
Stationary distributions of finite Markov chains

Recall that a finite Markov chain with n states is represented by a non-negative matrix
P ∈ Rn×n with column sums equal to 1. We represent a distribution on the states by a
non-negative vector p with the sum of entries equal to 1. If p is a distribution on the n
states, then Pp is the distribution after a step of the Markov chain and P kp is the state
after k steps.

Definition 1. A distribution π ∈ Rn is called a stationary distribution of a Markov chain
P if Pπ = π.

Theorem 2. Suppose that P is an irreducible and aperiodic Markov chain. Then there
exists a unique stationary distribution π. Moreover, for every i, j, limt→∞ P

t
i,j exists and

is equal to πi.

Lemma 3. For P aperiodic and irreducible, there exists k ≥ 1 and δ > 0 such that for all
i, j, P k

i,j > δ.

Proof. For a given i, let A be the set of all t ≥ 1 such that P t
i,i > 0. The set A is noempty

as A is irreducible and it is closed under addition as P t+t′

i,i ≥ P t
i,iP

t′
i,i. Furthermore, the

aperiodicity of P implies that gcd(A) = 1, where gcd(A) is the createst common divisor of
(all the numbers in) A.

An easy number-theoretic fact is that such an A contains all but finitely many natural
numbers. Let a ∈ A be arbitrary. Since gcd(A) = 1, we can express 1 as a linear com-
bination of elements of a with integer coefficients (some may be negative). This implies
that for some α ∈ N, we can express αa+ 1 as a linear combination of elements of a with
non-negative integer coefficients, simply by adding term a · b for all b ∈ A with a negative
coefficient sufficiently many times. Now for any β ≥ αa and γ = 0, . . . , a − 1, we can
express βa + γ as γ times the combination for αa + 1 plus some multiple of a. Thus for
any t ≥ βa, we have t ∈ A.

Using the fact above for all i, we can find t0 such that for all i and all t ≥ t0, P
t
i,i > 0.

Now we claim that for k = t0 + n, for all i, j, P k
i,j > 0. Since P is irreducible, there exist

` ≤ n such that P `
i,j > 0: consider the shortest path in the underlying graph from state j

to i. Then P k
i,j ≥ P k−`

i,i P `
i,j > 0 as k − ` ≥ t0.

Finally, if for P k
i,j > 0 for all i, j, then there also exists δ > 0 such that P k

i,j > 0 for all
i, j, as the matrix has finitely many elements.

We will work with the l1-norm of vectors, which is just a sum of the absolute values
of the entries, i.e., ||x||1 =

∑n
i=1 |xi|. We will also use the standard decomposition of a

vector x to its positive and negative parts x+ and x− defined by x+i = max{xi, 0} and
x−i = max{−xi, 0}. Then x = x+ − x−, x+ and x− have disjoint support and ||x||1 =
||x+||1 + ||x−||1.

Lemma 4. Suppose that vectors v,w ∈ Rn are non-negative and moreover all entries are
at least α. Then ||v −w||1 ≤ ||v||1 + ||w||1 − 2αn.

Proof. Direct calculation using the fact that for each coordinate |vi−wi| = max{vi, wi}−
min{vi, wi} = vi + wi − 2 min{vi, wi} ≤ vi + wi − 2α.
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Lemma 5. Let D ∈ Rn×n be a matrix with all entries at least δ for some δ > 0 and column
sums equal to 1. Let x be decomposed to x = x+ − x− as described above. Then
(i) ||Dx||1 ≤ ||x||1 − 2δnmin{||x+||1, ||x−||1}.
(ii) If x has both positive and negative entries, then Dx 6= x.
(iii) If

∑n
i=1 xi = 0 then ||Dx||1 ≤ (1− δn)||x||1.

Proof. (i): Consider the vectors v = Dx+ and w = Dx−; both v and w are non-negative
as D, x+, and x− are all non-negative. Since D has the column sums equal to 1 and
x+, x− are non-negative, ||v||1 = ||x+||1 and ||w||1 = ||x−||1, thus ||v||1 + ||w||1 = ||x||1.
Since D has all the entries at least δ > 0 and x+j ≥ 0, we have vi ≥ δ

∑n
i=1 x

+
i = δ||x+||1.

Similarly wi ≥ δ
∑n

i=1 x
−
i = δ||x−||1. Now we use Lemma 4 with α = δmin{||x+||1, ||x−||1}

to conclude that

||Dx||1 = ||v −w||1
≤ ||v||1 + ||w||1 − 2δnmin{||x+||1, ||x−||1} = ||x||1 − 2δnmin{||x+||1, ||x−||1}.

(ii): The assumption implies min{||x+||1, ||x−||1} > 0. Then (i) implies ||Dx||1 < ||x||1
and Dx 6= x follows.

(iii): The assumption implies ||x+||1 = ||x−||1 = ||x||1/2. Thus (i) implies ||Dx||1 ≤
||x||1 − δn||x||1 = (1− δn)||x||1.

Proof of Theorem 2. Fix k and δ as in Lemma 3.
The system of equations x = Px is homogeneous and its rank is at most n − 1: the

column sums of P are equal to 1, so summing all the inequalities yields a trivial equality∑n
i=1 xi =

∑n
i=1 xi. Thus there exists a non-trivial solution x.

We claim that any such x has all entries non-negative or all the entries non-positive.
Otherwise Lemma 5(ii) for D = P k implies P kx 6= x, which is a contradiction with Px = x.

Since x is non-trivial and has no entries with opposite signs, a scaled vector π =
x/(

∑n
i=1 xi) is a distribution. Since π = Pπ, π is a stationary distribution. Furthermore,

it is unique: For any stationary distribution π′ 6= π, the vector y = π − π′ would be a
non-trivial solution of the system of equations y = Py with both positive and negative
entries and we have already excluded the existence of such a solution.

Now consider an arbitrary initial distribution p. We prove that limt→∞ P
tp = π.

Considering p equal to the jth standard basis vector, this implies that for each i, j, P t
i,j

converges to πi.
Consider an arbitrary distribution q. For s = 0, 1, 2, · · · , consider the vectors v(s) =

P skq − π. We first prove that lims→∞ v(s) = 0. Since π is a stationary distribution, we
have v(s) = P skq−π = P sk(q−π) and v(s+1) = P kv(s). Note that the coordinates of each
of v(s) sum to 0. Using also the fact that P k

i,j > δ by Lemma 3, we can apply Lemma 5(iii)
to obtain

||v(s+1)||1 = ||P kv(s)||1 ≤ (1− δn)||v(s)||1 .
Thus

||v(s)||1 ≤ (1− δn)s||v(0)||1
which converges to 0. Thus v(s) converges to 0 and P skq converges to π for s→∞.

Now consider q = P `p for ` = 0, . . . , k − 1. The previous paragraph implies that for
each `, the sequence P skq = P sk+`p converges to π for s→∞. This implies that also P tp
converges to π for t→∞.
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