Online Chromatic Number is PSPACE-Complete

Online Graph Coloring

- There is an undirected graph G known in advance.
- Vertices arrive one by one in an unknown order.
- An online algorithm must immediately and irrevocably assign a color to each incoming vertex v so that the revealed graph is properly colored.
- The exact location of v in G is not known, the algorithm only sees edges to previously colored vertices.

Definition (Online chromatic number $\chi^{O}(G)$)

 $\chi^{O}(G)$ is the smallest k s.t. there exists a deterministic algorithm which is able to color Gusing k colors for any incoming order of vertices.

- Deciding $\chi^{O}(G) \leq k$ is in PSPACE and coNP-hard [Kudahl '14].
- Conjecture: PSPACE-hard [Kudahl '14].

Main theorem

We resolve the complexity of computing $\chi^{O}(G)$:

Theorem

Deciding $\chi^{O}(G) \leq k$ is PSPACE-complete.

Martin Böhm and Pavel Veselý

Computer Science Institute of Charles University {bohm,vesely}@iuuk.mff.cuni.cz CSI

IÚUK

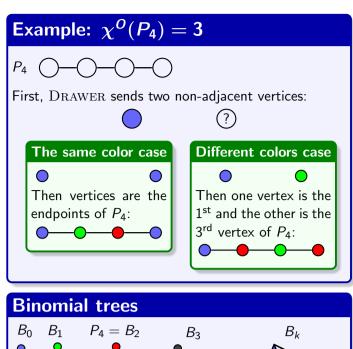
Game view

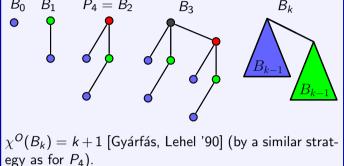
- Two players: DRAWER and PAINTER
- At each round:
 - DRAWER (the adversary) chooses an uncolored vertex v and sends it to PAINTER without any information to which vertex of G it corresponds, only revealing the edges to the previously sent vertices.
 - PAINTER (the online algorithm) must color *v* properly (it cannot use a color of a neighbor of v).
- Asymmetric game: DRAWER has much more control than **PAINTER**
- In most PSPACE-complete games players have roughly the same power.

Deciding $\chi^{O}(G) \leq k$ is in PSPACE

Game tree evaluation using Minimax in poly-space:

- # of rounds is at most |V(G)|.
- PAINTER just tries at most |V(G)| colors.
- DRAWER has at most 2^s moves where s = # of colored vertices, since it chooses which colored vertices shall be adjacent to the incoming vertex. Sent vertices must form an induced subgraph of G which can be checked in poly-space.





PSPACE-hardness

Q3DNF-SAT

Precoloring

- G_p = subgraph precolored before the game between DRAWER and PAINTER.
- DRAWER also reveals edges to G_p for each incoming vertex.
- Deciding $\chi^O(G) \leq k$ for G with precoloring is PSPACE-complete [Kudahl '14] (reduction from Q3DNF-SAT).
- Intuitively, precoloring gives some advantage to PAINTER.

Step 1. Large precoloring

Given a formula Q, we create a graph G_1 which will simulate the formula:

The satisfiability of a fully quantified formula Q in the

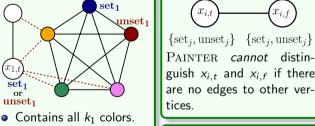
 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \ldots : (x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_4) \lor \ldots$

PSPACE-complete (triv. reduction from Q3CNF-SAT).

3-disjunctive normal form (3-DNF) such as

 $\chi^{O}(G_1) \leq k_1$ for some k_1 iff Q is satisfiable. The gadgets:

Precolored clique K_{col} set_1



guish $x_{i,t}$ and $x_{i,f}$ if there are no edges to other vertices. **Gadget for** $\exists x_j$

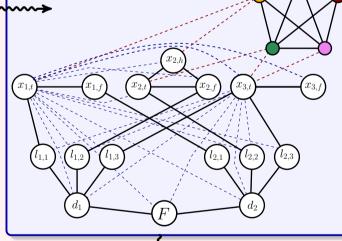
Gadget for $\forall x_i$

 $x_{i,f}$

 $x_{i,t}$

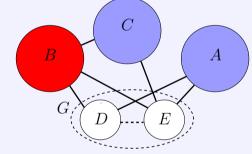
Step 1. Big picture of G_1

 $\forall x_1 \exists x_2 \forall x_3 : (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3)$

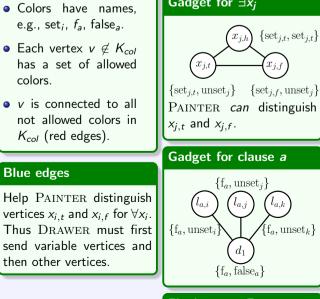


Step 3. Removing a precolored vertex

- Given G with p precolored vertices we create G'with p-1 precolored vertices such that:
 - $\chi^O(G) \leq k$ iff $\chi^O(G') \leq k'$,
 - $|V(G')| \le 25 \cdot |V(G)|$.
- We replace a precolored vertex v_p in G by a "supernode" with three huge cliques A, B, C:



- D = nonprecolored part of G not connected to v_p .
- E = nonprecolored part of G connected to v_p .
- Solid edge = complete bipartite graph between two parts.
- Dashed edge = edges between D and E as in G.
- The sheer size of the supernode allows **PAINTER** to use it like a precolored vertex, or to save many colors if it does not arrive early.



$\{\operatorname{set}_{j,t},\operatorname{unset}_j\} = \{\operatorname{set}_{j,f},\operatorname{unset}_j\}$ PAINTER *can* distinguish Gadget for clause a $\{f_a, unset_j\}$ $l_{a,k}$ $l_{a,j}$ $\{f_a, unset_k\}$ d_1 $\{f_a, false_a\}$ Final vertex F F can be colored with a color false_a iff the formula is satisfiable.

Step 2. Log. many precolored vertices

- Given G_1 we construct G_2 s.t.
- $\chi^{\mathcal{O}}(\mathcal{G}_1) \leq k_1 \text{ iff } \chi^{\mathcal{O}}(\mathcal{G}_2) \leq k_2.$ • *K_{col}* not precolored, but present.
- One node for each "Step 1" vertex v:
- (P1) and to $w \neq v$: • Edges to $v: p_2$
- $x_{i,t}$ and $x_{i,f}$ for $\forall x_i$ identified by the same two nodes.
- $\mathcal{O}(\log n)$ precolored vertices to distinguish *n* nodes (binary encoding).
- A node arrives early \Rightarrow can be used for recognition.
- Arrives after gadgets: PAINTER saves a color.

Conclusions

- Applying Step 3 log. many times on G_2 yields a graph G_3 with no precolored vertex s.t.
 - $\chi^{O}(G_3) \leq k_3$ iff the formula Q is satisfiable.
- $|V(G_3)|$ is polynomial in the size of Q.
- Since all constructions run in polynomial time, this proves the theorem.

Reference

 (p_1)

M. Böhm, P. Veselý: Online Chromatic Number is PSPACE-Complete. In Proc. of the 27th International Workshop on Combinatorial Algorithms (IWOCA). LNCS 9843, 16-28 (2016). Best Student Paper of IWOCA 2016.

Supported by project 17-09142S of GA ČR and by the GAUK project 634217.