Stationary distributions of finite Markov chains

Recall that a finite Markov chain with n states is represented by a non-negative matrix
P € R™" with column sums equal to 1. We represent a distribution on the states by a
non-negative vector p with the sum of entries equal to 1. If p is a distribution on the n
states, then Pp is the distribution after a step of the Markov chain and P*p is the state
after k steps.

Definition 1. A distribution @ € R" is called a stationary distribution of a Markov chain
Pif Pr=m.

Theorem 2. Suppose that P is an irreducible and aperiodic Markov chain. Then there
exists a unique stationary distribution . Moreover, for every i,j, lim; Pf] exists and
18 equal to ;.

Lemma 3. For P aperiodic and irreducible, there exists k > 1 and d > 0 such that for all
i7j7 Rl?] > 5

Proof. For a given 1, let A be the set of all t > 1 such that Pfl > 0. The set A is noempty
as A is irreducible and it is closed under addition as P! > pt.pt. Furthermore, the

aperiodicity of P implies that gcd(A) = 1, where ged(A) is the createst common divisor of
(all the numbers in) A.

An easy number-theoretic fact is that such an A contains all but finitely many natural
numbers. Let a € A be arbitrary. Since gcd(A) = 1, we can express 1 as a linear com-
bination of elements of a with integer coefficients (some may be negative). This implies
that for some a € N, we can express aa + 1 as a linear combination of elements of a with
non-negative integer coefficients, simply by adding term a - b for all b € A with a negative
coefficient sufficiently many times. Now for any f > aa and v = 0,...,a — 1, we can
express Sa + 7 as 7y times the combination for aa + 1 plus some multiple of a. Thus for
any t > fa, we have t € A.

Using the fact above for all 4, we can find £, such that for all i and all ¢ > o, P{; > 0.
Now we claim that for k = tq + n, for all 4, j, Pf] > (. Since P is irreducible, there exist
¢ < n such that Rfj > (: consider the shortest path in the underlying graph from state j

to i. Then P}, > PPl > 0as k— € > to.

1,)] —
Finally, if for szg > 0 for all 7, 7, then there also exists § > 0 such that Pfj > ( for all
1,7, as the matrix has finitely many elements. ]

We will work with the [j-norm of vectors, which is just a sum of the absolute values
of the entries, i.e., |[x|}1 = >, |z;]. We will also use the standard decomposition of a
vector x to its positive and negative parts x* and x~ defined by x; = max{x;, 0} and
xr; = max{—x;,0}. Then x = x — x~, x™ and x~ have disjoint support and ||x||; =
[+ X

Lemma 4. Suppose that vectors v,w € R™ are non-negative and moreover all entries are
at least a. Then ||[v —w||1 < ||V||1 + ||wW]|1 — 2an.

Proof. Direct calculation using the fact that for each coordinate |v; — w;| = max{v;, w;} —
min{v;, w; } = v; + w; — 2min{v;, w;} < v; + w; — 2a. O



Lemma 5. Let D € R™™" be a matrix with all entries at least § for some 6 > 0 and column
sums equal to 1. Let x be decomposed to x = xT — x~ as described above. Then

(1) [|Dx|[y < |||y = 26n min{[[x™ |1, [[x~ |1}

(i) If x has both positive and negative entries, then Dx # X.
(iii) If Y"1 x; = 0 then ||Dx||; < (1 —on)||x]|.

Proof. (i): Consider the vectors v = Dx' and w = Dx~; both v and w are non-negative
as D, x, and x~ are all non-negative. Since D has the column sums equal to 1 and
xT, X~ are non-negative, ||v||; = [|xT||1 and ||w]||; = ||x7||1, thus ||v]|1 + |[w]|[1 = ||x]]i-
Since D has all the entries at least 6 > 0 and z} > 0, we have v; > § 3 " | a7 = d||x ||
Similarly w; > 6", ;7 = d||x7||1. Now we use Lemma 4 with o = § min{||x*||1, ||x"[|: }
to conclude that

1Dx][y = [|[v = wl],

< |VIk A+ [fwll = 20n min| [y, [} = [1x[]r = 20nmin{|[x* ||, [[x7 ||}

(ii): The assumption implies min{||x*||1, ||x7|[1} > 0. Then (i) implies || Dx||; < ||x]|:
and Dx # x follows.

(iii): The assumption implies ||x"||; = ||x7||1 = ||x|[1/2. Thus (i) implies ||Dx]|; <
[Ix[l = onflx[ly = (1 = dn)[|x||x- 0

Proof of Theorem 2. Fix k and § as in Lemma 3.

The system of equations x = Px is homogeneous and its rank is at most n — 1: the
column sums of P are equal to 1, so summing all the inequalities yields a trivial equality
Sow i =y, ;. Thus there exists a non-trivial solution x.

We claim that any such x has all entries non-negative or all the entries non-positive.
Otherwise Lemma 5(ii) for D = P* implies P*x # x, which is a contradiction with Px = x.

Since x is non-trivial and has no entries with opposite signs, a scaled vector w =
x/(>°1 | x;) is a distribution. Since 7 = P, 7 is a stationary distribution. Furthermore,
it is unique: For any stationary distribution 7’ # 7, the vector y = w — &’ would be a
non-trivial solution of the system of equations y = Py with both positive and negative
entries and we have already excluded the existence of such a solution.

Now consider an arbitrary initial distribution p. We prove that lim,_,., P'p = .
Considering p equal to the jth standard basis vector, this implies that for each i, j, Pf]
converges to ;.

Consider an arbitrary distribution q. For s = 0,1,2,---, consider the vectors v(®) =
P q — . We first prove that lim, . v® = 0. Since 7 is a stationary distribution, we
have v(®) = P**q—m = P**(q—m) and v(**!) = P¥v(*), Note that the coordinates of each
of v(¥) sum to 0. Using also the fact that Pfj > ¢ by Lemma 3, we can apply Lemma 5(iii)

to obtain
[IVEFI L = [[PPYO] < (1= 6n)| v .

Thus
VOl < (1= 8ny VO]

which converges to 0. Thus v(®) converges to 0 and P**q converges to 7 for s — co.

Now consider q = Pp for £ = 0,...,k — 1. The previous paragraph implies that for
each ¢, the sequence P**q = P***‘p converges to 7 for s — oco. This implies that also P'p
converges to 7 for t — oo. O



