


WALTZ: documentation

Pavel Veselý

March 18, 2013



1. Documentation of Waltz

Waltz consists of the library for searching for best moves (described in Sec-
tion 1.3), the program tzaar that loads the board from a file and starts the
search (Section 1.2) and the Python web client for communication with Boitea-
jeux.net (Section 1.1). For simple building of the project, a Makefile is provided.

A user documentation for offline playing with Waltz using DaedalusGame-

Manager (DGM) can be found in the directory DaedalusGameManager. It is not
written in this thesis, because DGM is not a part of our work and it might be
improved or replaced by a user-friendlier program.

1.1 Python Web Client for Boiteajeux.net

Web client for communicating with the website Boiteajeux.net is written in
Python. It downloads a page from BAJ and looks for a game in which Waltz is
on turn. When such a game is found the client downloads the page with board
and calls the function PlayGame.

Function PlayGame has a parameter page containing HTML code of the page
with board. From the HTML code it parses a position, converts it to the board
representation (described in Section 1.2.1) and saves it to a file. Then it calls the
program tzaar and waits until the computation is done. Finally it loads best
moves from a file and executes them on BAJ (via HTTP POST requests).

The client also looks for an invitation for playing – one can start a game with
Waltz by creating a new game and adding the robot’s username in the field
Guests. The client sends email to a given recipient when an exception occurs,
and every day after midnight it sends statistics of searches done during the day.

Note that before using the client for BAJ, we have to configure it. That
means, inside the Python code, fill the robot’s username and password, an email
where to send error messages and daily outputs, and directories where is Waltz
located and where to save positions and outputs.

1.2 Program tzaar

The program tzaar written in C is quite simple. Given a file with a position
in Tzaar it initializes arrays and variables with a board representation that are
in the library. Then it calls function GetBestMove in lib for searching for best
moves and saves returned moves to a file.

The files and other options are given via command line arguments:

• -a N or --ai N – set the algorithm number N (see lib.h). The default AI
number is in constant MAINAI in lib.h (it is AI used by the expert robot).

• -b FILE or --bestmove=FILE – search for best moves in a position stored
in FILE and then save best moves into this file. An input file format is
described in Section 1.2.1 and output file format in Section 1.2.2. This is
a required option.

1



• -e FILE or --execute=FILE – execute best moves after searching for them
and then save the position to FILE. Default is not to save any position after
the search.

• -t SECONDS or --timelimit=SECONDS – set the time limit of the search to
SECONDS. The default value is in the constant AITIMELIMIT (30 seconds).

• -h or --help – print usage.

1.2.1 Board Representation and Input Files

Now we describe a board representation and then the format of input and output
files.

The Tzaar board is a hexagon with 5 fields on each side, but we cannot simply
store it in the memory as a hexagon. Thus it is sloped to be fit in the quadratic
array 9×9. In the library, one linear array of size 81 is used instead of a quadratic
array.

Example of the array containing fixed starting position (array members are
separated by spaces):

-1 1 1 1 1 100 100 100 100

-1 -2 2 2 2 -1 100 100 100

-1 -2 -3 3 3 -2 -1 100 100

-1 -2 -3 -1 1 -3 -2 -1 100

1 2 3 1 100 -1 -3 -2 -1

100 1 2 3 -1 1 3 2 1

100 100 1 2 -3 -3 3 2 1

100 100 100 1 -2 -2 -2 2 1

100 100 100 100 -1 -1 -1 -1 1

The number 100 stands for a field outside the board and also for the field
in the middle of the board. Empty fields with no stone have number 0. Other
numbers stand for different types of stones:

• 1 is a white Tott,

• 2 is a white Tzarra,

• 3 is a white Tzaar,

• -1 is a black Tott,

• -2 is a black Tzarra,

• -3 is a black Tzaar.

In this array, a player can move in six directions: horizontally left, or right,
vertically up, or down, and diagonally right and down, or left and up. The other
diagonal directions (right and up, left and down) are not possible.

The heights of stacks are in another array of the same size. Fields outside the
board and empty fields have stack height zero. Example for the fixed starting
position:



1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1

In the lib, there is also an array with names of fields ("-" is a field outside
the board):

"A1", "B1", "C1", "D1", "E1", "-" , "-" , "-" , "-" ,

"A2", "B2", "C2", "D2", "E2", "F1", "-" , "-" , "-" ,

"A3", "B3", "C3", "D3", "E3", "F2", "G1", "-" , "-" ,

"A4", "B4", "C4", "D4", "E4", "F3", "G2", "H1", "-" ,

"A5", "B5", "C5", "D5", "-" , "F4", "G3", "H2", "I1",

"-" , "B6", "C6", "D6", "E5", "F5", "G4", "H3", "I2",

"-" , "-" , "C7", "D7", "E6", "F6", "G5", "H4", "I3",

"-" , "-" , "-" , "D8", "E7", "F7", "G6", "H5", "I4",

"-" , "-" , "-" , "-" , "E8", "F8", "G7", "H6", "I5"

The input file for the program is a sequence of numbers separated by some
whitespace characters:

• first a player on turn is specified, i.e., robot’s color. Number 1 stands for
white, −1 for black,

• then there is the array with the board representation – 81 integers with
types of stones, or 0 as an empty field, or 100 as a field outside the board,

• the last is the array with stack heights (81 nonnegative integers).

Example with comments after ’%’ (they should be deleted before using the
file):

1 % our robot is white player

% stones on the board

1 -1 -1 -1 -1 100 100 100 100

1 2 -2 -2 2 3 100 100 100

1 0 -3 0 -3 0 1 100 100

0 0 0 0 0 0 2 1 100

0 -3 0 0 100 0 3 0 1

100 -1 0 -3 0 -1 -3 2 -1

100 100 -2 0 0 1 -3 -2 -1

100 100 100 0 2 2 2 -2 -1

100 100 100 100 1 1 1 1 -1

% stack heights



1 1 1 1 1 0 0 0 0

1 1 1 1 1 3 0 0 0

1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 1 1 0

0 3 0 0 0 0 1 0 1

0 1 0 1 0 1 1 1 1

0 0 3 0 0 2 1 1 1

0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1

Note that in the format it does not matter on whitespace characters (spaces,
new lines and tabs). The file with numbers separated by a single space and no
new lines will is loaded successfully.

1.2.2 Output File with Best Moves

Now we describe how best moves are saved in the output file. On the first line,
there is the first move of a turn. It is saved as the name of the field from which
a player moves a stack, and the name of the field where the player captured an
opponent’s stack (the names are separated by a space).

On the second line, there is an integer specifying what is the second move.
Number -2 stands for no move (in the case of the first turn of white player, or
win after the first move), -1 stands for a pass move, 0 for a stacking move, and
1 for a capture. In the last two cases, names of two fields follow, the first is the
field from which a stack is moved, and the second is the field to which the stack
is moved.

On the third line, there is some information about the search, namely the
search duration in seconds (with three decimal places) and the returned value.

Example of a capture move and a stacking move:

G4 C6

0 F2 F1

33.303 33319

Example of a capture and a pass move (the returned value 2 000 000 000 means
that Waltz is going to win):

H2 D1

-1

2.742 2000000000

1.2.3 Module main

The module main contains function main which parses command line arguments
using the getopt library and calls ProcessPosition which loads position. Then
it calls GetBestMove in lib and finally it saves the result.



1.2.4 Module saveload

The module saveload contains functions for loading and saving positions in the
format described in Section 1.2.1 and a function for saving best moves in the
format described in Section 1.2.2. Function SaveWholePosition save all infor-
mation about the position, including counts of stones according to a type, the
zone of control, but this function is not used by Waltz.

1.3 Library lib

The library lib contains the computation part of the program and it is also
written in C (standard C99). For searching for best moves the algorithms Alpha-
beta and Depth-first Proof-number Search (DFPNS) are implemented. There
are also auxiliary functions for generating, executing and reverting moves. It is
possible to choose between different versions of the algorithms, for example there
are versions for beginners and intermediate players.

1.3.1 Arrays and Fields for Position Properties

For the current position representation there are arrays board and stackHeights

of size 81 with the same format as described in Section 1.2.1. The variable player
is 1 when white is on turn and -1 when black is on turn. Since the turn of a player
consists of two moves, the variable moveNumber determines which phase of a turn
is: 1 is the first phase (a capture move) and 2 is the second (capture, stack, or
pass).

In the variable turnNumber, there is the number of turns from the root position
of the search (starting 1) – this is different from the number of turns in the whole
game which is not known to Waltz. Moves are stored in the array history.

There are some variables and arrays for storing information about the current
position that can be counted directly from arrays board and stackHeights, but
that would be very slow. The array counts contains the number of stacks alive
(visible) for each stone type, the variable stoneSum is the sum of stacks on the
board and it is used by the Iterative Deepening.

The variable value is the value of the current position determined by the
evaluation function or by a search. The variable materialValue is counted by
the part of the evaluation function that is counted incrementally when executing
or reverting moves. The variable hash contains the value of the Zobrist hash
function for the current position and it is also counted incrementally.

The array highestStack of the size equal to the number of stone types con-
tains the height of the highest stack for each type. For incrementally maintaining
this array library uses the quadratic array countsByHeight that contains the
number of stones for each type and height.

The array zoneOfControl contains for each stone type how many stones of
that type can be captured with one move. This is used in the evaluation function
and for determining whether a player has any possible captures when he is on
turn and it is his first move. The array is updated also incrementally using the
array threatenByCounts of the size 81 which contains for each field how many
stacks can capture a stack on this field.



1.3.2 Module lib

The module lib is the main module of the library. It contains definitions of
structures, types, macros, global arrays and variables used throughout the library
(some of them are described in the previous section).

The function GetBestMove starts the search according to the chosen algorithm
and does the time estimation via the Iterative Deepening for the Alpha-beta based
algorithms and for DFPNS via the estimation of the maximal number of nodes
that can be searched.

In the header file, types and basic macros are defined first. Constants for
properties of the game, types of AI (algorithms), and AI settings follows. The
structure for a move, global variables, and arrays are defined at the end.

1.3.3 Module moves

The module moves contains functions for generating, executing and reverting
moves. There are also support functions for deallocating memory (free a single
move or a linked list of moves), determining whether someone won in the current
position, updating the zone of control after executing or reverting a move and
converting between a field index and a field name (for example the field on index 3
has name D1).

Most of functions in this module are optimized to be as fast as possible,
because they are called many times during the search. Note that the functions for
generating moves are used for the first and the second move of a turn separately.

In the header file there are constants for the Move Ordering and arrays for
possible directions that are used in the functions for generating moves.

1.3.4 Module init

The module init has functions for initializing arrays and variables with infor-
mation about the current position. The counting of the hash value, the material
value (the part of the value of a position that is counted incrementally during
the search) and the zone of control is implemented here. Function InitBoard

prepares starting position according to the parameter setup (random, or fixed)
and calls other initialization functions, but it is not used by our robot.

Functions in this module are not optimized to be fast, because they are not
called during the search, only before it. The values of the parameter setup and
the fixed starting position are defined in the header file.

1.3.5 Module alphabeta

The module alphabeta contains functions that implement the Alpha-beta prun-
ing algorithm with its enhancements, functions for working with the Transposition
Table (TT) and static evaluation functions.

There are different Alpha-beta functions with different enhancements used:

• AlphaBeta – simple Alpha-beta with storing positions to TT,

• AlphaBetaPV – Alpha-beta with TT and the Principal Variation Move (PV),



• AlphaBetaPVMO – Alpha-beta with TT, PV and the heuristic Move Ordering
(MO),

• AlphaBetaMO – Alpha-beta only with the Move Ordering (without TT),

• AlphaBetaPVMORandom – random Alpha-beta proposed in Section ?? with
TT, PV and MO. It should be called only on the root of the search tree.

• AlphaBetaPVMONegascout – Alpha-beta with TT, PV, MO and Negascout,

• AlphaBetaPVMOHistory – Alpha-beta with TT, PV, MO and the History
Heuristic,

• AlphaBetaPVMOHistoryNegascout – Alpha-beta with TT, PV, MO, the
History Heuristic and the Negascout,

• AlphaBetaPVMOBeginner – Alpha-beta with TT, PV, MO and the beginner
static evaluation function,

• AlphaBetaPVMORandomBeginner – random Alpha-beta with TT, PV, MO
and the beginner static evaluation function. It should be called only on the
root of the search tree.

The Alpha-beta enhancement Iterative Deepening is implemented in the mod-
ule lib. The Transposition Table use the replacement scheme Two Big.

1.3.6 Module pns

The module pns contains the implementation of the Depth-first Proof-number
Search (DFPNS) with some enhancements and the Transposition Table (TT)
used by DFPNS (it differ from TT used by Alpha-beta).

There are different DFPNS functions with different enhancements used:

• dfpns – simple DFPNS without enhancements,

• dfpnsEpsTrick – DFPNS with the 1 + ε Trick,

• weakpns – Heuristic Weak DFPNS (one can modify it to Weak DFPNS
easily),

• dfpnsEvalBased – Evaluation Function Based DFPNS,

• dfpnsWeakEpsEval – Heuristic Weak DFPNS with the 1 + ε Trick and the
Evaluation Function Based enhancement,

• dfpnsDynWideningEpsEval – DFPNS with the Dynamic Widening, the 1+ε
Trick and Evaluation Function Based enhancement,

Constants for the enhancements are in the header file. The Transposition
Table for DFPNS also use the scheme Two Big.



1.3.7 File hashedpositions.h

This header file contains data for the Zobrist hashing. There is a three dimension-
al array HashedPositions of unsigned 64bit integers (type thash) that contains
random numbers for each combination of a field, a stone (or an empty field) and
a stack height that can occur on the board. Impossible combinations have value
zero.

The array is indexed in this way: HashedPosition[field][stoneType]

[stackHeight] where field is an index in the array board and it is in range
from 0 to 80, stoneType is the value from the array board plus three (the value
ranges from -3 to 3) and stackHeight is the height of a stack if there is any, or
zero otherwise. Note that for fields outside the board, the values are not used.


