
INTRO TO APPROXIMATION, CLASS 2
the travelling salesman has come to us

From the last time:

Exercise one Simulate a biased coin with the probability of heads equal to p using a
fair coin. It remains to deal with the case of arbitrary p ∈ (0, 1) (even irrational), while keeping the
expected number of flips very small.

Exercise two Consider the following graph:

7

1

2 7

1

1

1

2

2

2

2

1. Find the shortest Hamiltonian cycle in this graph.
2. What is the optimal solution to the graph TSP problem on this graph?
3. What solution is found by a run of the Christofides’ algorithm?

Exercise three Find an infinite class of graphs showing that the algorithm for metric TSP
that uses a DFS traversal of the minimum spanning tree (and shortcuts) is no better than a 2-
approximation.
More precisely, for infinitely many n’s construct a graph Gn with n vertices so that

ALG(Gn)

OPT(Gn)
→ 2

for n → ∞ where ALG(Gn) is the cost of the algorithm’s solution and OPT(Gn) is the optimum
cost.

Exercise four Consider a connected, directed graph G with edge lengths. Before studying
the TSP problem on directed graphs, we can search for a more general structure – a subgraph P ⊆ G
of minimum total length such that P contains all the vertices and every vertex has exactly one
entering and one exiting edge. This problem is called Minimum Directed Cycle Cover.
• You can use a straightforward total unimodularity argument, if you know what that is from

Optimization methods.
• If you are not faimilar with total unimodularity, you can use a direct argument. You can for

instance make use of the fact that minimum-weight perfect matching can be found in polynomial
time. (Remember, Christofides’ algorithm also uses this fact.)



Exercise five Is TSP solvable in polynomial time? One could suggest a dynamic pro-
gramming algorithm as follows:

1. Create table d[i, x, y] where the meaning of the entry is „best walk from x to y in i steps“ .
2. Set d[0, x, x] = 0 and d[0, x, y] =∞.
3. For every length i ∈ {1, 2, 3, . . . , n} :
4. For every pair of vertices a, b:
5. Visit neighbors and set d[i, a, b] = minx neighbor of a(d(a, x) + d[i− 1, x, b]).
6. Set d[i, b, a] = d[i, a, b].
7. Return the minimum value d[n, v, v] over all v.

Analyze this algorithm.


