Online Colored Bin Packing

Martin Bohm* !, Jif{ Sgall* !, and Pavel Vesely* !

!Computer Science Institute of Charles University, Prague, Czech Republic.
{bohm, sgall,vesely}@iuuk.mff.cuni.cz.

Abstract

In the Colored Bin Packing problem a sequence of items of sizes up to 1 arrives to be
packed into bins of unit capacity. Each item has one of ¢ > 2 colors and an additional
constraint is that we cannot pack two items of the same color next to each other in the
same bin. The objective is to minimize the number of bins.

In the important special case when all items have size zero, we characterize the optimal
value to be equal to color discrepancy. As our main result, we give an (asymptotically)
1.5-competitive algorithm which is optimal. In fact, the algorithm always uses at most
[1.5- OPT] bins and we show a matching lower bound of [1.5 - OPT] for any value of
OPT > 2. In particular, the absolute ratio of our algorithm is 5/3 and this is optimal.
For items of arbitrary size we give a lower bound of 2.5 and an absolutely 3.5-competitive
algorithm. When the items have sizes of at most 1/d for a real d > 2 the asymptotic
competitive ratio is 1.5+d/(d — 1). We also show that classical algorithms First Fit, Best
Fit and Worst Fit are not constant competitive, which holds already for three colors and
small items.

In the case of two colors—the Black and White Bin Packing problem—we prove that
all Any Fit algorithms have the absolute competitive ratio 3. When the items have sizes
of at most 1/d for a real d > 2 we show that the Worst Fit algorithm is absolutely
(1+d/(d — 1))-competitive.

1 Introduction

In the Online Black and White Bin Packing problem proposed by Balogh et al. [3, 2] as a
generalization of classical bin packing, we are given a list of items of size in [0, 1], each item
being either black, or white. The items are coming one by one and need to be packed into
bins of unit capacity. The items in a bin are ordered by their arrival time. The additional
constraint to capacity is that the colors inside the bins are alternating, i.e., no two items of
the same color can be next to each other in the same bin. The goal is to minimize the number
of bins used.

Online Colored Bin Packing is a natural generalization of Black and White Bin Packing
in which items can have more than two colors. As before, the only additional condition to
unit capacity is that we cannot pack two items of the same color next to each other in one
bin.

Observe that optimal offline packings with and without reordering the items differ in this
model. The packings even differ by a non-constant factor: Let the input sequence have n

*This work was supported by the project 14-10003S of GA CR and by the GAUK project 548214.

black items and then n white items, all of size zero. The offline optimal number of bins with
reordering is 1, but an offline packing without reordering (or an online packing) needs n bins,
since the first n black items must be packed into different bins. Hence we need to use the
offline optimum without reordering in the analysis of online colored bin packing algorithms.

There are several well-known and often used algorithms for classical Bin Packing. We in-
vestigate the Any Fit family of algorithms (AF). These algorithms pack an incoming item into
some already open bin whenever it is possible with respect to the size and color constraints.
The choice of the open bin (if more are available) depends on the algorithm. AF algorithms
thus open a new bin with an incoming item only when there is no other possibility. Among
AF algorithms, First Fit (FF) packs an incoming item into the first bin where it fits (in the
order by creation time), Best Fit (BF) chooses the bin with the highest level where the item
fits and Worst Fit (WF) packs the item into the bin with the lowest level where it fits.

Next Fit (NF) is more restrictive than Any Fit algorithms, since it keeps only a single
open bin and puts an incoming item into it whenever the item fits, otherwise the bin is closed
and a new one is opened.

Previous results. Balogh et al. [3, 2] introduced the Black and White Bin Packing
problem. As the main result, they give an algorithm Pseudo with the absolute competitive
ratio exactly 3 in the general case and 1+ d/(d — 1) in the parametric case, where the items
have sizes of at most 1/d for a real d > 2. They also proved that there is no deterministic or
randomized online algorithm whose asymptotic competitiveness is below 1 + ﬁ ~ 1.721.

Concerning specific algorithms, they proved that Any Fit algorithms are at most 5-
competitive and even optimal for zero-size items. They show input instances on which FF
and BF create asymptotically 3 - OPT bins. For WF there are sequences of items witnessing
that it is at least 3-competitive and (1 4 d/(d — 1))-competitive in the parametric case for an
integer d > 2. Furthermore, NF is not constant competitive.

The idea of the algorithm Pseudo, on which we build as well, is that it first packs the
items regardless of their size, i.e., treating their size as zero. This can be done optimally for
two colors, and the optimum equals the maximal discrepancy in the sequence of colors (to be
defined below). Then these bins are partitioned by NF into bins of level at most 1.

In the offline setting, Balogh et al. [3] gave a 2.5-approximation algorithm with O(nlogn)
time complexity and an asymptotic polynomial time approximation scheme, both when re-
ordering is allowed.

Very recently and independent of us Désa and Epstein [8] studied Colored Bin Packing.
They improved the lower bound for online Black and White Bin Packing to 2 for deterministic
algorithms, which holds for more colors as well. For at least 3 colors they proved an asymptotic
lower bound of 1.5 for zero-size items. They designed an absolutely 4-competitive algorithm
based on Pseudo and an absolutely 2-competitive balancing algorithm for zero-size items.
They also showed that BF, FF and WF are not competitive at all (with non-zero sizes).

Our results. We completely solve the case of Colored Bin Packing for zero-size items. As
we have seen, this case is important for constructing general algorithms. The offline optimum
(without reordering) is actually not only lower bounded by the color discrepancy, but equal
to it for zero-size items (see Section . For online algorithms, we give an (asymptotically)
1.5-competitive algorithm which is optimal (see Section . In fact, the algorithm always
uses at most [1.5- OPT] bins and we show a matching lower bound of [1.5- OPT'] for any
value of OPT > 2 (see Section . This is significantly stronger than the asymptotic lower
bound of 1.5 of Désa and Epstein [§], in particular it shows that the absolute ratio of our
algorithm is 5/3, and this is optimal.

For items of arbitrary size and three colors, we show a lower bound of 2.5, which breaks
the natural barrier of 2 (see Section . We use the optimal algorithm for zero-size items
and the algorithm Pseudo to design an (absolutely) 3.5-competitive algorithm which is also
(asymptotically) (1.5 + d/(d — 1))-competitive in the parametric case, where the items have
sizes of at most 1/d for a real d > 2 (see Section [4.2). (Note that for d < 2 we have
d/(d —1) > 2 and the bound for arbitrary items is better.)

We show that algorithms BF, FF and WF are not constant competitive, in contrast to their
3-competitiveness for two colors. Their competitiveness cannot be bounded by any function
of the number of colors even for only three colors and very small items (see Section .

For Black and White Bin Packing, we improve the upper bound on the absolute competi-
tive ratio of Any Fit algorithms in the general case to 3 which is tight for BF, FF and WF (see
Section [5.1)). For WF in the parametric case, we prove that it is absolutely (1 + d/(d — 1))-
competitive for a real d > 2 which is tight for an integral d (see Section . Therefore, WF
has the same competitive ratio as the Pseudo algorithm.

Related work. In the classical Bin Packing problem, we are given items with sizes in
(0,1] and the goal is to assign them into the minimum number of unit capacity bins. The
problem was proposed by Ullman [I7] and by Johnson [I3] and it is known to be NP-hard.
See the survey of Coffman et al. [6] for the many results on classical Bin Packing and its many
variants.

For the online problem, there is no online algorithm which is better than 248/161 ~ 1.540-
competitive [4]. The currently best algorithm is Harmonic++ by Seiden [16], approximately
1.589-competitive. Regarding AF algorithms, NF is 2-competitive and both FF and BF have
the absolute competitive ratio exactly 1.7 [I0, [IT]. This is similar to Black and White Bin
Packing in which FF and BF have the absolute competitive ratio of 3 and the hard instances
proving tightness of the bound are the same for both algorithms.

In the context of Colored Bin Packing, we are interested in variants that further restrict
the allowed packings. Of particular interest is Bounded Space Bin Packing where an algorithm
can have only K > 1 open bins in which it is allowed to put incoming items. When a bin is
closed an algorithm cannot pack any further item in the bin or open it again. Such algorithms
are called K-bounded-space. The champion among these algorithms is K-Bounded Best Fit,
i.e., Best Fit with at most K open bins, which is (asymptotically) 1.7-competitive for all
K > 2 [7]. Lee and Lee [15] presented Harmonic(K') which is K-bounded-space with the
asymptotic ratio of 1.691 for K large enough. Lee and Lee also proved that there is no
bounded space algorithm with a better asymptotic ratio.

The Bounded Space Bin Packing is an especially interesting variant in our context due to
the fact that it matters whether we allow the optimum to reorder the input instance or not.
If we allow reordering for Bounded Space Bin Packing, we get the same optimum as classical
Bin Packing. In fact, all the bounds on online algorithms in the previous paragraph hold if the
optimum with reordering is considered, which is a stronger statement than comparing to the
optimum without reordering. This is a very different situation than for Colored Bin Packing,
where no online algorithms can be competitive against the optimum with reordering, as we
have noted above.

The bounded space offline optimum without reordering was studied by Chrobak et al. [5].
It turns out that the computational complexity is very different: There exists an offline
(1.5 + ¢)-approximation algorithm for 2-bounded-space Bin Packing with polynomial running
time for every constant € > 0, but exponential in €. No polynomial time 2-bounded-space
algorithm can have its approximation ratio better than 5/4 (unless P = NP). In the online
setting it is open whether there exists a better algorithm than 1.7-competitive K-Bounded

Best Fit when compared to the optimum without reordering; the current lower bound is 3/2.

Another interesting variant with restrictions on the contents of a bin is Bin Packing with
Cardinality Constraints, which restricts the number of items in a bin to at most k for a
parameter k > 2. It was introduced by Krause et al. [I4] who also showed that Cardinality
Constrained FF has the asymptotic ratio of at most 2.7—2.4/k. Interestingly, the lower bound
for the asymptotic competitive ratio for large k is 1.540 [4], i.e., the same as for standard Bin
Packing. For k > 3, there is an asymptotically 2-competitive online algorithm [I] and the
absolute competitive ratio is at least 2 for any k& > 4 [9]. Better algorithms and various lower
bounds are known for small & [12], [1].

Motivation. Suppose that a television or a radio station maintains several channels and
wants to assign a set of programs to them. The programs have types like “documentary”,
“thriller”, “sport” on TV, or music genres on radio. To have a fancy schedule of programs, the
station does not want to broadcast two programs of the same type one after the other. Colored
Bin Packing can be used to create such a schedule. Items here correspond to programs, colors
to genres and bins to channels. Moreover, the programs can appear online and have to be
scheduled immediately, e.g., when listeners send requests for music to a radio station via the
Internet.

Another application of Colored Bin Packing comes from software which renders user-
generated content (for example from the Internet) and assigns it to columns which are to be
displayed. The content is in boxes of different colors and we do not want two boxes of the
same color to be adjacent in a column, otherwise they would not be distinguishable for the
user.

Moreover, Colored Bin Packing with all items of size zero corresponds to a situation in
which we are not interested in loads of bins (lengths of the schedule, sizes of columns, etc.),
but we just want some kind of diversity or colorfulness.

2 Preliminaries and Offline Optimum

Definitions and notation. There are three settings of Colored Bin Packing: In the offline
setting we are given the items in advance and we can pack them in an arbitrary order. In
the restricted offline setting we also know sizes and colors of all items in advance, but they
are given as a sequence and they need to be packed in that order. In the online setting the
items are coming one by one and we do not know what comes next or even the total number
of items. Moreover, an online algorithm has to pack each incoming item immediately and it
is not allowed to change its decisions later.

We focus mostly on the online setting. To measure the effectiveness of online algorithms
for a particular instance L, we use the restricted offline optimum denoted by OPT(L) or
OPT when the instance L is obvious from the context. Let ALG(L) denote the number of
bins used by the algorithm ALG. The algorithm is absolutely r-competitive if for any instance
ALG(L) < r- OPT(L) and asymptotically r-competitive if for any instance ALG(L) < r -
OPT(L)+0o(OPT(L)); typically the additive term is just a constant. We say that an algorithm
has the (absolute or asymptotic) competitive ratio r if it is (absolutely or asymptotically) r-
competitive and it is not 7’-competitive for r’ < r.

For Colored Bin Packing, let C' be the set of all colors. For ¢ € C, the items of color ¢ are
called c-items and bins with the top (last) item of color ¢ are called c-bins. By a non-c-item
we mean an item of color ¢’ # ¢ and similarly a non-c-bin is a bin of color ¢ # ¢. The level
of a bin means the cumulative size of all items in the bin.

We denote a sequence of nk items consisting of n groups of k£ items of colors c¢1,co, . .. ¢

c1 c2 Cl

and sizes s1, S2,...S; by n X <517527"'sk .

Lower Bounds on the Restricted Offline Optimum. We use two lower bounds on
the number of bins in any packing. The first bound LB; is the sum of sizes of all items.

The second bound LBy is the maximal color discrepancy inside the input sequence. In
Black and White Bin Packing, the color discrepancy introduced by Balogh et al. [2] is simply
the difference of the number of black and white items in a segment of the input sequence,
maximized over all segments. It is easy to see that it is a lower bound on the number of bins.

In the generalization of the color discrepancy for more than two colors we count the
difference between c-items and non-c-items for all colors ¢ and segments. It is easy to see that
this is a lower bound as well. Formally, let s.; = 1 if the ¢-th item from the input sequence
has color ¢, and s.; = —1 otherwise. We define

i
LBy = Igleaé(rrigxg Se -

For Black and White Bin Packing, equivalently LBy = max; ; ’ZZ:i Sg‘, where s; = 1 if the
i-th item is white, and s; = —1 otherwise; the absolute value replaces the maximization over
colors.

We prove that LBy is a lower bound on the optimum similarly to the proof of Lemma 5
in [2]. First we observe that the number of bins in the optimum cannot increase by removing
a prefix or a suffix from the sequence of items.

Observation 2.1. Let L = L1LsL3 be a sequence of items partitioned into three subsequences
(some of them can be empty). Then OPT(L) > OPT(Ls).

Proof. 1t is enough to show that the removal of the first or the last item does not increase
the optimum. By iteratively removing items from the beginning and the end of the sequence
we obtain the subsequence Lo and consequently OPT (L) > OPT(Ls).

The first item of the sequence is clearly the first item in a bin. By removing the first item
from the bin we do not violate any condition. Hence any packing of L is a valid packing of L
without the first item. A similar claim holds for the last item. O

Lemma 2.2. OPT(L) > LBs.

Proof. We prove that for all colors ¢ that the optimum is at least LBj . := max; ; ZZ:i Sc-

Fix a color ¢ and let 4, j be arg max, ; Zfé:i Sc¢. Let 6 = LBy .. We may assume that § > 0,
otherwise ¢ is trivially at most the optimum. By the previous observation we may assume
1=1and j =n.

Consider any packing of the sequence and let k be the number of bins used. Any bin
contains at most one more c-item than non-c-items, since colors are alternating between c
and other colors in the worst case. Since we have § more c-items than non-c-items, we get
k > 6. Therefore OPT > LB .]

In Black and White Bin Packing, when all the items are of size zero, all Any Fit algorithms
create a packing into the optimal number of bins [2]. For more than two colors this is not
true and in fact no deterministic online algorithm can have a competitive ratio below 1.5.
However, in the restricted offline setting a packing into LBy bins is still always possible, even
though this fact is not obvious. This shows that the color discrepancy fully characterizes the
combinatorial aspect of the color restriction in Colored Bin Packing.

Theorem 2.3. Let all items have size equal to zero. Then a packing into LBy bins is possible
in the restricted offline setting, i.e., items can be packed into LBg bins without reordering.

Proof. Consider a counterexample with a minimal number of items in the sequence. Let
d = LBj» be the maximal discrepancy in the counterexample and n > d be the number of
items. The minimality implies that the theorem holds for all sequences of length n’ < n.
Moreover, d > 1, since for d = 1 we can pack the sequence trivially into a single bin.

We define an important interval as a maximal interval of discrepancy d, more formally
a subsequence from the i-th item to the j-th such that for some color ¢ the discrepancy on
the interval is d, i.e., Zz:i Sc¢ = d, and we cannot extend the interval in either direction
without decreasing its discrepancy. For an important interval, its dominant color c is the
most frequent color inside it. At first we show that important intervals are just d items of
the same color.

Observation 2.4. Fach important interval I contains only d items of its dominant color c
in the minimal counterexample.

Proof. Suppose there is a non-c-item in I and let a be the last such item in I. Then a must
be followed by a c-item b in I, otherwise I without a would have higher discrepancy. We
delete a and b from the sequence and pack the rest into d bins by minimality.

Consider the situation after packing the item prior to a. There must be a c¢-bin B,
otherwise the subsequence of I from the beginning up to a (including a) has strictly more
non-c-items than c-items (each c-item from I is under a non-c-item and a is the extra non-c-
item). Hence the rest of I after a must have discrepancy of more than d. By putting a and b
into B we pack the whole sequence into d bins, thus it is not a counterexample.]

We show that important intervals are disjoint in the minimal counterexample. Suppose
that two important intervals I and I with dominant colors ¢; and ¢y intersect on an interval
J. If ¢1 # c2 we use the previous observation, since I; or Is has to contain an item from the
other interval. Otherwise ¢; = ¢, but then their union has discrepancy of more than d which
cannot happen.

Clearly, there must be an important interval in any non-empty sequence. Let Iy, Is,... Iy
be important intervals in the counterexample sequence and let Ji, Ja, ... Jx_1 be the intervals
between the important intervals (J; between I; and I;11), Jo be the interval before I; and
Ji be the interval after I. These intervals are disjoint and form a complete partition of the
sequence, i.e., Jo, I1,J1, I2, Jo, ... Jp_1, I}, Ji is the whole sequence of items. Note that some
of Jy’s can be empty.

If £ > 2, we can create a packing P of the sequence containing only intervals Jy, I1, Ji, Io
into d bins by minimality of the counterexample. Also there exists a packing P of intervals
Is, Jo, I3, ... Iy, Ji, into d bins. Any bin from P; must end with an item from the important
interval Iy and any bin from P, must start with an item from I5. Therefore we can merge
both packings by items from I and obtain a valid packing of the whole sequence into d bins.
Hence k < 2.

In the case k = 1, there are four subcases depending on whether Jy and J; are empty or
not:

e Jp and J; are non-empty: We create packings of Jy, I1 and I, J; into d bins and merge

them as before.

e Jyis empty and J; non-empty: We delete the first item from I;, pack the rest into d —1

bins (the maximal discrepancy decreases after deleting) and put the deleted item into
a separate bin.

e Jp is non-empty and J; empty: Similarly, we delete the last item from I; and pack the

rest into d — 1 bins.

e both are empty: I; can be trivially packed into d bins.

For k = 2, we first show that Jg and J5 are empty and J; is non-empty in the counterexam-
ple. If Jy is non-empty, we merge packings of Jy, I1 and Iy, Jy, Is, Jo, and if Js is non-empty,
we put together packings of Jy, I1, J1, I2 and I, Jo. When J; is empty, the sequence consists
only of intervals I; and I which must have different dominant colors. Thus they can be easily
packed one on the other into d bins.

The last case to be settled has only I, J; and I3 non-empty. If the dominant colors ¢; for
I, and ¢y for Iy are different, we delete the first item from I; and the last item from I, so
the discrepancy decreases. We pack the rest into d — 1 bins and put the deleted items into a
separate bin, so the whole sequence is in d bins again.

Otherwise ¢ is equal to co and let ¢ be ¢;. Since the important intervals are maximal,
there must be at least d + 1 more non-c-items than c-items in J;. Also any prefix of Jj
contains strictly more non-c-items than c-items, thus at least the first two items in J; have
colors different from c.

We delete the first c-item p from I, the first non-c-item ¢ from .J; and the last c-item r
from I5. Suppose for a contradiction that there is an interval I of discrepancy d in the rest of
the sequence. As I has lower discrepancy in the original sequence (we deleted an item from
each important interval of the original sequence), it must contain ¢ and thus intersect I; and
J1, hence its dominant color is ¢. If I intersects also I, we add the items p,q and r into [
(and possibly some other items from I; or I2) to obtain an interval of discrepancy at least
d+ 1 in the original sequence which is a contradiction. Otherwise I intersects only I; and Jp,
but any prefix of the rest of .J; still contains at least as many non-c-items as c-items, so I\ J;
has discrepancy at least d. But I'\ Jj is contained in the rest of I; that has only d — 1 items
and we get a contradiction. Therefore the maximal discrepancy decreases after deleting the
three items, so we can pack the rest into d — 1 bins and the items p, ¢ and r are put into a
separate bin. Note that important intervals of discrepancy d — 1 may change after deleting
the three items.

In all cases we can pack the sequence into d bins, therefore no such counterexample
exists. [

3 Algorithms for Zero-size Items

3.1 Lower Bound on Competitiveness of Any Online Algorithm

Theorem 3.1. For zero-size items of at least three colors, there is mo deterministic online
algorithm with an asymptotic competitive ratio less than 1.5. Precisely, for each n > 1 we can
force any deterministic online algorithm to use at least [1.5n] bins using three colors, while
the optimal number of bins is n.

Proof. We show that if an algorithm uses less than [1.5n] bins, the adversary can send some
items and force the algorithm to increase the number of black bins or to use at least [1.5n]
bins, while the maximal discrepancy stays n. Applying Theorem [2.3] we know that OPT = n,
but the algorithm is forced to open [1.5n] bins using finitely many items as the number of
black bins is increasing. Moreover, the adversary uses only three colors throughout the whole
proof, denoted by black, white and red and abbreviated by b, w and r in formulas.

We introduce the current discrepancy of a color ¢ which basically tells us how many
c-items have come recently and thus how many c-items may arrive without increasing the

overall discrepancy. Formally, we define the current discrepancy after packing the k-th item
as CD.j = maX;<p+1 Z?:i S¢¢, i.e., the discrepancy on an interval which ends with the last
packed item (the k-th). Note that CD., is at least zero as we can set ¢ = k4 1. We omit the
k index in CD.j, when it is obvious from the context.

Initially the adversary sends n black items, then he continues by phases and ends the
process whenever the algorithm uses [1.5n] bins at the end of a phase. When a phase starts,
there are less than [1.5n] black bins and possibly some other white or red bins. We also
guarantee CDy, = 0, CD; = 0, and CDy < n. Let Ny be the number of black bins when a
phase starts. In each phase the adversary forces the algorithm to use [1.5n] bins or to have
more than IV, black bins, while CDy, = 0, CD, = 0, and CDy, < n at the end of each phase
in which N}, increases.

We now present how a phase works. Let new items be items from the current phase and
old items be items from previous phases. The adversary begins the phase by sending n new
items of colors alternating between white and red, starting by white, so he sends [n/2] white
items and |n/2] red items. After these new items, the current discrepancy is one either for
red if n is even, or for white if n is odd, and it is zero for the other colors.

If some new item is not put on an old black item, the adversary sends n black items. Since
the new items are packed into less than n black bins (more precisely, black at the beginning of
the phase), the number of black bins increases. Moreover, CDy, = 0, CD, = 0, and CD}, = n,
hence the adversary finishes the phase and continues with the next phase if there are less
than [1.5n] black bins.

Otherwise all new red and white items are put on old black items. If n is even, CDy, =0
and the adversary sends additional n white items. After that there are at least 1.5n white
bins, so the adversary reaches his goal.

If n is odd, CDy, = 1 and the adversary can send only n — 1 white items forcing [1.5n] —1
white bins. This suffices to prove the result in the asymptotic sense, but for the precise lower
bound of [1.5n] for an odd n we need a somewhat more complicated construction.

Therefore if all new red and white items are put on old black items and n is odd, the
adversary sends a black item e. If e does not go on a new white item, he sends n white items
forcing [n/2] +n white bins and it is done. Otherwise the black item e is put on a new white
item. White and red have |n/2] new items on the top of bins, CDy, = 0, and CD, = 0. The
adversary sends another black item f. Since red and white are equivalent colors (considering
only new items), w.l.o.g. f goes into a red bin or into newly opened bin.

Next he sends a white item g and a red item h. After packing g there are [n/2] bins with
a new white item on the top and at least one bin with a new black item on the top. Moreover,
after packing the red item h we have CDy, = 0 and CDy = 0. So if h is not put on a new
white item (i.e., it is put into a black bin, a new bin or on an old white item), the adversary
sends n white items and the algorithm must use [1.5n] bins. Otherwise h is packed on a
new white item and the adversary sends n black items. The number of black bins increases,
because the adversary sent n + 2 new black items and at most n + 1 new non-black items
were put into a black bin (at most n items at the beginning of the phase plus the item g).
Since CDy, =0, CD, =0, and CDy, = n, the adversary continues with the next phase.]

The lower bound has additional properties that we use later in our lower bound for items
of arbitrary size. Most importantly, we have at least [1.5- OPT] of c-bins at the end (and
possibly some additional bins of other colors).

Lemma 3.2. After packing the instance from Theorem by an online algorithm there is
a color ¢ for which we have [1.5- OPT] of c-bins and CD. = OPT, while CDy = 0 for all

other colors ¢ # c. Moreover, in each restricted offline optimal packing of the instance all
the bins have a c-item on the top.

Proof. Let n = OPT as in the previous proof. The adversary stops sending items when he
finishes the last phase. In the last phase either the number of black bins increases to [1.5n],
or the adversary forces [1.5n] white or red bins by sending n white or red items. In the former
case the requirements of the lemma are satisfied, because the proof guarantees CDy, = 0 and
CD, = 0 at the end of each phase in which the number of black bins increases. Moreover
CDy, = n, since n black items are sent just before the end of such phase. In the latter case,
the last n white items cause CDy = 0, CD, = 0, and CDy, = n; the case of n red items is
symmetric.

Since an optimal packing uses n bins and the last n items are of the same color (in each
case of the construction), they must go into different bins. Hence each bin of a restricted
offline optimal packing has a c-item on the top. O

3.2 Optimal Algorithm for Zero-size Items

The overall problem of FF, BF and WF is that they pack items regardless of the colors of
bins. We address the problem by balancing the colors of top items in bins — we mostly put an
incoming c-item into a bin of the most frequent other color. When we have more choices of
bins where to put an item we use First Fit. We call this algorithm Balancing Any Fit (BAF).

We define BAF for items of size zero and show that it opens at most [1.5LB5] bins which
is optimal in the worst case by Theorem Then we combine BAF with the algorithm
Pseudo by Balogh et al. [2] for items of arbitrary size and prove that the resulting algorithm
is absolutely 3.5-competitive.

After packing the k-th item from the sequence, let Dy be the maximal discrepancy so far,
i.e., the discrepancy on an interval before the (k + 1)-st item, and let N.j; be the number
of ¢-bins after packing the k-th item. As in the proof of Theorem we define the current
discrepancy as CD.j = max;<ji1 Zlgzi Sc4, 1.e., the discrepancy on an interval which ends
with the last packed item (the k-th). Note that CD.j < Dy and that CD,y, is at least zero as
we can set ¢ = k 4+ 1. The current discrepancy basically tells us how many c-items have come
recently and thus how many c-items may arrive without increasing the overall discrepancy.

Let o, = Neg — [Di/2] be the difference between the number of ¢-bins and the half of
the maximal discrepancy so far. Observe that [Dy /2] is the number of bins which BAF may
use in addition to OPT bins. We omit the index k in Dy, N.g, CD. and o, when it is
obvious from the context.

While processing the items, if D is the maximal discrepancy so far, the adversary can send
D — CD, of c-items without increasing the maximal discrepancy and forcing the algorithm to
use N, + D — CD. bins. Hence, to end with at most [1.5D] bins we try to keep N, — CD, <
[D/2] for all colors c. For simplicity, we use an equivalent inequality of a. = N, — [D/2] <
CD.. If we can keep the inequality valid and it occurs that there is a color ¢ with N, > [1.5D],
we get CD, > N. — [D/2] > [1.5D] — [D/2] = D which contradicts CD. < D. Let the
main invariant for a color ¢ be

e = N, — Fﬂ < CD.. (1)

As CD. > 0, keeping the invariant is easy for all colors with at most [D /2] bins. Also when
there is only one color ¢ with N, > [D/2], we just put all non-c-items into ¢-bins. Therefore,
if a non-c-item comes, the number of c-bins N, decreases and the current discrepancy CD.

decreases by at most one. (CD, stays the same when it is zero.) Since both increase with an
incoming c-item, we are keeping our main invariant for the color c.

Moreover, there are at most two colors with strictly more than [D/2] bins, given that we
have at most [1.5D] open bins. Thus we only have to deal with two colors having N. > [D/2].
We state the algorithm Balancing Any Fit for items of size zero.

Balancing Any Fit (BAF):

1. For an incoming c-item, if there are no bins or ¢-bins only, open a new bin and
put the item into it.

2. Otherwise, if there is at most one color with the number of bins strictly more
than [D/2], put an incoming c-item into a bin of color ¢’ = arg max .. Nev. If
more colors have the same maximal number of bins, choose color ¢’ arbitrarily
among them, e.g., by First Fit. Among ¢’-bins, choose again arbitrarily.

3. Suppose that there are two colors b and w such that Ny > [D/2] and Ny, >
[D/2]. If ¢ = w, put the item into a bin of color b. If ¢ = b, put the item into
a bin of color w. Otherwise ¢ & {b,w}; if Ny, — [D/2] < CDy, put the item
into a bin of color w, otherwise into a bin of color b.

As we discussed, keeping the main invariant is easy in the first and the second case of
the algorithm. Therefore we can conclude the following claim.

Claim 3.3. Suppose that the main invariant holds for all colors before packing the t-th item
and that there is at most one color ¢ with Ney—1 > [Dy—1/2] before the t-th item, i.e., the t-th
item is packed using the first or the second case of the algorithm. Then the main invariant
holds for all colors also after packing the t-th item.

Most of the proof of 1.5-competitiveness of BAF thus deals with two colors having more
than [D/2] bins. W.l.o.g. let these two colors be black and white in the following and let us
abbreviate them by b and w.

In the third case of the algorithm we have to choose either black or white bin for items of
other colors than black and white, but the current discrepancy decreases for both black and
white, while the number of bins stays the same for the color which we do not choose. So if
ap = CDy, and o, = CDy,, the adversary can force the algorithm to open more than [1.5D]
bins.

Therefore we need to prove that in the third case, i.e., when N, > [D/2] and Ny, > [D/2],
at least one of inequalities ap < CDy, and oy < CDy, is strict. This motivates the following
secondary invariant:

20 + 20y < CDy + CDy, + 1. (2)

If the secondary invariant holds, it is not hard to see that in the third case of the algorithm
the choice of the bin maintains the main invariant. The tricky part of the proof is to prove
the base case of the inductive proof of the secondary invariant. A natural proof would show
the base case whenever b and w become the two colors with N, Ny, > [D/2]. However,
we are not able to do that. Instead, we prove that the secondary invariant holds already at
the moment when b and w become the two strictly most frequent colors on top of the bins,
i.e., N, > N. and Ny, > N, for all other colors ¢, which may happen much earlier, when the
number of their bins is significantly below D/2. After that, maintaining both invariants is
relatively easy.

Theorem 3.4. Balancing Any Fit is 1.5-competitive for items of size zero and an arbitrary
number of colors. Precisely, it uses at most [1.5- OPT] bins.

10

Proof. First we show that keeping the main invariant for each color ¢, i.e., a. < CD,,
is sufficient for the algorithm to create at most [1.5D] bins. This implies both that the
algorithm is well defined since there are at most two colors with N, > [D/2], and that the
algorithm is 1.5-competitive, since the maximal discrepancy equals the optimum.

Claim 3.5. After packing the t-th item, if we suppose that N.; — [D;/2] < CD.; for all
colors ¢ and for all i < t, the algorithm uses at most [1.5D;] bins.

Proof. We prove the claim by contradiction: Suppose that BAF opens a bin with the k-th
item in the sequence (for k£ < t) and we exceed the [1.5Dy] limit, but before the k-th item
there were at most [1.5Dy_1 | bins. Thus Dy = Dj_1, since if Dy = Dj_1 + 1, then the bound
also increases with the k-th item.

Let ¢ be the color of the k-th item. Let the ¢-th item be the last non-c-item before the
k-th, so only c-items come after the ¢-th item. None of c-items from the (¢ + 1)-st to the
k-th increase the maximal discrepancy D, otherwise if one such item increases D, then all
following such items also do. Thus Dy = Dy.

The algorithm must have received [1.5D;] 41— N, of c-items after the ¢-th item to open
[1.5D;] + 1 bins, but then

D
CDeg = CDey+ [1.5D;] +1 = Ney > Ny — [ﬂ + 15D +1—Noy=Dy+1

where we used the main invariant for the inequality which holds, because ¢ < k < t. We get
a contradiction, since CD. < Dy, = Dy.]

We have to deal with the case in which N, > [D/2] and Ny, > [D/2]. We show that
we can maintain the secondary invariant , while black and white are the two strictly
most frequent colors of bins (even if Ny < [D/2] or Ny, < [D/2]). Then we prove that
the secondary invariant starts to hold when black and white become the two strictly most
frequent colors, i.e., N. < Ny, and N. < Ny, for all other colors ¢; this step must precede
the time when the number of bins for the second color gets over the [D/2] limit. Therefore
we prove by induction that the secondary invariant holds in certain intervals of the input
sequence.

Claim 3.6. Suppose that black and white are the two strictly most frequent colors of bins before
packing the t-th item and that the main invariant holds for all colors and the secondary
imvariant @) also holds before packing the t-th item, i.e., Ney—1 — [Dy—1/2] < CDcy—1 for
all colors ¢ and 20, 41 + 200w t—1 < CDy 41 + CDy 1 + 1. Then the main invariant for all
colors and the secondary invariant for black and white hold also after packing the t-th item.

Proof. First we suppose that the maximal discrepancy D is not changed by the ¢-th item. We
start by showing that the main invariant holds after packing the ¢-th item. If the ¢-th item
is packed using the second case of BAF, the main invariant holds by Claim (Note that
the t-th item cannot be packed using the first case of the algorithm, since Ny, ;1 > 0 and
Nwﬂgfl > 0.)

Otherwise, if the t-th item is packed using the third case, it holds that oy ;1 > 0 and
aw,t—1 > 0. The main invariant holds for a color ¢ other than black and white, because
Nei—1 < [Dy—1/2] which implies N.; < [D;/2].

To prove the main invariant for black and white, we show by contradiction that the
secondary invariant guarantees that oy, ;1 < CDy, ;1 or oy t—1 < CDy ;1. Otherwise, if
api—1 > CDypy—1 and ayyy—1 > CDy 41, the secondary invariant becomes 2ar, ;1 +20y, 11 <

11

CDpt—1+ CDyy—1+1 < a1+ w—1+1 which is a contradiction. Note that we used that
Oy t—1 and a1 are integral and positive.

We now distinguish three cases according to the color of the ¢-th item:

e The t-th item is black: Then it is packed into a white bin. The main invariant for
black holds after packing the item, because both Ny, and CDy, increase, and the main
invariant for white holds, since Ny, decreases and CD,, decreases by at most one. (CDy
stays the same when it is zero.)

e When the ¢-th item is white, the situation is symmetric to the previous case.

e We pack the t-th item of another color into a white bin if Ny, ;1 — [Dy—1/2] < CDy, 41,
otherwise into a black bin. If it is packed into a white bin, N, decreases and CDy,
decreases by at most one, thus the main invariant holds for white. The main invariant
holds for black too, since Ny, stays the same and CD), decreases by at most one, but
the main invariant held strictly for black before packing the ¢-th item.

If the t-th item is packed into a black bin, we have Ny ;—1 — [Dy—1/2] < CDy -1 and
the situation is symmetric as if the ¢-th item is packed into a white bin.

It remains to show that the ¢-th item does not violate the secondary invariant. There are

again three cases according to the color of the ¢-th item:

e The ¢-th item is black: Then it is packed into a white bin in both second and third
cases of the algorithm. Thus «ay, increases and «y, decreases, so the left-hand side of the
inequality stays the same. Also the right-hand side does not change or even increases
as CDy, increases and CDy, decreases by at most one. (CD,, stays the same when it is
zero.)

e When the t-th item is white, the situation is symmetric to the previous case.

e The t-th item has another color than black and white: Then it is packed into a white
or black bin in both second and third cases of the algorithm. Thus one of oy, and «y
decreases and the other one stays the same, while both CDy, and CDy, decrease by at
most one. The secondary invariant holds as the left-hand side decreases by two and the
right-hand side decreases by at most two.

Otherwise D increases with an incoming item, thus . for each color ¢ decreases if D

becomes odd. We follow the same proof as if D stays the same, and the eventual additional
decrease of a can only decrease the left-hand sides of the main and secondary invariants. [J

Note that in the previous proof, ap or oy can be negative in the secondary invariant.
We show the base case of the secondary invariant, i.e., that it starts to hold when two colors
become the two strictly most frequent colors of bins.

Claim 3.7. Suppose that after packing the k-th item it starts to hold that N, < Ny and
N, < Ny, for all other colors c, i.e., black and white become the two strictly most frequent
colors. Suppose also that the main invariant holds all the time before packing the k-th item.
Then 20 1 + 200w < CDy, + CDy i + 1, i.e., the secondary invariant holds after packing
the k-th item.

Proof. Assume w.l.o.g. that Ny > Ny If Npjp = Ny, we also suppose w.l.o.g. that
Nyk—1 > Ny -1

First we show by contradiction that always Ny i1 > Ny g—1. Otherwise if Ny <
Ny k-1, then Ny > Ny i (note that Ny, = Ny, would imply Ny p—1 > Ny x—1). This can
happen only when a black item goes into a white bin, but then the numbers of black and
white bins are swapped, hence black and white were already the two strictly most frequent
colors before the k-th item which contradicts the assumption of the claim. We conclude that
Ny > Ny and Ny g1 > Ny p—1.

12

Before the k-th item the number of non-black bins is at most [1.5Dy_1] — Npp—1 =
Dy_1 — ap j—1, since there are at most [1.5D;_1] bins by Claim (we use that the main
invariant holds before packing the k-th item). As we have Ny, ;1 > Ny -1 and black and
white are not the two strictly most frequent colors before the k-th item, there must be a color
r & {b,w} such that Ny ;1 > Ny ;-1 (let the color be red w.l.o.g.). Therefore the number of
white bins is at most half of the number of non-black bins, i.e., Ny -1 < (Dp—1 — b k—1)/2.

We show by contradiction that the k-th item must be packed using the second case of
the algorithm. (Note that BAF cannot use the first case, since otherwise all bins would have
the same color after packing the k-th item.) If the item is packed using the third case, it
must hold that Ny, ;1 > [Dy—1/2] + 1 and N, 1 > [Dy_1/2] + 1. Since there are at most
[1.5D)_1] bins by Claim (3.5 we get Ny, x—1 < |Dk—1/2] — 2, but then the k-th item cannot
cause Ny > Ny .

Therefore BAF packs the k-th item using the second case and it follows that the main
invariant holds after packing the k-th item for all colors by Claim

Observe that by packing the k-th item, the number of white bins must increase, or the
number of red bins must decrease, or both. Note that the k-th item can have any color, not
only white. We distinguish two cases: The k-th item is white and the k-th item is not white.

If the k-th item is white, we have ay,; < apx—1, as the number of black bins does not
increase (note that there is an inequality because of a possible increase of D or a decrease of
Ny). We get

D D Dy — _ D

Dy, — o g Dy, Ok
< TRTOBk g TR o Ohk g
- 2 + 2 |~ 2 +

where we used Ny -1 < (Dy—1 — ap—1)/2 for the first inequality and Dy_; — ap -1 <
Dy, — ap,), for the second inequality which follows from oy, 1, < o g—1.
We know that o < —op, /2 + 1. Therefore

20) + 20 < —app +2+ 20 = opp +2 < CDpp +2< CDyj + CDp i + 1

where we use the main invariant for black color for the second inequality and CDy, j > 1
for the third inequality which holds, because the k-th item is white.

Otherwise the k-th item is not white and it is packed into a bin of another color than
black and white, otherwise Ny, or Ny, decreases, thus black and white cannot become the two
strictly most frequent colors. After packing the k-th item we have ay, , < ap -1 + 1, as the
k-th item may be black, therefore Dy_1 — oy, ;-1 < Di — oy j + 1. Since the number of white
bins does not change, we get

D D Dp_ 1 —opp_ D
SRR Y SOV 1 P VR A

cDe—opp+l [Dp| ok
- 2 2 |~ 2
In this case we have oy < —ap, /2 + 0.5. Therefore
200 1 + 20 < —app + 1+ 200 = + 1 < CDy g +1 < CDy o+ CDp gy + 1

where we use the main invariant for black color for the second inequality. Hence the
secondary invariant holds. O

13

Main (2.1)

Secondary (2.2)

™~ LSS

k

Figure 1: An illustration of dependencies of the main and secondary invariants. The horizontal
axis represents time. An invariant at a certain time represented by point P follows from
invariants from which there is an arrow to P. After packing the k-th item (time k) black
and white become the two strictly most frequent and after the ¢-th item (time t) it starts to
hold that Ny > [D/2] and Ny, > [D/2]. Thus in the black part of the figure, BAF uses the
first or the second case of the algorithm, while in the red part BAF uses the third case of the
algorithm.

We now complete the proof of the theorem by putting everything together. Precisely, we
prove that the main invariant holds during the whole run of the algorithm by induction. The
main invariant for each color holds trivially at the beginning before any item comes. When
the t-th item is packed, there are two cases:

e No two colors were the strictly most frequent before the ¢-th item: BAF keeps the main
invariant for all colors by Claim[3.3] since it must pack the ¢-th item with the first or the
second case of the algorithm. If two colors become the two strictly most frequent after
packing the t-th item, the secondary invariant starts to hold by Claim otherwise
the secondary invariant is irrelevant in this case.

e Two colors were the strictly most frequent: Let these two colors be black and white

w.l.o.g. Then the main invariant for all colors and the secondary invariant for black
and white are kept by Claim (even if black and white are not the two strictly most
frequent after the ¢-th item).
It may happen that the two strictly most frequent colors change after packing the
t-th item (e.g., to black and red). The main invariant for all colors still follows by
Claim but the secondary invariant for the new strictly most frequent colors follows
by Claim

See Figure [1| for an illustration of dependencies of the invariants.

Therefore we can keep the main invariant N, — [D/2] < CD, for all colors ¢ during the
whole run of the algorithm and the theorem follows by Claim 0

4 Algorithms for Items of Arbitrary Size

4.1 Lower Bound on Competitiveness of Any Online Algorithm

We use the construction by Désa and Epstein [8] proving the lower bound 2 for two colors to
get a lower bound 2.5 using three colors. We combine it with the hard instance that shows
the lower bound 1.5 for zero-size items.

Theorem 4.1. For items of at least three colors, there is no deterministic online algorithm
with an asymptotic competitive ratio less than 2.5.

Proof. Throughout the whole proof the adversary uses only three colors denoted by black,
white and red and abbreviated by b, w and r in formulas. Let n > 1 be a large integer. The
adversary starts with the hard instance for zero-size items from the proof of Theorem
with the optimum equal to n. By Lemma there are at least [1.5n] bins of the same color,

14

w.l.o.g. white. Let W be the set of bins that are white after the first part of the instance
(IW] > [1.5n]). We also know that CDy, < n, CDy, =0, and CD, = 0.

The second part of the instance is a slightly simplified construction by Désa and Ep-
stein [§]. Their idea goes as follows: The adversary sends the instance in phases, each starting
with white and black small items. If the black item is put into an already opened bin, we
send a huge white item that can be put only on the small black item. Therefore the algorithm
has to put the huge white item in a new bin, but an optimal offline algorithm puts the small
black item into a new bin and the huge white item on it. Otherwise, if the small black item
is put into a new bin, the phase is finished: The online algorithm opened a bin in the phase,
while an optimal offline algorithm does not need to. This way an online algorithm is forced
to behave oppositely to an optimal offline algorithm.

We formalize this idea by the following adversarial algorithm. Let e = 1/(6n) and §; =
1/(5" - 6n). The adversary uses the items of the following types:

e regular white items of size ¢,

e regular black items of size J; for some i > 1,
special black items of size 3¢; for some i > 1,

e huge white items of size 1 — 29; for some i > 1.

Let ¢ be the index of the current phase and let 5 be the number of huge white items in
the instance so far. The adversarial algorithm is as follows:

1. Let ¢ =0 and j = 0.

2. If j =n orif i = [2.5n], then stop.

3. Let i =i+ 1. Send W};ite, blg?k), i.e., a group consisting of a regular white item and a
regular black item.

4. If the regular black item goes to a new bin or to a bin with level zero, go to the step 2
(continue with the next phase).

5. Let j =j+1. Send (b;jscik, ﬁ%ﬁi, blg,‘*). Then go to the step 2 (continue with the next
phase).

First we show that we can pack the whole list of items into n + 1 bins and then that no

huge white item can be packed by an online algorithm into a bin from the set W, i.e., one of
[1.5n] bins which are white after the first part with zero-size items.

Lemma 4.2. OPT =n+ 1.

Proof. The first part of the items, i.e., the hard instance for zero-size items, has the optimum
exactly n. Moreover, all bins are white by Lemma [3.:2] Each of j < n huge white items is
packed with the two regular black items from the same phase, thus creating j full bins with
a black item at the bottom. All these bins thus can be combined with the bins from the first
part of the instance. The remaining items have alternating colors and total size of at most
i-2e < [2.5n]-2/(6n) <1 (recall that i is the index of the current phase and that each black
item is smaller than €), so they can be put into an additional bin.

Note that the maximal discrepancy LBs is n + 1, since we end the first part by n white
items and start the second part by a regular white item. Hence OPT =n + 1. O

We now analyze how an online algorithm behaves on the second part of the instance.

Lemma 4.3. After the i-th phase the number of bins with a non-zero level is at least .
Moreover, no huge white item goes into a bin from the set W.

Proof. We use the fact that 3J; < ¢, i.e., all black items are smaller than ¢, and that a huge
white item of size 1 — 20; cannot be packed with a black item of size at least J; for any j < ¢.

15

We show that in each phase the number of bins with a non-zero level increases by at least
one. This holds trivially, if the second item in a phase, denoted by s, goes to a new bin or to a
bin with level zero. Otherwise, if s is put into a bin of non-zero level, the adversary continues
the phase by sending three other items, most importantly a huge white item h. The item s
is the only one sent before h that is sufficiently small to be packed into a single bin with h,
but s is in a bin with another non-zero item. Therefore h must be packed into a new bin or
a bin with level zero. This proves the first statement of the lemma.

For the second statement, note that if h goes to a bin with zero-size items only, the bin
cannot be white, but all the bins from the set W that have still level zero (while packing h)
are white. As we already observed, h also does not go to a bin from W that has a non-zero
level. O

By the previous lemma we know that if the second part of the instance ends with ¢ =
[2.5n], there are [2.5n| non-zero bins. If the instance stops by j = n, the online algorithm
has at least |W| 4+ n > [2.5n] open bins, since it opens bins in W on the first part of the
instance and it must put n huge white items into other bins. As OPT = n + 1, we get that
the ratio between the online algorithm and the optimum tends to 2.5 as n goes to infinity. [

Note that if we replace the first part of the instance by n white items, we get the lower
bound of 2 using only two colors.

4.2 3.5-competitive Algorithm

We now show that there is a constant competitive online algorithm even for items of sizes
between 0 and 1. We combine algorithms Pseudo from [2] and our algorithm BAF that is
1.5-competitive for zero-size items. The algorithm Pseudo uses pseudo bins which are bins of
unbounded capacity.

Pseudo-BAF:
1. First pack an incoming item into a pseudo bin using the algorithm BAF (treat
the item as a zero-size item).
2. In each pseudo bin, items are packed into unit capacity bins using Next Fit.

Theorem 4.4. The algorithm Pseudo-BAF for Colored Bin Packing is absolutely 3.5-com-
petitive. In the parametric case when items have size at most 1/d, for a real d > 2, it uses at
most [(1.5+d/(d —1))OPT] bins. Moreover, the analysis is asymptotically tight.

Proof. In the general case for items between 0 and 1 we know that two consecutive bins in
one pseudo bin have total size strictly more than one, since no two consecutive items of the
same color are in a pseudo bin. In each pseudo bin we match each bin with an odd index with
the following bin with an even index, therefore we match all bins except at most one in each
pseudo bin. Moreover, the total size of a pair of matched bins is more than one. Therefore the
number of matched bins is strictly less than 2- LB; < 2-OPT,i.e., at most 2- OPT —1. The
number of not matched bins is at most the number of pseudo bins created by the algorithm
BAF which uses at most [1.5- LBs| < [1.5- OPT| < 1.5- OPT + 0.5 bins. Summing both
bounds, the algorithm Pseudo-BAF creates at most 3.5 - OPT bins.

For the parametric case, inside each pseudo bin all real bins except the last one have level
strictly more than (d — 1)/d, so their number is strictly less than d/(d — 1) - OPT, i.e., at
most [d/(d—1)- OPT| — 1. The number of pseudo bins is still bounded by [1.5- OPT, thus
the algorithm Pseudo opens at most [(1.5+ d/(d — 1)) OPT'] bins.

16

We show the tightness of the analysis by combining hard instances for Pseudo by Balogh
et al. [2] and for BAF from the proof of Theorem More concretely, for n (a big integer)

let ¢ = 1/(2n). The adversary sends n — 1 groups of three items, specifically (n — 1) x

white black black
e 1 7 ¢

The algorithm creates one pseudo bin containing every first and second item from each
group and n — 1 pseudo bins, each containing only the third item from a group. Moreover,
the first pseudo bin is split into 2+ (n — 1) unit capacity bins (each item is in a separate bin),
so there are 3- (n — 1) bins. The optimum for n — 1 groups is n, because we can pack all tiny
items together in one bin and LB; = n.

Then the adversary sends the hard instance with zero-size items from the proof of The-
orem and BAF creates additional [(n — 1)/2] pseudo bins, while the optimum on the
instance is n — 1. Pseudo-BAF now have [3.5 (n — 1)]| bins. Observe that the optimal
packing for n — 1 groups does not need to be changed to put there zero-size items, thus
OPT =n.

For the parametric case, the adversary uses a modification of the first part of the hard
instance by Balogh et al. [2] on which Pseudo creates at least (d — 1)n + dn bins, while its
optimal packing needs (d — 1)n + 1 bins. Moreover, the adversary can continue with the
hard instance with zero-size items like in the general case and force Pseudo-BAF to create
additional [(d — 1)n/2]| bins without increasing the optimum. Therefore Pseudo-BAF ends
up with asymptotically (1.5 + d/(d — 1)) OPT bins. O

4.3 Classical Any Fit Algorithms

We analyze algorithms First Fit, Best Fit and Worst Fit and we find that they are not constant
competitive. Their competitiveness cannot be bounded by any function of the number of
colors even for only three colors, in contrast to their good performance for two colors.

Proposition 4.5. First Fit and Best Fit are not constant competitive.

Proof. The adversary sends an instance of 4n items which can be packed into two bins, but
FF and BF create n + 1 bins where n is an arbitrary integer.

Let ¢ = 1/(4n). The instance is n X (blaCk black ‘white red

e’ € 7 € 7 ¢
obtained by putting black items from each group into the first and the second bin, the white
item into the first bin and the red item into the second bin.

FF and BF pack the first group into two bins, both with a black bottom item, and white
and red items fall in the first bin. The first black item, the white item and the red item from
each following group are packed into the first bin, while the second black item is packed into
a new bin. Therefore these algorithms create one bin with all white and red items and all
first black items from each group and n bins with a single black item.

Hence FF and BF create (n+1)/2 - OPT bins. O

). An optimal packing can be

Note that WF on such instance creates an optimal packing, but the instance can be
modified straightforwardly to obtain a bad behavior for WF.

Proposition 4.6. Worst Fit is not constant competitive.

Proof. The instance is similar to the one in the previous proof, but sizes of items are dif-

ferent in each group. Let ¢ = 1/(2n) and let § = 1/(6n? + 1). The instance is n x

black black white red
6 > e > 65 6)

17

We observe that the optimal packing does not change with other sizes. However, WF
packs all d-items into the first bin, i.e., first black items from each group and all white and
red items, since the level of the first bin stays at most (3n)/(6n? 4+ 1), which is less than
1/(2n) as €/0 > 3n. Therefore all second black items are packed into separate bins and WF
creates n + 1 bins, while the optimum is two. O

5 Black and White Bin Packing

For sequences with only two colors, we improve the upper bound on the absolute competitive
ratio of Any Fit algorithms from 5 to 3. Then we show that Worst Fit performs even better
for items with size of at most 1/d (for d > 2) as it is (1 4+ d/(d — 1))-competitive in this case.
Both bounds are tight by the results of Balogh et al. [2] (more precisely, the bound for WF is
tight only for an integer d > 2), therefore it matches the performance of Pseudo, the online
algorithm with the best competitive ratio known so far. Note that for infinitesimally small
items WF is 2-competitive, while BF and FF remain 3-competitive.

Both bounds are tight, since there are instances for FF and BF on which the competitive
ratio is asymptotically 3 and an instance for WF in the parametric case on which WF uses
asymptotically (1 + d/(d —1))OPT bins for an integer d > 2 [2] (more precisely, the bound
for WF is tight only for an integer d > 2).

5.1 Competitiveness of Any Fit Algorithms

Theorem 5.1. Any algorithm in the Any Fit family is absolutely 3-competitive for Black and
White Bin Packing.

Proof. We use the following notation: An item is small when its size is less than 0.5 and big
otherwise. Similarly small bins have level less than 0.5 and big bins have level at least 0.5.

We assign bins into chains — sequences of bins in which all bins except the last must be
big. If there is only one bin in a chain it must be big. Moreover, the bottom item in the i-th
bin of a chain cannot be added into the (i — 1)-st bin — even if it would have the right color,
i.e., it is too big to be put into the (i — 1)-st bin.

A Dbin is contained in at most one chain. We call a bin that is not in a chain a separated
bin. We create chains such that all big bins are in a chain and only as few small bins as
possible remains separated. Moreover, our chains can have at most two bins, so the average
level of bins in each chain is clearly at least 0.5.

It follows that the total number of bins in all chains is bounded from above by 2 - OPT.
We want to bound the number of separated bins from above by the maximal color discrepancy
LBy which yields the 3-competitiveness of AF.

We define a process of assigning bins into chains. We simply try to put as many bins
into chains as possible, but we add a bin into a chain only when the last bin in the chain has
another color than the bottom item of the added bin.

Formally, when an item from the input sequence is added we do the following:

e The item is added into a bin in a chain: Nothing happens with chains or separated bins.

e The item is added into a small separated bin: If the bin becomes big we create a chain

from the bin, otherwise the bin stays separated.

e The item is big and creates a new bin: The newly created bin forms a new chain.

e The item is small and creates a new bin: If there is a chain in which the last bin has an

item of another color on the top, i.e., black for a white incoming item and white for a
black incoming item, we add the newly created bin into the chain. (Note that the last

18

bin in the chain must be big, otherwise the item would fit into the last bin.) If there is
no such chain, the new bin is separated.

Moreover, whenever a chain has two big bins we split it into two chains, each containing
one big bin. Therefore each chain is either one big bin, or a big bin and a small bin. The
intuitive reason for splitting chains is that we can put more newly created small bins into
chains.

If there is no separated bin at the end (after the last item is added), we have created at
most 2 - OPT bins. Otherwise we define k and ¢ as indexes of incoming items and show that
the color discrepancy of items between the k-th and the t-th item is at least the number of
separated bins at the end.

Let ¢ be the index of an item that created the last bin that is separated when it is created
(the ¢-th item must be small). Suppose w.l.o.g. that the ¢-th item is black. Note that a
small item that comes after the ¢-th item can create a bin, but we put the bin into a chain
immediately, therefore the number of separated bins can only decrease after adding the ¢-th
item.

Let b; be the number of small black bins, i.e., bins with a black item on the top, and w;
be the number of small white bins after adding the i-th item from the sequence. From the
definition of ¢ we know that w; = 0.

We define k as the biggest ¢ < t such that b; = 0, i.e., there is no small black bin (if b; > 0
for all i > 1 we set k = 0). Clearly the (k + 1)-st item must be small and black. Note that
there can be some separated white bins and possibly some other small white bins in chains,
but there is no separated black bin. Let W be the set of white bins that are separated after
adding the k-th item. Before adding the t-th item and creating the last bin, all bins in W
must have a black item on the top, or become big bins in chains (thus & <t — |W]).

Let new items be items with an index 7 such that £k < ¢ < ¢t. We want to bound the
number of separated bins after adding the ¢-th item by the color discrepancy. Note that these
bins are small by the process of assigning bins into chains. We observe that all separated
bins must have a black item on the top before adding the ¢-th item and also all chains have
a black item on the top in the last bin, otherwise the bin created by the t-th item would be
added in a chain.

Hence for separated bins with a black item at the bottom the number of black items is
greater by one than the number of white items. Separated bins created with a new item must
have a black item at the bottom, since otherwise there cannot be a small black bin and b; = 0
for k <i<t.

Separated bins from the set W can have the same number of black and white items before
adding the ¢-th item, but in each such bin there is one more new black item than new white
items, since the first and the last such items are black.

Now we look at new items which are packed into bins that are in chains after adding the
t-th item. We call such an item a link. Note that some links can be at first packed into
separated bins, but these bins are put into chains before adding the ¢-th item. It suffices to
show the following claim.

Claim 5.2. In each chain the number of black links is at least the number of white links after
adding the t-th item.

Proof. When the t-th item comes and creates a new separated bin, the last item in each chain
must be black. Therefore the claim holds for the chains with only one bin.

For the chains with two bins (the first big and the second small) we observe that a bin
created with a link has either a black item, or a big white item at the bottom. If it would have

19

a small white link at the bottom, there cannot be a small black bin and b; = 0 for k <7 <t
which is a contradiction with the definition of k. Since a big white item starts a new chain,
the second bin in a chain cannot have a white link at the bottom.

Moreover, the first link in the second bin of a chain must be black, because either the
second bin was created after the k-th item and we use the observation from the previous
paragraph, or it was created before the k-th item and then it must had a white item on the
top when the k-th item came, since there was no small bin with a black item on the top.

So it cannot happen in a chain with two bins that there are two white links next to each
other, or separated by some items that are not links. Note that for black links this situation
can happen. Since there must be a link in the second bin and the last such link is black, the
claim holds for chains with one big and one small bin.

The process of assigning bins into chains does not allow chains with more than two bins
or with two big bins. Hence in each chain the number of black links is at least the number of
white links. O

Let s be the number of separated bins. We found out that when we focus on new items,
i.e., items with an index ¢ such that k < i < ¢, there is one more such black item than such
white items in all separated bins and at least the same number of such items of both colors
in bins in all chains, i.e., links. Moreover, after the ¢t-th item comes s can only decrease, since
no separated bin is created. So we have bounded the value of s at the end from above by the
color discrepancy between the (k + 1)-st and the ¢-th item:

t

>

l=k+1

s < < LBy

where s; is 1 when the i-th item is white and —1 otherwise. Note that some items after
the t-th item can create a bin, but such bins are put into chains.]

5.2 Competitiveness of the Worst Fit Algorithm

The Worst Fit algorithm performs in fact even better when all items are small which we prove
similarly to the proof of Theorem

Theorem 5.3. Suppose that all items in the input sequence have size of at most 1/d, for a
real d > 2. Then Worst Fit is absolutely (14 d/(d — 1))-competitive for Black and White Bin
Packing.

Proof. Let OPT be the number of bins used in an optimal packing. We divide bins created
by WF into sets B (big bins) and S (small bins). Each big bin has level at least (d — 1)/d,
thus |B| < d/(d—1)- OPT. Small bins are smaller than (d —1)/d, thus they can receive any
item of the right color. We show that |S| is bounded by the maximal color discrepancy LBy
and we obtain that WF is (1 + d/(d — 1))-competitive.

As items are arriving, we count the number of small black bins, i.e., bins with a black
item on the top and with level less than (d — 1)/d. Let b; be the number of small black bins
after adding the i-th item from the sequence. Similarly let w; be the number of white bins
with level less than (d — 1)/d after adding the i-th item.

If b, = 0 and w, = 0, i.e., there is no small bin at the end, WF created at most d/(d —
1) - OPT bins. Otherwise suppose w.l.o.g. that the last created bin has a black item at the
bottom. Let t be the index of the black item that created the last bin. It holds that w; = 0,
since otherwise the ¢-th item would go into a small white bin.

20

Let k be the last index smaller than ¢ for which by =0 (if b; > 0 for all s € {1,...,t}, we
set k = 0). The (k + 1)-st item must be black. We observe that any bin created after this
point has a black item at the bottom, otherwise b; = 0 for some ¢ such that £ < ¢ < t. Note
that wy can be greater than 0, i.e., there can be some small white bins and the (k + 1)-st
item goes into one of them. Let W be the set of these bins. Before adding the ¢-th item and
creating the last bin, all bins in W must have a black item on the top, or become big bins
(thus k <t — |[W]).

Let new items be items with an index 7 such that £ < 7 < t. We want to bound the number
of small bins after adding the ¢-th item by the color discrepancy. We already observed that
all these bins must have a black item on the top. Hence for small bins with a black item
at the bottom the number of black items is greater by one than the number of white items.
Small bins from the set W can have the same number of black and white items, but in each
such bin there is one more new black item than new white items, since the first such item is
black.

Now we look at new items which are packed into bins that are big after the t-th item
comes. It suffices to show that the number of such new black items is at least the number
of such new white items. We observe that WF packs any new white item into a small bin,
otherwise b, = 0 for some ¢ such that £ < ¢ < t. Hence any new white item must be packed
into a bin created after the k-th item (therefore with a new black item at the bottom), or
into a bin from the set W. Since the first item that falls into a bin from W after the k-th
item is black, our claim holds.

Note that this matching of black and white items in big bins would fail for algorithms like
Best Fit or First Fit, since they can put a white item into a big bin created before the k-th
item and not contained in W.

We found out that when we focus on new items, i.e., items with an index ¢ such that
k < 1 < t, there is one more such black item than such white items in all small bins and at
least as many such black items as such white items in all big bins. Moreover, after the ¢-th
item comes the number of small bins |S| can only decrease, since no bin is created. So we
bound |S| from above by the color discrepancy between the (k + 1)-st and the ¢-th item:

t

3w

l=k+1

S| < < LBy

where s; is 1 when the i-th item is white and —1 otherwise.
Note that the last bin is already counted in the color discrepancy, since its bottom item
is black and has index t. O

Conclusions and Open Problems

The Colored Bin Packing for zero-size items is completely solved.

For items of arbitrary size, our online algorithm still leaves a gap between our lower bound
2.5 and our upper bound of 3.5. The upper bounds are only 0.5 higher than for two colors
(Black and White Bin Packing) where a gap between 2 and 3 remains for general items.

Classical algorithms FF, BF and WF, although they maintain a constant approximation
for two colors, start to behave badly when we introduce the third color. For two colors, we
now know their exact behavior. In fact, all Any Fit algorithms are absolutely 3-competitive
which is a tight bound for FF, BF and WF. However, for items of size up to 1/d, d > 2, FF
and BF remain 3-competitive, while WF has the absolute competitive ratio 1+d/(d—1). Thus

21

we now know that even the simple Worst Fit algorithm matches the performance of Pseudo,
the online algorithm with the best competitive ratio known so far. It is also an interesting
question whether it holds that Any Fit algorithms cannot be better than 3-competitive for
two colors.

References

1]

[15]
[16]
[17]

L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems with
cardinality constraints. Discrete Applied Mathematics, 143:238-251, 2004.

J. Balogh, J. Békési, G. Désa, L. Epstein, H. Kellerer, and Z. Tuza. Online results for black and
white bin packing. Theory of Computing Systems, pages 1-19, 2014.

J. Balogh, J. Békési, G. Désa, H. Kellerer, and Z. Tuza. Black and white bin packing. In
Approximation and Online Algorithms, LNCS 7846, pages 131-144. Springer, 2013.

J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin packing
algorithms. Theoretical Computer Science, 440-441:1-13, 2012.

M. Chrobak, J. Sgall, and G. J. Woeginger. Two-bounded-space bin packing revisited. In Furopean
Symposium on Algorithms (ESA), LNCS 6942, pages 263-274. Springer, 2011.

E. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin packing approximation
algorithms: Survey and classification. In P. M. Pardalos, D.-Z. Du, and R. L. Graham, editors,
Handbook of Combinatorial Optimization, pages 455-531. Springer, 2013.

J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best is better than first.
Algorithmica, 31(2):115-138, 2001.

G. Désa and L. Epstein. Colorful bin packing. In Algorithm Theory — SWAT, LNCS 8503, pages
170-181. Springer, 2014.

G. Désa and L. Epstein. Online bin packing with cardinality constraints revisited. ArXiv e-prints
1404.1056, Apr. 2014.

G. Désa and J. Sgall. First Fit bin packing: A tight analysis. In 30th International Symposium on
Theoretical Aspects of Computer Science (STACS), volume 20 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 538-549, Dagstuhl, Germany, 2013.

G. Désa and J. Sgall. Optimal analysis of Best Fit bin packing. In Automata, Languages, and
Programming (ICALP), LNCS 8572, pages 429-441. Springer, 2014.

L. Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete Mathe-
matics, 20, 2006.

D. Johnson. Near-optimal Bin Packing Algorithms. Massachusetts Institute of Technology, project
MAC. Massachusetts Institute of Technology, 1973.

K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling algorithms
for a model of multiprogramming computer systems. J. ACM, 22:522-550, 1975.

C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32:562-572, 1985.
S. S. Seiden. On the online bin packing problem. J. ACM, 49:640-671, 2002.
J. Ullman. The Performance of a Memory Allocation Algorithm. Technical Report 100, 1971.

22

	Introduction
	Preliminaries and Offline Optimum
	Algorithms for Zero-size Items
	Lower Bound on Competitiveness of Any Online Algorithm
	Optimal Algorithm for Zero-size Items

	Algorithms for Items of Arbitrary Size
	Lower Bound on Competitiveness of Any Online Algorithm
	3.5-competitive Algorithm
	Classical Any Fit Algorithms

	Black and White Bin Packing
	Competitiveness of Any Fit Algorithms
	Competitiveness of the Worst Fit Algorithm

