints in the original
input graph. It is easy to see (and folklore) that solving STEINER FOREST in the
metric closure is equivalent to solving it for the original input graph. Moreover, every
solution still exists as a subgraph in the metric closure, so that our parameters remain
unchanged.

Then, in each step of our algorithm we pick a star, add it to the solution, and
contract the star in the current graph. After the contraction, the edge weights may not
obey the triangle inequality anymore. However, this is not needed for our algorithm.
Instead, we only need that the graph is always complete, so that a star to contract
can always be found. We repeat this procedure until the number of terminals falls
below a specified bound depending on ¢, p, and ¢. To describe how we pick the star to
be contracted in each step, we need to introduce the ratio of a star.

DEFINITION 7. Let C be a set of edges of a star, i.e., all edges of C are incident to
a common vertex which is the center of the star, and denote by Q the set of terminals
in V(C), where V(C) is the set of vertices in C. Provided |Q| > 2, we define the ratio

of C as w(C)/(|Q — 1), where w(C) =} .- wl(e).

Note that we allow C' to contain only a single edge if it joins two terminals, and
that due to rescaling of edge weights each star has ratio strictly greater than 1. Observe
also that the ratio of a star is similar to the average weight of an edge in the star.
However, the ratio is skewed due to the subtraction of 1 in the denominator. In
particular, for two stars of the same average weight, the one with more terminals will
have the smaller ratio. Thus, in this sense, picking a star with small ratio favors large
stars.

In every step, our algorithm contracts a star with the best available ratio (i.e.,
the lowest ratio among all stars connecting at least two terminals). Since we assume
that our input is a complete graph, a star containing two terminals always exists
(except in the trivial case when there is only one terminal). Moreover, due to the
following lemma, a star with the best ratio has a simple form: it consists of the
cheapest ¢ edges incident to its center vertex such that all leaves are terminals. As
there are n possible center vertices and at most n incident edges to each center
which can be sorted in time O (nlogn), the best ratio star can be found in time
(0] (n2 log n)

LEMMA 8. Let v be a vertex and denote by qi1,qo, ... the terminals adjacent to v,
where w(vq) < w(vge) < -+ -, i.e., the terminals are ordered nondecreasingly by the
weight of the corresponding edge vq;. The star with the best ratio having v as its center
has edge set {vqy,vqa,...,vqe} for some £.

Proof. Let C be an edge set of a star with center vertex v. First note that if this
star contains a Steiner vertex w as a leaf, vw can be removed from C in order to
decrease the ratio w(C)/(|Q] — 1), since only the terminals @ of the star are counted in
the denominator. Also if C' does not contain some edge vq; but an edge vq; with j > i,
then we may switch the edge vq; for vg; in C in order to optimize the ratio: the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

556 DVORAK ET AL.

denominator stays the same, but the numerator cannot increase, as the terminals
q1,q2, - - - are ordered nondecreasingly according to the weights of vg;. 0

We now formally describe different graphs resulting from each contraction step
t, together with their terminal pairs (see Figure 1). Initially, we set Go to the input
graph, and in each step ¢ > 0 we obtain a new graph G;;1 from G; by contracting
a set of edges C; in G, such that C; forms a star of minimum ratio in G¢. That is,
we obtain Gy41 from G; by identifying all vertices in V(C}), removing all resulting
loops, and among the resulting parallel edges we delete all but the lightest one with
respect to their weights. We also adjust the terminal pairs in a straightforward way.
Let v be the vertex of G441 resulting from contracting Cy. If G; had a terminal pair
{s,s'} such that s is incident to some edge of C; while ' is not (i.e., s € V(C}) and
s' ¢ V(C})), then we introduce the terminal pair {v, s’} for Gy41. Also every terminal
pair {s, s’} of G; for which neither s nor s’ is incident to any edge of C; is introduced
as a terminal pair of Gty1. Somewhat counterintuitively, we also introduce the (trivial)
terminal pair {v,v} for G¢1; if there was a terminal pair in Gy for which both s and
s’ were incident to edges of C;. In particular, this means that v can be a leaf of a
contracted star in a subsequent step, even though the solution might not require any
connection from v to some other terminal. The reason we need to keep v as a terminal
is that otherwise the number of Steiner vertices of the considered solution, i.e., our
parameter p, might increase. Still, our analysis below shows that contracting such a
trivial terminal v in a best-ratio star will not cause any problems.

The number of terminals in any given instance with terminal pairs
{s1,51},...,{sk,s,} is the size of the set R = {s;,s; | 1 < i < k}. This in par-
ticular means that if a terminal appears in several pairs or is in a trivial terminal pair,
it is counted only once. The algorithm stops contracting best-ratio stars when there are
fewer than 7 terminals left in R; we have 7 = O ((p + ¢)?/e*), but we specify the pre-
cise value of 7 in the analysis below. If the algorithm stops in step £, the solution lifting

algorithm takes a feasible solution F of G; and returns the union of F and |J{_, C;.
Such a solution is clearly feasible, since we adapted the terminal pairs accordingly
after each contraction. Algorithm 3.1 gives a pseudocode of the resulting algorithm.

3.2. Analysis. For the purpose of analysis, we consider a solution in the current
graph G, that originates from a solution of the original instance Gy but may contain
edges that are heavier than those in G¢. More concretely, denote by F{j a solution in
Go with at most p Steiner vertices and at most ¢ components, i.e., F{j is a Steiner
forest containing an s;-s; path for any . We remark that F§ may or may not be an
optimum solution of Gy and that we think of F{i as a subgraph of G, isomorphic to a
forest, without isolated vertices.

Given F} for ¢t > 0, we modify this solution to obtain a new feasible solution
F} | on the terminal pairs of G4 (as defined above). Fy ; will again be a subgraph
of G141 without isolated vertices. Note that the edges of the contracted star C; might
not be part of Fy". We still mimic the contraction of the star in Fy": to obtain FY,
from F}, we identify all leaves of C; (which are terminals by Lemma 8 and thus part
of the solution F}*) and possibly also the center v of C; if it is in F}*. (Note that if
v is not a terminal, it may not be a part of the solution F}*, which does not contain
isolated vertices.) This results in a vertex v’ and a solution F} _; for Gy;1, which,
however, may well contain some cycles or loops.

We now want to delete edges incident to v’ in such a way that we are left with an
acyclic feasible solution for Gy41. Let Q; denote the set of terminals in V(C;). We
repeat the following simple step to find an inclusionwise minimal feedback edge set D,
of F{,, that is incident to v’: as long as there is a cycle K in Fy , (possibly, K is a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 557

Algorithm 3.1. An algorithm for solving STEINER FOREST. If we stop before line 11

we obtain the reduced instance.

input :undirected graph G = (V, E), list of terminal pairs {s1,s}},...,{sk, Sk}

edge weights w(e) € RY

output : a forest ' C G that contains an s;-s; path for any i € {1,...,k}

Function BestStar (v)

if v is a terminal then z < 1;

else z «+ 0;

q1,---,qr < terminals adjacent to v sorted by the weight of edge vq; /* k>
|R| —1 in the metric closure */

foriin2—=z2,...,k do

L T Z;zl w(vg;)/(t+ 2z —1)

7 return edges {vqi,...,vq;} of a star with the smallest r;

8 while |R| > 7 do

C + argmin{w(C,) | C, + BestStar(v),v € V} /* a star exists in the
metric closure */

10 Contract C', then remove loops and among parallel edges, keep only the lightest.

Adjust the terminal pairs accordingly.

W N =

%]

11 Run FPT algorithm parameterized by the number of terminals and connected
components

loop), remove from F} ; an edge e of K such that in solution F}*, edge e is incident to
Q¢ (thus, in particular, e is incident to v" in Fy ;). We claim that K must contain an
edge e that is incident to a terminal in) in solution F}*. Indeed, observe first that K
must contain v’, since otherwise K appears in F*, which contradicts the acyclicity of
F}. Recall that the only vertex of V(C}) that may be a Steiner vertex is the center
v of the star C;. If K is a loop, then the only edge e of K connects two vertices in
V(Cy), so e is incident to Q;. Otherwise, K contains two edges ¢’ and e” incident to v’
that do not connect two vertices in V(C}), because edges connecting vertices in V(C})
become loops after the contraction. Since both ¢’ and ¢’ cannot be incident to v in F}*
(otherwise, K would be a cycle in F}"), one of €’ or ¢ must be incident to @, which
shows the claim (see Figure 1). It follows that the above procedure is well-defined.

Once there is no cycle in Fy,,, we set Fy",, := F/, |, which now forms a forest
connecting all terminal pairs of Gy11. Note that for each edge in FY,, there is a
corresponding edge in Gyy1, which, however, may be lighter in Gy, as from each
bundle of parallel edges in G; we keep the lightest one, but this edge may not exist
in F{. Let Dy := E(Fy)\ E(F{,) be the set of edges that were deleted from the
solution. (We remark that we do not optimize the total length of edges in D;.)

To show that our algorithm only loses an e-factor compared to the cost of the
solution Ff, we will compare the cost of the edges C} contracted by our algorithm to
the set D; of deleted edges of F}*. Note that for any two time steps t # ¢/, the sets D;
and Dy, but also the sets C; and Cy, are disjoint. Thus if w(Cy) < (1 + e)w(Dy) for
every t, then our algorithm computes a (1 + ¢)-approximation. Unfortunately, this is
not always the case: there are contractions for which this condition does not hold (see
Figure 2) and we have to account for them differently.

DEFINITION 9. If w(Ct) < (1 + e)w(Dy) we say that the contracted edge set Cy in
step t is good; otherwise Cy is bad. Moreover, if F} has strictly more components
than F}, |, we say that Cy is multiple-component; otherwise it is single-component.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

558 DVORAK ET AL.

e
/.

F1G. 1. An example of creating F" ey from F} after contracting Cy. Solid edges (including the
thick one) belong to solutions F}* ey and ¥, while edges in Ct are dashed. Note that in this example,
no edge in Cy belongs to Fy*, although thzs s not true in general. Set Dy consists of all edges deleted
in the second step, i.e., all edges incident to v', except for the thick edge, which cannot be in Dy
because it is not incident to any terminal.

*
t+1

[|
M 1 1 M
1 1
— —=
M M
1 1
— —=
M M
1 1
— —=
M M
1 1
— —=
M M
1 1

m, 0

Fia. 2. An example of a bad contraction. The optimum solution consists of the thick edges. The
numbers of terminals and the weight M can be arbitrarily large. Note that any edge in the metric
closure between any two terminals has length of at least M if there are at least M + 1 terminals. The
star centered at t1 and containing the incident terminal to has ratio M, while every other star in the
metric closure of the graph has ratio slightly more than M. By contracting the star t1,t2 we create a
cycle in the optimum solution containing edges of weight 1 only. Thus, for a sufficiently large value
of M the contraction cannot be charged.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 559

v

Cy

Q:

Dy

/
U1 Ugqg I

F1a. 3. The contracted star Cy and a part of the optimal solution spanned by the terminals Q+
of the star Ct.

Our goal is to show that the total weight of bad contractions is bounded by an
e-fraction of the weight of Fjj. We start by proving that if the set @; of terminals in a
contracted edge set C} is sufficiently large, then the contraction is good. Intuitively,
this means that skewing the ratio such that large stars are favored (compared to just
picking the star with the smallest average weight) tends to result in good contractions.
We define

(I+e)p+c)

A= ————~,
€

LEMMA 10. If |Q¢| > A, then the contracted edge set C is good.

Proof. Let r = w(C4)/(|Q+¢] — 1) be the ratio of the contracted star, and let ¢ be
the number of deleted edges in D; that connect two terminals. Note that any such
edge has weight at least r, since it spans a star with two terminals, which has ratio
equal to its weight, and since each edge in F;* (of which Dy is a subset) can only be
heavier than the corresponding edge in the current graph Gjy.

Let uy,...,uq be the Steiner vertices adjacent to edges in Dy, and let ¢; be the
number of edges in D; incident to one such Steiner vertex w; (see Figure 3). Since Dy
is a feedback edge set in which any edge was incident to a terminal in); before the
contraction, there is no edge in D; which connects two Steiner vertices. Consider the
star spanned by the ¢; edges of D; incident to w;. If £; > 2, the ratio of this star is
at least 7, since its edges are at least as heavy as the corresponding edges in G; and
the algorithm chose a star with the minimum ratio in G;. Thus, the weight of edges
in Dy incident to wu; is at least r(¢; — 1). In the case where ¢; = 1, the lower bound
r(¢; —1) = 0 on the weight holds trivially.

Any edge in D; not incident to any Steiner vertex u; connects two terminals.
Therefore, we have ¢ + "7 | ¢; = |D;| as any edge in D; is incident to a terminal in
@: and we thus do not count any edge twice.

We observe next that from the construction of F}* we get that there are at least
|Q¢| — ¢ edges in D;. Recall that we contracted terminals in @) in the forest F}* which
has at most ¢ connected components in order to obtain Fy ;. Indeed, a forest on
n vertices and ¢ components has n — ¢ edges. We decrease the number of vertices
of F by at least |Q;] — 1 (one more if the center of the star with edge set C; was
a Steiner vertex present in F)), and we decrease the number of components by at
most ¢ — 1. Let z be the number of vertices in F}". We conclude that the forest I},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

560 DVORAK ET AL.

has at most z — |Q¢| + 1 vertices and at least one connected component. Thus, there
are at most z — |Q;| edges in F | and we get that |Di| > 2z —c— (2 — |Q¢]) = |Q:] —c.
Since F}* contains at most p Steiner vertices we have ¢ < p, and we obtain

w(Dy) > ré’—er(&- -H=r ([’—1—2& —q) =7r(|Dy| —q) > r(|Qt| —p—c).

i=1 i=1

Finally, using |Q+| > A we bound w(C%) by (1 + e)w(D;) as follows:

(1+e)w(Dy) > (L+e)r(|Qe] —p—¢) =r|Q¢| +7(e|Qe| — (L+&)(p+¢))

2w@®+rGu+i@+@—ﬂ+d@+@)=M@% 0

Note that there may be a lot of contractions with |Q| < A. However, we show
that only a bounded number of them is actually bad. The key idea is to consider
contractions with ratio in an interval ((1+6)% (1+ 6)"™!] for some § > 0 and integer i.
Due to the rescaling of weights every star belongs to an interval with i > 0. The
following crucial lemma of our analysis shows that the number of bad single-component
contractions in each such interval is bounded in terms of p and ¢ if ¢ is a function of e.
In particular, let § := /1 +¢ — 1, so that (14 6)% = 1+e. We call an edge set C with
ratio 7 in the ith interval, i.e., with r € ((14 6)%; (14 6)""], an i-contraction, and
define

K= 7(1 —;5)]3 +p

LEMMA 11. For any integer i the number of bad single-component i-contractions
15 at most k.

Proof. Let us focus on bad single-component i-contractions only, which we here
just call bad ¢-contractions for brevity. Suppose for a contradiction that the number of
bad i-contractions is larger than k. The plan is to show that at each of the x steps ¢ in
which a bad i-contraction happens, there must be a cheap edge e; in the corresponding
set D;. Since the deleted sets D, are disjoint, all of these edges are also present in Gj
of the first step £ with a bad i-contraction, i.e., £ is the minimum among all ¢ for which
w(Cy) > (1+e)w(Dy) and w(Cy)/(|Q¢] —1) € ((1+6)%; (146)"™] and the contraction
is single-component. We then show that among all the cheap edges in Gy there is a
“light” star with ratio at most (1 + d)%, and consequently the algorithm would do a
j-contraction for some j < 4. This leads to a contradiction, since we assumed that in
step ¢ the contraction has ratio in interval i. Note that it is sufficient to find such a
light star in F as for each edge in F; there is an edge in the graph G; between the
same vertices of the same weight or even lighter.

We claim that for each step t in which the algorithm does a bad i-contraction there
is an edge e; € D; with weight at most (1 +6)"~!. We have w(Cy) > (1 +)w(D;) as
Cy is bad and w(Cy) < (1+ 6)"1(|Q¢| — 1) as the ratio of Cy is in interval i. Putting
it together and using the definition of § we obtain

D) <
w(t) 1+¢

(IQ —1) =1+ 8" (|Qi| —1).

Because C is single-component, we have |D;| > |Q¢| — 1 and therefore there is an edge
e; € Dy with weight at most (1 4 §)*~!, which proves the claim.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 561

Note that the edge e; also exists at time step ¢, as £ <t and F}* is obtained from
F7 by a sequence of edge contractions and deletions. At time £ it cannot be that e;
connects two terminals, since we assume that the algorithm picked a star of ratio more
than (1 +6)? in step (recall that each edge connecting two terminals is a star with
ratio equal to its weight). It may happen though that e; connects two Steiner vertices
in step . We discard any such edge e; that connects two Steiner vertices in step £.
That is, let S be the set of light edges e; that connect a Steiner vertex and a terminal
in step £. Note that edges e, and e, for steps t < ' with bad i-contractions are distinct,
because D; N Dy = () as all edges in D; are deleted from F;. There are at most
p — 1 edges e; ¢ S connecting two Steiner vertices in F ¥, since FY is a forest and the
solution from which F7 is derived contained at most p Steiner vertices. Summarizing,
we assume that there are more than x bad single-component i-contractions, each of
which contributes one edge e; that is incident to a Steiner vertex, and we remove less
than p edges e; that connect two Steiner vertices, which implies that set S of the
remaining edges e; satisfies |S| > k — p.

At step t there must be a Steiner vertex v in F¥ incident to at least |S|/p >
(k—p)/p > (1+08)/d edges in S. Consider a star C with v as the center and with edges
from S that are incident to v; we have |C| > (1+39)/d. The ratio of this star is at most
|ICl(1+6)""1/(|C] = 1). Since |C|/(|C| — 1) < (1+) (by a routine calculation) we
get that the ratio of C'is at most (1 + §)¢, which is a contradiction to the assumption
that the algorithm does an i-contraction in step £. 0

We remark that the proof of Lemma 11 does not use that the number of terminals
in a bad i-contraction is bounded by A, as shown in Lemma 10. Instead we will bound
the total weight of bad contractions in terms of A. For this let j be the largest interval
of any contraction during the whole run of the algorithm, i.e., the ratio of every
contracted star is at most (1 + §)7*1. As there are at most x bad single-component
contractions in each interval and at most ¢ — 1 (bad) multiple-component contractions,
and as the interval size grows exponentially, we can upper bound the total weight of
bad contractions in terms of x,c, A, and (1+ §)7. We can also lower bound the weight
of w(F¥) in terms of (1+§)7 and the lower bound 7 on the number of terminals in the
graph. If 7 is large enough, then the total weight of edge sets C} of bad contractions
is at most € - w(Fy). These ideas are summarized in the next lemma.

LEMMA 12. Let j be the largest interval of any contraction during the whole run
of the algorithm and let Wg be the total weight of the union edge sets C; of bad
contractions. Then, the following holds:

(1) W < (k+c¢)-A-(1+8)7%2/6.

(2) w(Fg) > (1 +6) - (r—c—p).

(3) Let
(1+6)?

Ti=(k+c) X =

+c+p;

then Wp < e-w(Fy§).

Proof. To prove (1), observe first that if C; is a multiple-component edge set, Fy, |
must have at least one component fewer than F;*. Since F{j has at most ¢ components,
there are fewer than ¢ bad multiple-component contractions. Each of them has at
most A terminals by Lemma 10 and has ratio at most (1 + §)?*! by the choice of j.
Thus, the total weight of all bad multiple-component contractions can be bounded by
(1+8)7* . c- A

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

562 DVORAK ET AL.

Note that it follows from Lemmas 10 and 11 that the total weight of bad single-
component i-contractions is at most - A - (1+68)*1. The bound on the total weight of
bad contractions follows by summing over all intervals in which the algorithm possibly
does a contraction:

Kede Y (1+6) T e X (140!

1<i<j
(1+6)T2 - (1+90) -
= k- \- (1 Jt+
K- A 050 -1 +c-A-(1490)
1 Jj+2
S(IQ—FC)-)\'%.

This proves (1).

For (2), when our algorithm contracted a star having ratio » > (1 + §)7 in the
largest interval j in some step ¢, all stars in G with at least two terminals had ratio at
least r. Let vy, ...,v, be the Steiner vertices of Fy* and uy,...,u, be Steiner vertices
of Iy which are connected to at least one terminal. Thus, if ¢; is the number of
terminals adjacent to u; in Fy, then these terminals together with u; form a star of
weight at least r- (¢; —1) if ¢; > 2, since no edge in F}" is lighter than the corresponding
edge of G;. If £; = 1, then lower bound r - (¢; — 1) = 0 on the weight trivially holds.
Similarly, all edges between terminals in F}* have weight at least 7; let £’ be the number
of such edges.

Since F}* has at least 7 terminals in step ¢ (otherwise the algorithm would have
terminated), it contains ¢ Steiner vertices, and has at most ¢ components, the total
number of edges of F}" is 7 + ¢ — ¢. Those of its edges that connect two Steiner
vertices form a forest on at most ¢ vertices, and there can therefore be at most ¢ — 1
such edges. Hence the number of edges in F}* that are incident to a terminal is
0+ Zg/:l bLi>2T+q—c—(qg—1) > 7 —c. Using p > ¢, the total weight of edges in
FY is at least

q/
E’r—l—Zr-(&—l) >r-(r—c—p)> 148 -(tr—c—p).
i=1
This shows (2) as w(F}) < w(Fy).
To get (3), by (2) and using the value of 7 we have
(L+0)* _

ew(Fy) > e(1+0) - (1—c—p) = 6(1+5)j~(li+6)')\'T = (k+c)-A-

(1+46)7+2
5 3

which is the upper bound on Wg by (1). 0
The above lemma can now be used to prove that all the contractions put together

(with e scaled appropriately) form a (1 + €)-approximate preprocessing procedure with
respect to F (cf. subsection 2.2).

LEMMA 13. The algorithm outputs an instance with 7 € O ((p + 6)2/64) terminals
and (together with the solution lifting algorithm) it is a (1+2¢)-approximate polynomial
time preprocessing algorithm with respect to Ff.

Proof. The upper bound on the number of terminals follows directly from the
description of the algorithm. To bound the running time, we already noted that finding

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 563

a minimum ratio star to contract can be done in O (n?logn) time. Since such a star
with at least two vertices is contracted in each step ¢ to form the next graph G;11,
the total time used for contractions until only 7 terminals are left is polynomial in n.

Let us focus on the (1 + 2¢)-approximate part. Let H = G be the graph left after
the last contraction step ¢, and let Fy be a Steiner forest for the remaining terminal
pairs. The solution lifting algorithm simply adds all contracted edge sets Cy, C1, ... to
Fy in order to compute a Steiner forest F in the input graph Gy. We need to show
that if Fiy is a -approximation to the optimum solution F}; in H, the resulting forest
Fg is a ((1 + 2¢)B)-approximation to the solution F of G.

Let us call a step ¢ of the algorithm good (bad) if the corresponding contracted
edge set Cy is good (bad). As all sets C; are disjoint, we use Lemma 12 to bound the
weight of F by

w(Fa)= Y w(C)+ Y w(C)+w(Fu) < Y (1+e)w(Dy)+ew(Fy)+B8w(Fy).
good t bad t good t
The forest F}' left after the last contraction corresponds to a feasible solution in H.
As the edge weights might be less expensive in H than in F}, we have w(F) < w(Fy).
At the same time, the deleted sets D; and the edges of F; are disjoint, so that
> good t WD) <30, w(Dy) < w(Fy) — w(FY). Therefore, the above bound becomes
w(

w(Fg) < (1+¢) (w(Fy) — w(Fy)) +e - w(Fy) + 8- w(Fy)
<(1+¢)s (w(FO) —w(F;) +w(Ff)) +e-w(Fy) < (1+42)8-w(E]),
which proves the claim. 0

Note that in case the given p is smaller than the number of Steiner vertices in Fy,
or ¢ is smaller than the number of connected components in Fj, the algorithm still
outputs a Steiner forest, but the approximation factor may be arbitrary. Finally, we
provide proofs of Theorems 4 and 5.

Proof of Theorem 4. Obtaining an FPT algorithm for STEINER FOREST parame-
terized by the number of terminals and connected components is not hard given an
FPT algorithm as the one given in [18] for STEINER TREE. We only need to guess the
sets of terminals that form connected components in the optimum Steiner forest. We
can then invoke the algorithm of [18] on each subset to compute an optimum Steiner
tree connecting it. To bound the number of partitions of the terminal set, recall that
the input to our algorithm has an integer ¢ upper-bounding the number of components
in a solution with which we compare our solution. Thus, each terminal can be in one
of at most ¢ components, so there are at most ¢/l partitions of the terminal set R
that need to be considered. The algorithm of [18] runs in time (2 + §)I% . n®M) for
any constant § > 0, and this results in an algorithm with runtime ((2 + d)c)!ftl - nOM)
to solve STEINER FOREST. We run this algorithm on the STEINER FOREST in-
stance that our preprocessing algorithm of Lemma 13 computes, in order to obtain
Theorem 4. O

To obtain Theorem 5 on lossy kernels, we rely on the fact that a PSAKS exists
for STEINER TREE parameterized by the number of terminals. It is known that
despite being FPT [15, 18], this problem does not admit polynomial (exact) ker-
nels [13], unless NP C coNP/Poly. However, as shown by Lokshtanov et al. [26],
the Borchers and Du [4] theorem can be reinterpreted to show that a PSAKS exists.
Obtaining a PSAKS for STEINER FOREST can be done in essentially the same way as
described in [26], and together with Lemma 13 this gives a PSAKS for our choice of
parameters.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

564 DVORAK ET AL.

Proof of Theorem 5. The Borchers and Du [4] theorem states that for any opti-
mum Steiner tree T" on terminal set R there exists a collection of trees 717, ..., T such
that all leaves of each tree belong to R, each T; contains 2°(1/¢) terminals of R, and
the union Ule T; is a (1 + &)-approximation of T'. This theorem can also be applied
to each tree in the optimum STEINER FOREST solution, since each such tree must be
an optimum Steiner tree for its contained terminal set.

In particular, to compute a kernel, first we take the metric closure of the graph
with 7 terminals computed by our algorithm, so that any minimum cost tree connect-
ing 2°(1/¢) terminals can be assumed to only contain 2°(1/¢) Steiner vertices as well.
We then compute an optimum Steiner tree for each subset of R of size at most 2°0(1/¢),
This is done using an FPT algorithm parameterized by the number of terminals,
which takes polynomial time if € is a constant. Within the union of all computed
Steiner trees exists a (1+¢)-approximate Steiner forest due to the Borchers and Du [4]
theorem, and the total number of vertices in this union is |R\20(1/E). However, the
union is not of polynomial size in |R| yet, due to the edge lengths. Lokshtanov et al.
[26] show that it is possible to round the edge lengths in such a way that the cost
of every Steiner tree grows by at most a factor of (1 + ¢), and the edge lengths can
be encoded using at most O (log(|R|) 4 log(1/¢)) bits. For this an estimate on the
cost of the optimum solution is needed, which can be obtained using the polyno-
mial time 2-approximation algorithm for STEINER FOREST by Agrawal, Klein, and
Ravi [1].

The number of terminals in the instance that we obtain after exhaustively applying
our contractions is bounded in terms of our parameters p, ¢, and ¢ by Lemma 13.
Hence, the union of all computed solutions for terminal sets of size at most 2°(1/¢) with
rounded edge lengths is a polynomial-sized (1 + €)-approximate kernel for STEINER
FOREST. a

4. The unweighted directed STEINER TREE problem. In this section we
provide an EPAS for the UNWEIGHTED DIRECTED STEINER TREE problem, in which
each arc has unit weight.

UNWEIGHTED DIRECTED STEINER TREE
Input: A directed graph G = (V, A), and a set R of terminals with a root
terminal r.
Solution: A Steiner arborescence 7' C G containing a directed path from r to
each terminal v € R.

The idea behind our algorithm given in this section is to reduce the number of
terminals of the input instance via a set of reduction rules. That is, we would like to
reduce the input graph G to a graph H and prove that the number of terminals in H
is bounded by a function of our parameter p and the approximation ratio (14 ¢). On
H we use the algorithm of Nederlof [28] to obtain an optimum solution.

Our first reduction rule represents the idea that a terminal in the immediate
neighborhood of the root can be contracted to the root. Observe that in this case our
algorithm has to pay 1 for connecting such a terminal to the root; however, any feasible
solution must connect this terminal as well using at least one arc—this argument is
formalized in Lemma 14 (cf. subsection 2.2).

ReEDUCTION RULE R1. If there is an arc from the root r to a terminal v € R, we
contract the arc (r,v) and declare the resulting vertex the new root.

LEMMA 14. Reduction Rule R1 is 1-safe and can be implemented in polynomial
time. Furthermore, there is a solution lifting algorithm running in polynomial time

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 565

and returning a Steiner arborescence if it gets a Steiner arborescence of the reduced
graph as input.

Proof. The implementation of the reduction rule is straightforward. Let H be a
graph resulting from G after the contraction of the arc (r,v) to the new root /, let
T} and T¢ denote optimal Steiner arborescences for H and G, respectively, and let
TH be a Steiner arborescence in H.

Our solution lifting algorithm constructs a Steiner arborescence Tz in G by simply
taking Ty and uncontracting (r,v) in it. Note that T spans all terminals, as Ty does
in H and we added (r,v). Also, T is an arborescence, since r has in-degree zero (as 1’/
has), v has in-degree one, and T is clearly a tree. Thus T is a Steiner arborescence
in G.

The solution lifting algorithm adds 1 to the solution value, so that w(Tg) =
w(Twy) + 1. Note that w(Tg) > w(T};) + 1 as the optimal solution in G must
additionally connect v to 7, i.e., it has to add some arc of cost 1. Finally we have

w(Te) _ w(Ty)+1 _ max{w(TH). 1}’

w(Tg) ~ w(Tf) +1 7 w(Ty)' 1

so that if Ty is a S-approximation of T}y, then T is a (max{1; 5})-approximation of
T¢. Hence, the rule is 1-safe. 0

The idea behind our next reduction rule is the following. Assume there is a Steiner
vertex s in the optimum arborescence T' connected to many terminals with paths
not containing any other Steiner vertices. We can then afford to buy all these paths
emanating from s together with a path connecting the root to s. Formally, we say
that a vertex u is a k-extended neighbor of some vertex v if there exists a directed
path P starting in v and ending in u, such that V(P)\ {v} contains at most k Steiner
vertices. Note that a vertex is always a k-extended neighbor of itself for any k£ and
that each of the above terminals connected to s in 7" is a 0-extended neighbor of s. We
denote by NE . (v) the set of all k-extended neighbors of v and call it the k-extended
neighborhood of v (see Figure 4). By the following observation, the Steiner vertex s
of T lies in the p-extended neighborhood of the root r. Therefore, there is a path
containing at most p Steiner vertices connecting r to s.

O

F1c. 4. An exzample of extended neighborhood of Steiner vertex s. The set N%It(s) is depicted
on the top using full arcs, while the vertices connected by dotted arcs are not a part of this set. The
set N1 .(s) is depicted on the bottom using full arcs.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

566 DVORAK ET AL.

Observation 15. Let G = (V, A) be a directed graph with root r € R. Suppose
there exists a Steiner arborescence 7' C GG with at most p Steiner vertices. It follows
that V(T) C N, (r).

In what follows we fix € > 0. The second reduction rule contracts a path from r to
a Steiner vertex s in the p-extended neighborhood of r together with the 0-extended
neighborhood of s if this neighborhood is sufficiently large.

REDUCTION RULE R2. If there exists a Steiner vertex s with | N, (s)| > p/e and
s € NY, .(r), so that there is an r — s path P containing at most p Steiner vertices,
then we contract the subgraph of G induced by N% ,(s) and P in G and declare the
resulting vertex the new root.

LEMMA 16. Reduction Rule R2 is (1 + €)-safe and can be implemented in polyno-
mial time. Furthermore, there is a solution lifting algorithm running in polynomial
time and returning a Steiner arborescence if it gets a Steiner arborescence of the
reduced graph as input.

Proof. Checking the applicability of Rule R2 and finding s together with Ng_, (s)
can be done in polynomial time as follows. We set arc lengths so that each arc ending
at a terminal has length zero, while arcs ending at Steiner vertices have length one.
Now a length of a directed path P from the root corresponds to the number of Steiner
vertices in P. Then, we run an algorithm for finding a shortest path from r to each
vertex which allows us to find the set NE_ (r). Finally, for each s € NE (r) we
compute N2 (s) by a simple breadth-first search.

We now specify the solution lifting algorithm. Denote by H the reduced graph
obtained from G by applying R2. Let Ty be a solution of the reduced instance H
and let T}; be an optimal solution in H. Consider the graph @, which is the union
of P and the subgraph of G induced by Ng . (s). The solution lifting algorithm first
computes an arborescence A of @ rooted in r (e.g., by a depth-first search). Define
T as the union of Ty and A. We show that T is a Steiner arborescence.

First, observe that Tz spans all terminals as T contains all terminals in H and
A is an arborescence containing all vertices in). Note that T is a tree as A is an
arborescence of @@, Ty is a tree, and Ty contains at most one arc from the root in H
to each vertex (recall that the root in H was created by contracting Ng(s) UV (P)).
The root in T has clearly in-degree zero, while all other vertices have in-degree one,
since this holds for H as Ty is an arborescence, and A is an arborescence of @) rooted
in . Thus T is a Steiner arborescence in G.

It remains to show the safeness of the rule. Let = be the total number of terminals
in N2, (s) UV(P) (not counting the root) and let T¢, be an optimal solution in G.
Note that w(Tg) < w(Ty) + = + p. We obtain a solution for H of weight at most
w(T¢) — « by starting with T, removing @ arcs each having one of the z nonroot
terminals in N2, (s) U V(P) (and thus not in H) as their head, identifying all vertices
in N2 (s) UV(P) with the new root, and removing loops and parallel arcs. Thus
w(TE) > w(Thy) + « and we get

w(Ty)+xz+p ax w(Ty) x+p ax w(Ty)
A i S i §

w(Te)
w(Tg)

The last inequality is valid because x > p/e. Thus if Ty is a S-approximation of
T}, then T is a (max{1 + ¢; f})-approximation of T, and so the reduction rule is
(1 + ¢)-safe. d

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 567

Now we prove that if none of the above reduction rules is applicable and our
algorithm was provided with a correct value for parameter p, then the number of
terminals in the reduced graph can be bounded by p?/z.

LEMMA 17. Let G be an instance of DIRECTED STEINER TREE, and denote by
H the graph obtained from G by exhaustive application of Reduction Rules R1 and R2.
Suppose that there exists a Steiner arborescence in G containing at most p Steiner
vertices. It follows that the remaining terminal set R of H has size less than p*/e.

Proof. Observe first that both our reduction rules use contractions in the underly-
ing graph and thus if there was a solution T¢ in G’ with at most p Steiner vertices,
then there is a solution 7% in H again containing at most p Steiner vertices.

Since Reduction Rule R1 is not applicable to H, we conclude that N2 ()N R = 0.
As Reduction Rule R2 is not applicable to H, it holds that |NgXt (s)N R’ < p/e for
every Steiner vertex s € N&_, (r). Therefore, |R| < p?/e, since any terminal in H must
be in the 0-extended neighborhood of some Steiner vertex in 7} and there are at most
p Steiner vertices in 7. 0

The last step of the algorithm (cf. proof of Theorem 2) is to compute an optimum
solution in the graph H obtained from the input graph G after exhaustively applying
Reduction Rules R1 and R2. From the resulting arborescence in H, we obtain an
arborescence in G by running the solution lifting algorithms for each reduction rule
applied (in the reverse order); the existence and correctness of the solution lifting
algorithms for our reduction rules are provided by Lemmas 14 and 16. The algorithm
is summarized in Algorithm 4.1.

Algorithm 4.1. Algorithm for solving DIRECTED STEINER TREE. As explained
earlier, all steps except line 10 can be implemented in polynomial time.

input :directed graph G = (V, A), terminals R C V, root r € R, and integer p
output : Steiner arborescence T' C G, if p is at most the nr. of terminals in the
optimum

=

if R\ N} ,(r) # 0 then /* no solution with at most p Steiner vertices
*/

2 L return ¢

‘noﬂﬂ

3 while Reduction Rule R1 or R2 is applicable do

4 if there is an arc from r to v € R then /* Reduction Rule R1 x/

5 L Contract the arc (r,v), and declare the resulting vertex the new root.

6 if there exists s € V '\ R with s € N%,(r) and [N3,,(s)| > p/e then

/* Reduction Rule R2 */

7 Find an 7 — s path P with at most p Steiner vertices. Contract the subgraph
of G induced by N2, (s) and P, and declare the resulting vertex the new
root.

8 if |R| > p?/e then /* no solution with at most p Steiner vertices */

9 L return “no”

10 Run the FPT algorithm of [28]; let T" be the returned solution.
11 In the reverse order of application of Reduction Rules R1 and R2:

12 Revert the contraction of the reduction rule.
13 Run the solution lifting algorithm for the reduction rule on 7'
14 Store the resulting arborescence in T.

15 return 7T

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

568 DVORAK ET AL.

root

F1G. 5. An ezample for the reduction. A graph G with its dominating set U = {c, e} on the left.
The corresponding instance of DIRECTED STEINER TREE to the right.

Proof of Theorem 2. If neither Reduction Rule R1 nor R2 is applicable and the
current number of terminals exceeds the bound p?/e we can return “no” as it follows
from Lemma 17 that no optimal solution with at most p Steiner vertices exists. If
this is not the case we return an optimal solution using the algorithm of [28], which
runs in time 2151 . nOM) where R is the current set of terminals with size at most
p?/e. As explained earlier both reduction rules can be implemented in polynomial
ti]gle, together with their solution lifting algorithms. Thus the total running time is
2r°/e . nO() | The approximation guarantee and correctness of the obtained solution
follow from Lemmas 14 and 16. O

5. The weighted DIRECTED STEINER TREE problem. Here, we prove that
the standard reduction from the DOMINATING SET problem to the DIRECTED STEINER
TREE problem (with arc weights) translates into inapproximability of the latter problem.
By a recent result of Srikanta, Laekhanukit, and Manurangsi [30], there is no f(b)-
approximation algorithm for the DOMINATING SET problem, even when parameterizing
by size b of the optimum solution, unless W[1] = FPT.

DOMINATING SET
Input: an undirected graph G = (V, E).
Solution: the smallest dominating set U C V for which every v € V either is in
U or v has a neighbor in U.

Proof of Theorem 3. We give a parameterized reduction from the DOMINATING
SET problem parameterized by the size of the solution U, which we denote by b = |U].

For an overview of the reduction please refer to Figure 5. Let G = (V, E) be
a graph in which we are searching for the smallest dominating set of size b and let
n = |V| and m = |E|. We create an instance of DIRECTED STEINER TREE having
2n + 1 vertices and n + 2m arcs as follows. There are n terminals, each corresponding
to a vertex in V, one auxiliary terminal (the root), and n Steiner vertices again
corresponding to vertices in V. There are arcs of two kinds. The first kind of arcs are
of weight 1 and connect the root to each Steiner vertex, i.e., they are directed toward
the Steiner vertices. The second kind of arcs are of weight 0 and connect the Steiner
vertices with the terminals, directed toward the terminals. There is an arc from each
Steiner vertex corresponding to a vertex w € V to every terminal corresponding to a
vertex v € V if v = w or v is a neighbor of w in G.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 569

Observe that there is a dominating set of size b in G if and only if there is
an arborescence connecting the root to all terminals of cost b. Note also that this
arborescence contains b Steiner vertices. Thus we set the parameter p to value b.

Suppose that there is a parameterized f(p)-approximation algorithm for the
DIRECTED STEINER TREE problem for parameter p and a computable function
f- Then, we would obtain a parameterized f(b)-approximation algorithm for the
DOMINATING SET problem parameterized by the size b of the solution. This would
imply W[1] = FPT by [30]. ad

6. Refuting a PSAKS for UNWEIGHTED DIRECTED STEINER TREE. In
this section, we prove that the UNWEIGHTED DIRECTED STEINER TREE problem
does not admit a (2 — €)-approximate polynomial kernel for any constant ¢ > 0
unless NP C coNP/Poly. We use a framework for proving lower bounds on ap-
proximate polynomial kernels by Lokshtanov et al. [26] and present an a-gap cross
composition (for & = 2 — ¢). For the composition, we need to define a polynomial
equivalence.

DEFINITION 18. An equivalence relation = on ¥*, where 3 is a finite alphabet, is
called a polynomial equivalence relation if
1. the equivalence of any x,y € X* can be checked in time polynomial in |x|+ |y|,
2. any finite set S C B* has at most (max,cg |z|)°") equivalence classes.

Now we explain how the composition works. Let L C ¥* be a language, and let
z1,...,Ts € X* be strings belonging to the same class of some polynomial equivalence =.
The composition, given x1,...x;, runs in time polynomial in 2221 |z;| and computes
¢ € R and an instance (G, R,p) of the UNWEIGHTED DIRECTED STEINER TREE
problem parameterized by p such that

1. if x; € L for some 1 <14 < t, then G contains a Steiner arborescence containing
at most c arcs;
2. if x; ¢ L for all 1 < i < ¢, then any Steiner arborescene of G contains at least
Q- ¢ arcs;
3. the parameter p is bounded by a polynomial in logt + maxy<;<¢ |;].
By the framework of Lokshtanov et al. [26], if L is an NP-hard language, then the
UNWEIGHTED DIRECTED STEINER TREE problem does not admit a polynomial-sized
a-approximate kernel for parameter p unless NP C coNP/Poly. We use the SET COVER
problem as the language L.

SET COVER

Input: A universe U, a set P of subsets of U, and a positive integer b.
Solution: A set C C P such that |C| < band U = g C

We call b the budget. Let Zy,...,Z; be instances of the SET COVER problem.
We define the polynomial equivalence = as follows. Two SET COVER instances
(U1,P1,b1) and (Ua, Pz, be) are equivalent in = if |Uy| = |Us| = n, |P1| = |P2| = m,
and by = by = b. Thus, we can suppose that all instances Z;,...,Z; are over the
same universe U. It is straightforward to verify that the relation = is a polynomial
equivalence relation.

We can also suppose that m is polynomial in n and either each instance Z; has a
set cover of size at most b or each set cover has size at least vb for arbitrary constant
v (actually v can be O(logn) but we do not need this here). By a result of Dinur and
Steurer [12], the SET COVER problem is still NP-hard in this case.

The first step of the a-gap cross composition is to convert each instance Zj
to an instance Gy of the UNWEIGHTED DIRECTED STEINER TREE problem. The

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

570 DVORAK ET AL.

F1G. 6. Sketch of the (2—¢€)-gap cross composition. All arcs are oriented in “top-down” direction
from the root r to terminals t;. The graph Ij is an incident graph of the instance Iy, = (U, Pk, b) of

the SET COVER problem. The graph Gy, is the graph I, with paths from the vertex ry to the vertices

k k
STy Sy

construction is similar to the reduction in the proof of Theorem 3. Let Zy, = (U, Py, b)
be an instance of SET COVER. We create a terminal root r; and for each S]]? € Pk
we create a Steiner vertex s;‘ We add a directed path of length n from r; to each
sf Then we create a terminal t¥ for every i € U and create the incidence graph of U

and P, i.e., we add an arc (s?,tf) ifi € Sj’.C where S]’»C is the set in P corresponding
to s? .

If 7, is a yes-instance (it has a set cover of size at most b), then G}, has a Steiner
arborescence with bn +n = (b+ 1)n arcs. On the other hand, if Z; is a no-instance
(each set cover has size at least vb), then each Steiner arborescence of G, has more
than ybn + n arcs.

Now we combine all GG, into one instance G of the UNWEIGHTED DIRECTED
STEINER TREE problem. First, we create a root r of the instance G. We connect r
and each vertex r, (the root of the instance Gy) by a directed path Py, of length d (the
value of d will be determined later). Thus, the root r has degree t. Finally, we identify
all terminals ¢¥ of all graphs G}, corresponding to the same element 7 in U into one
terminal t;, i.e., the graph G has n terminals apart from the root. See Figure 6 for a

sketch of the composition.

LEMMA 19. If for some k, Iy, is a yes-instance then G has a Steiner arborescence
with at most d + (b+ 1)n ares.

Proof. Let C be a set cover of Zj of size at most b. The arborescence T contains
the path Py from r to 7y, thus it contains d arcs. Let S be Steiner vertices in G
corresponding to the sets in C. We add to T all the paths from 7y to Steiner vertices in
S; as |S| < |C] < b, these paths have at most bn arcs. Since C is a set cover, there are
n arcs from Steiner vertices in S to all terminals of G and we add them to T. Thus, T
connects the root r of G to all the terminals of G and it has d + (b + 1)n arcs. a0

LEMMA 20. Let T be a Steiner arborescence of G. Suppose T contains two distinct
paths P; and Pj. Then, T has at least 2d 4 3n arcs.

Proof. The paths P; and P; are edge disjoint and each contains d arcs. Further, T’
contains at least n arcs from 7; to some Steiner vertex in GG; and at least n arcs from

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STEINER TREES WITH FEW STEINER VERTICES 571

T; to some Steiner vertex in G;. Finally, we still need n arcs to connect the terminals

and we get
|E(T)| > 2d + 3n. 0

LEMMA 21. Let T be a Steiner arborescence of G such that T contains only one
path Py. If all instances Iy, ...,T; are no-instances, then any Steiner arborescence of
G has at least d + n(yb+ 1) arcs.

Proof. Let T’ be an arborescence we get from T when we remove the path Pj.
Since V(P,) N V(T") = {ri}, the arborescence T" is a Steiner arborescence of Gj.
Thus, the arborescence 1" has at least n(yb + 1) arcs, because the instance Zy, is a
no-instance. Adding the d edges of Py, we obtain the claimed bound. 0

Now we calculate the value of d. We set d large enough so that Steiner arborescences
which contain more than one path Py are bigger than Steiner arborescences which
contain only one such path. Formally, by the above two lemmas we want

2d+3n>d+n(yb+1).

Thus, we set d = n(vb — 2) and we get the following corollary of Lemmas 20 and 21.

COROLLARY 22. If all instances Iy, ...,Z; are no-instances, then each Steiner
arborescence of G has at least n(2yb — 1) arcs.

Observation 23. The graph G has a Steiner arborescence T with at most d+n?+n
Steiner vertices.

Proof. We take a path Py from r into an arbitrary vertex ry (with d Steiner
vertices) and an arbitrary Steiner arborescence in Gy (with at most n? + n Steiner
vertices—from a trivial set cover when each element is covered by its own set). d

Thus, our parameter p of G (the number of Steiner vertices in the optimum) is
bounded by a polynomial in n, as d = n(vb — 2) and b < n. If there is a yes-instance
among 7y, ...,Z;, then by Lemma 19 we know that the optimal Steiner arborescence
of G has at most d + (b+ 1)n = n((y + 1)b — 1) arcs. If there are no-instances among
Ti,...,Z; only, then by Corollary 22 the optimal Steiner arborescence of G has at
least n(2vb — 1) arcs. This means that

n(2vb — 1)
M CESI)

for v large enough. Thus, for any constant ¢ > 0 we created a (2 — €)-gap cross
composition from the SET COVER problem to the UNWEIGHTED DIRECTED STEINER
TREE problem parameterized by the number of Steiner vertices in the optimum. This
refutes the existence of polynomial-sized (2 — €)-approximate kernels for this problem,
unless NP C coNP/Poly and proves Theorem 6.

7. Conclusions and open problems. Recently, it was shown that contract-
ing stars not only leads to parameterized approximation schemes for the STEINER
TREE problem, as outlined in this paper, but also behaves well in practical computa-
tions [21, 22]. In fact, this idea was used as a heuristic, which significantly improves
approximations of minimum spanning trees. The implementation of this idea together
with only a few additional heuristics was awarded fourth place (out of 24) in the 2018
PACE challenge in very competitive Track C [3].

From our theoretical work, we leave the following open problems:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

572

(1]

2]

[7]

(8]

(9]

DVORAK ET AL.

e The runtimes of our approximation schemes may be improvable. In particular,

we conjecture that a linear dependence on our parameter p should suffice in
the exponent of both algorithms in Theorems 1 and 2. It would also be very
interesting to obtain runtime lower bounds for our approximation schemes
under some reasonable complexity assumption.

e Given that we obtain a PSAKS for the STEINER TREE problem, but not for

the UNWEIGHTED DIRECTED STEINER TREE problem (even though we show
an EPAS for each of them), one remaining open question is what the best
approximation ratio obtainable by a polynomial-sized kernel is for the latter.
Namely, is there a polynomial-sized a-approximate kernel for UNWEIGHTED
DIRECTED STEINER TREE for some constant o > 27

e As mentioned in subsection 1.2, a parameterized approximation scheme and a

PSAKS exist for the BIDIRECTED STEINER NETWORK problem with planar
optimum [9] for parameter |R|. The PSAKS uses a generalization of the PSAKS
for STEINER TREE with parameter |R| by Lokshtanov et al. [26]. Hence, it
is natural to ask whether or not this is also the case for our parameter p,
i.e., whether or not there is a parameterized approximation scheme and/or
a PSAKS for BIDIRECTED STEINER NETWORK with planar optimum when
parameterized by p.

Acknowledgments. We would like to thank Michael Lampis and Edouard Bon-
net for helpful discussions on the problem. Also, we thank Jifi Sgall and Martin B6hm
for finding a mistake in a preliminary version of the proof of Lemma 11.

>

-

REFERENCES

AGRAWAL, P. KLEIN, AND R. Ravi, When trees collide: An approximation algorithm for
the generalized steiner problem on metworks, STAM J. Comput., 24 (1995), pp. 440-456,
https://doi.org/10.1137/s0097539792236237.

BJORKLUND, T. HUSFELDT, P. KASKI, AND M. Ko1visTo, Fourier meets Mobius: Fast subset
convolution, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
2007, https://doi.org/10.1145/1250790.1250801.

BONNET AND F. SIKORA, The PACE 2018 Parameterized Algorithms and Computational
Ezxperiments Challenge: The Third Iteration, in 13th International Symposium on Param-
eterized and Exact Computation, LIPIcs Leibniz Int. Proc. Inform. 115, C. Paul and M.
Pilipczuk, eds., Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
2019, pp. 26:1-26:15, https://doi.org/10.4230/LIPIcs.IPEC.2018.26.

BORCHERS AND D.-Z. Du, The k-Steiner ratio in graphs, SIAM J. Comput., 26 (1997), pp.
857-869, https://doi.org/10.1137/S0097539795281086.

BORRADAILE, P. KLEIN, AND C. MATHIEU, An O(n log n) approzimation scheme for Steiner
tree in planar graphs, ACM Trans. Algorithms, 5 (2009), pp. 1-31, https://doi.org/10.1145/
1541885.1541892.

. BYrkA, F. GRANDONI, T. ROTHVOSS, AND L. SANITA, Steiner tree approzimation via iterative

randomized rounding, J. ACM, 60 (2013), pp. 1-33, https://doi.org/10.1145/2432622.
2432628.

M. CHARIKAR, C. CHEKURI, T. YAT CHEUNG, Z. DA1, A. GOEL, S. GUHA, AND M. L1, Ap-

R.

R.

prozimation algorithms for directed steiner problems, J. Algorithms, 33 (1999), pp. 73-91,
https://doi.org/10.1006/jagm.1999.1042.

CHiTNIS, M. T. HAJIAGHAYI, AND G. KORTSARZ, Fized-parameter and approrimation algo-
rithms: A new look, in Parameterized and Exact Computation, Springer, New York, 2013,
pp. 110-122, https://doi.org/10.1007/978-3-319-03898-8_11.

CHITNIS, A. E. FELDMANN, AND P. MANURANGSI, Parameterized approzimation algorithms for
bidirected Steiner network problems, in 26th Annual European Symposium on Algorithms,
LIPIcs Leibniz Int. Proc. Inform. 112, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2018, pp. 20:1-20:16, https://doi.org/10.4230/LIPIcs.ESA.2018.20.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/s0097539792236237
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1137/S0097539795281086
https://doi.org/10.1145/1541885.1541892
https://doi.org/10.1145/1541885.1541892
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1007/978-3-319-03898-8_11
https://doi.org/10.4230/LIPIcs.ESA.2018.20

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

[11]

(12]

(13]
[14]
[15]

[16]

(17]

18]

[19]

[20]

(21]

22]

23]

[24]

[25]

[26]

27]

(28]

(30]

(31]

STEINER TREES WITH FEW STEINER VERTICES 573

M. CHLEBfK AND J. CHLEBIKOVA, Approzimation hardness of the steiner tree problem on
graphs, in Algorithm Theory—SWAT 2002, Springer, Berlin, 2002, pp. 170-179, https:
//doi.org/10.1007/3-540-45471-3_18.

M. CyagaN, F. V. FomIN, L. KowALIK, D. LOKSHTANOV, D. MARX, M. PILIPCZUK, M. PILIPCZUK,
AND S. SAURABH, Parameterized Algorithms, Springer, New York, 2015, https://doi.org/10.
1007/978-3-319-21275-3.

I. DINUR AND D. STEURER, Analytical approach to parallel repetition, in Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, 2014, https://doi.org/10.1145/2591796.
2591884.

M. DoM, D. LOKSHTANOV, AND S. SAURABH, Kernelization lower bounds through colors and
IDs, ACM Trans. Algorithms, 11 (2014), pp. 1-20, https://doi.org/10.1145/2650261.

R. G. DowNEY AND M. R. FELLOWS, Parameterized Complezity, Springer, New York, 1999,
https://doi.org/10.1007/978-1-4612-0515-9.

S. E. DREYFUS AND R. A. WAGNER, The steiner problem in graphs, Networks, 1 (1971), pp.
195-207, https://doi.org/10.1002/net.3230010302.

D. EiseEnsTAT, P. KLEIN, AND C. MATHIEU, An efficient polynomial-time approximation
scheme for steiner forest in planar graphs, in Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2012, pp. 626-638,
https://doi.org/10.1137/1.9781611973099.53.

A. E. FELDMANN AND D. MARX, The complexity landscape of fized-parameter directed Steiner
network problems, in 43rd International Colloquium on Automata, Languages, and Program-
ming, LIPIcs Leibniz Int. Proc. Inform. 55, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 2016, pp. 27:1-27:14, https://doi.org/10.4230/LIPIcs.ICALP.2016.27.

B. Fucus, W. KErN, D. MOLLE, S. RICHTER, P. ROSSMANITH, AND X. WANG, Dynamic
programming for minimum Steiner trees, Theory Comput. Syst., 41 (2007), pp. 493-500,
https://doi.org/10.1007/s00224-007-1324-4.

J. Guo, R. NIEDERMEIER, AND O. SUCHY, Parameterized complexity of arc-weighted directed
Steiner problems, SIAM J. Discrete Math., 25 (2011), pp. 583-599, https://doi.org/10.1137/
100794560.

E. HALPERIN AND R. KRAUTHGAMER, Polylogarithmic inapprozimability, in Proceedings of the
35th ACM Symposium on Theory of Computing, 2003, pp. 585-594, https://doi.org/10.
1145/780542.780628.

R. HUSEK, T. TOUFAR, D. KNoP, T. MASARIK, AND E. EIBEN, Steiner Tree Heuristics for
PACE 2018 Challenge Track C, https://github.com/goderik01/PACE2018, 2018.

R. HUSEK, D. KNoP, AND T. MASARIK, Approzimation algorithms for Steiner tree based on
star contractions: A wunified view, in Proceedings of the 15th International Symposium
on Parameterized and Exact Computation, 2020, pp. 16:1-16:18, https://doi.org/10.4230/
LIPIcs. IPEC.2020.16.

F. K. HWANG, D. S. RICHARDS, AND P. WINTER, The Steiner Tree Problem, Ann. Discrete
Math. 53, Elsevier, Amsterdam, 1992, https://doi.org/10.1016/s0167-5060(08)x7008-6.

M. JonEs, D. LOKSHTANOV, M. S. RAMANUJAN, S. SAURABH, AND O. SUCHY, Parameterized
complezity of directed Steiner tree on sparse graphs, SIAM J. Discrete Math., 31 (2017), pp.
1294-1327, https://doi.org/10.1137/15M103618X.

R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, Plenum, New York, 1972, pp. 85-103, https://doi.org/10.1007/978-1-4684-2001-2_9.

D. LoksHTANOV, F. PANOLAN, M. S. RAMANUJAN, AND S. SAURABH, Lossy kernelization, in
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017,
pp. 224-237, https://doi.org/10.1145/3055399.3055456.

D. MOLLE, S. RICHTER, AND P. ROSSMANITH, Enumerate and expand: Improved algorithms
for connected vertex cover and tree cover, Theory Comput. Syst., 43 (2007), pp. 234-253,
https://doi.org/10.1007/s00224-007-9089- 3.

J. NEDERLOF, Fast polynomial-space algorithms using mdbius inversion: Improving on Steiner
tree and related problems, in Proceedings of the 36th International Colloquium on Automata,
Languages and Programming, Rhodes, Greece, Part I, 2009, pp. 713-725, https://doi.org/
10.1007/978-3-642-02927-1_59.

M. PiLipczuk, M. PILIPCZUK, P. SANKOWSKI, AND E. J. VAN LEEUWEN, Network sparsification
for Steiner problems on planar and bounded-genus graphs, in Proceedings of the IEEE 55th
Annual Symposium on Foundations of Computer Science, 2014, https://doi.org/10.1109/
focs.2014.37.

K. C. SRIKANTA, B. LAEKHANUKIT, AND P. MANURANGSI, On the parameterized complexity of
approzimating dominating set, J. ACM, 66 (2019), https://doi.org/10.1145/3325116.

O. SucHY, Extending the kernel for planar Steiner tree to the number of steiner vertices,
Algorithmica, 79 (2017), pp. 189-210, https://doi.org/10.1007/s00453-016-0249-1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1007/3-540-45471-3_18
https://doi.org/10.1007/3-540-45471-3_18
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2650261
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1137/1.9781611973099.53
https://doi.org/10.4230/LIPIcs.ICALP.2016.27
https://doi.org/10.1007/s00224-007-1324-4
https://doi.org/10.1137/100794560
https://doi.org/10.1137/100794560
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/780542.780628
https://github.com/goderik01/PACE2018
https://doi.org/10.4230/LIPIcs.IPEC.2020.16
https://doi.org/10.4230/LIPIcs.IPEC.2020.16
https://doi.org/10.1016/s0167-5060(08)x7008-6
https://doi.org/10.1137/15M103618X
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.1007/s00224-007-9089-3
https://doi.org/10.1007/978-3-642-02927-1_59
https://doi.org/10.1007/978-3-642-02927-1_59
https://doi.org/10.1109/focs.2014.37
https://doi.org/10.1109/focs.2014.37
https://doi.org/10.1145/3325116
https://doi.org/10.1007/s00453-016-0249-1

Downloaded 01/17/22 to 195.113.17.144 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

574 DVORAK ET AL.

[32] D. P. WILLIAMSON AND D. B. Sumoys, The Design of Approzimation Algorithms, Cambridge
University Press, Cambridge, UK, 2011, https://doi.org/10.1017/cb0o9780511921735.

[33] A. ZELIKOVSKY, An 11/6-approzimation algorithm for the network Steiner problem, Algorith-
mica, 9 (1993), pp. 463-470, https://doi.org/10.1007/BF01187035.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1017/cbo9780511921735
https://doi.org/10.1007/BF01187035

	Introduction
	Used techniques
	Related work

	Preliminaries
	Reducing STEINER TREE to STEINER FOREST
	Lossy kernels

	The weighted undirected STEINER FOREST and STEINER TREE problems
	Algorithm description
	Analysis

	The unweighted directed STEINER TREE problem
	The weighted DIRECTED STEINER TREE problem
	Refuting a PSAKS for UNWEIGHTED DIRECTED STEINER TREE
	Conclusions and open problems
	References

