
Optimal Search on Some Game Trees

MICHAEL TARSI

Universay of Cahforma, Los Angeles, Cahforma

Abstract. It is proved that the dlrecUonal algorithm for solving a game tree is optimal, in the sense of
average run trine, for balanced trees (a family containing all uniform trees). This result implies that the
alpha-beta pruning method is asymptotJcally opttmal among all game searching algorithms.

Categones and Subject Descriptors. 1 2.8 [Artificial Intelligence] Problem Solving, Control Methods and
Search--graph and tree search strategies

General Terms' None

Addmonal Key Words and Phrases Game strategies, alpha-beta pruning, average optimal algorithms

1. Introduction

A game for two players is given, represented by a rooted tree as follows: Every
possible position in the game is denoted by a node. The root represents the starting
position, while every leaf denotes a possible end. A n edge f rom a node x to another
node y (in this case y is called a Son o f x) represents a possible move f rom position
x to posit ion y. At the beginning o f the game a token is located on the root. Each
player, in his turn, moves the token f rom the node on which it is located to any son
o f this node. The game is finished when the token is placed on any o f the leaves. The
leaves are labeled {0, 1 }. The player who puts the token on a leaf wins i f the leaf is
labeled 0 and loses if it is labeled 1. In order to analyze the game, we now define for
every node x, v(x), the value o f x as follows: I f x is a leaf labeled 0 or 1, then
v(x) = 0 or v(x) = 1, respectively. I f x is not a leaf, then v(x) = 1 if there exists y, a
son o f x, such that v(y) = 0. Otherwise v(x) = O. v(x) = 1 implies that the player
whose turn it is to play f rom x can force a win. By "solving a tree" we mean
evaluat ing the value o f the root, f inding whether the first player wins or loses. We
are looking for an algori thm to solve a game tree which is opt imal in the sense o f
average run time. At the beginning o f the search the tree is given but the leaves are
"covered" so that one cannot see how they are labeled. The elementary unit o f t ime
is defined as that amoun t required for the "exposure" o f a leaf to find whether it is
labeled 0 or 1. The cost o f a solution is defined as the n u m b e r o f leaves exposed
dur ing the solving process. Assume now that there is a given probabil i ty p for each
leaf to be labeled 1. This probabil i ty is equal for all the leaves, and the value o f each

This work was supported m part by the National Science Foundation under Grant MCS 78-18924.
Author's address Department of Mathematics, Umverslty of Cahforma, Los Angeles, CA 90024.
Permission to copy without fee all or part of this material ts granted provided that the copies are not made
or distributed for direct commerctal advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice Is given that copying is by permission of the Assocmtion for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1983 ACM 0004-5411/83/0700-0389500 75

Journal of the Association for Com#utmg Machinery, Voi 30, No 3, July 1983, pp 389-396

390 M I C H A E L T A R S I

leaf does not depend on those of the others. The cost V(A) of an algorithm A for
solving a given tree is defined as

V(A) = ~ p(s)VA(s),
s~S

where s is any (0, 1} assignments for the leaves, p(s) is the probability for s to occur,
and VA(S) is the cost of the solution obtained by A, for the tree with s. The sum is
taken over S, the set of all possible (0, 1) assignments. An algorithm A for a tree T
is called optimal if V(A) is minimal among all the costs of algorithms for solving T.

Before starting the analysis let us use some examples to demonstrate the concepts
of this paper.

I. T1 = ~ " o

For this tree there exists only one (up to a permutation) reasonable algorithm, AI:
First expose one leaf. I f it is labeled 0, then the value of the root is one. If it is labeled
1, the second leaf should be exposed. The cost of this algorithm is now evaluated
(directly from the definition).

s p (s) Va, (S)

0 0 (1 -- p)2 1
0 1 p(l - p) l
1 0 p(1 - p) 2
1 1 p~ 2

V(AO = Y.p(s)va,(s) = i + p

This result can also be obtained by the following consideration: One leaf should be
exposed and the probability for the need to expose the other one is p (when the first
is labeled 1).

r

II. I"2=

For this tree we evaluate the costs of two different algorithms: A2, a, which starts
with the leaf under the edge a, and A2, b, which first solves the subtree rooted at x.
For Az, a, if the first leaf is labeled 1, the whole tree is solved (v(r) = 1); otherwise
(probability 1 - p) we have to evaluate v(x), which is equivalent to solving Tx. Thus

V(Az, a) -- 1 + (1 -p)V(A~) = 2 _pz.

For V(A2, b) it seems that we have to fred the costs of evaluating v(x) for v(x) = 0
and for v(x) = 1 separately, to add 1 to the cost when v(x) = 1 (in this case the third
leaf should be exposed), and to multiply each cost by its probability. Actually this is
the same as taking just the average cost of evaluating x and adding the probability
for the need to expose the third leaf (multiplied by its cost, which is 1 in this case).
Thus

V(A2, b) = V(AO + (l - p~) = 2 _p2 + p.

(From now on we always use the average costs of some partial evaluation, although
the cost and the result of the evaluation are not independent. This method is justified

Optimal Search on Some Game Trees 391

by the theorem which says that the expectation of the sum of random variables is
equal to the sum of expectations, even if they are dependent. For more details see,
for example, [2, p. 222, Th. 1].)

By considering all feasible algorithms one can easily verify that A~, a is an optimal
algorithm for T2, for all values ofp. (Note: Comparing V(A2, a) and V(A1), for some
values o fp solving T2 costs more than solving T1, while the opposite occurs for other
values ofp.)

We now give an example of a tree for which the optimal algorithm varies with p.

III. T 3 - f N ~ , , - y x
Starting with x the cost is 2 - p, while the cost is 1 + p if we first expose y.
In all the examples above the optimal algorithms were "straight" in the sense that

whenever a descendant of a node x is exposed, v(x) is completely evaluated before
the exposure of any leaf which is not a descendant of x. However, there are trees for
which a straight optimal algorithm does not exist, as we see in the following example:

IV. T4 - - ~

Xl X2 Xa yl
Assume that p is almost 1. In this case, starting with xl, it probably takes just one

step to solve the whole tree, but if xl is found to be labeled 0, then it is better to
"jump" to yl, which probably requires one more step, instead of proceeding with x2,
x3, which probably requires two additional steps. The optimal algorithm for high
values o fp (with additional effort one can verify that this "nonstraight" algorithm is
optimal for everyp) is not straight because it may leave the subtree rooted at x before
fmding v(x).

Examples III and IV show that finding an optimal algorithm for an arbitrary and
sufficiently large tree is probably a very hard job. The algorithm should depend on
p and should "jump" on the tree from one branch to another.

The main result of this paper is that the situation is not that bad for a certain
family of trees. For this family, namely, the balanced trees, there always exists a
straight algorithm which is optimal for every value ofp. Before stating the theorem
we introduce additional notation.

Definition. A rooted tree is called balanced if

(a) all the leaves have the same distance d from the root and
(b) the degrees of all nodes at a given level are equal.

(The level of a node is its distance from a leaf; the leaves are at level 0, the root at
level d.)

THEOREM. I f T is a balanced game tree, then the following algorithm named
SOL VE is optimal for solving T with any value ofF:

Expose the leaves from left to right, skipping a leaf whenever there is sufficient
information to evaluate one of its ancestors.

392 MICHAEL TARSI

SOLVE is defined and its cost for uniform trees is evaluated in [5].

PROOF. An algorithm is called n-straight if, whenever a descendant of a node x
o f level n or less is exposed during the solution by A, v(x) is evaluated before the
exposure of any leaf which is not a descendant of x.

Obviously, every algorithm is 0-straight and for balanced trees every d-straight
algorithm is equivalent (up to an automorphism of the tree) to SOLVE.

Thus, in order to prove the theorem, we have to prove the existence of a d-straight
optimal algorithm. We do this by induction, showing that the existence of an (n - 1)-
straight optimal algorithm (n _< d) implies the existence of an optimal n-straight one.

Assume A is an optimal algorithm for the solution of a balanced game tree and
that A is (n - 1)-straight but not n-straight. This means that there exists a node x of
level n such that, under some circumstances, some descendants of x are exposed and
then x is left before v(x) is found. Since A is (n - 1)-straight, this happens only if
some, but not all, say t, o f x's sons had been found to have the value 1 before x was
left. We now defme some quantities related to the work of A.

p l

0t
q ~pl

1 - p2

Notation

The probability that a son of x has the value 1.
The average cost of evaluating a son of x.
The probability that the first t sons of x all have the value 1.
The average cost for A to solve the first t sons of x.
The probability that A solves the tree after leaving x (fmding t 1-sons of x)
without going back to the (t + 1)st son of x.

"t The average cost spent by A, after leaving x, until either going back to the
(t + 1)st son of x or solving the tree without coming back to x.

V1 The average cost of completing the solution when one son of x is known to
have the value 0 (v(x) = 1), without any information about the rest of the
tree.

V2 The average cost of completing the solution, knowing v(x) ffi 1, having the
information about the rest of the tree, obtained by A before solving the
(t + 1)st son of x.

V3 The cost of completing the solution after the (t + 1)st son of x is found to
have the value 1.

Figure 1 explains the work of A and the above-defined quantities. The starting
point is that moment when A first starts exposing the descendant of x, although some
work might be done before.

fl can be expressed in terms of a and pl. The first t sons of x are solved when one
of them is found to have the value 0 or all of them the value 1. Thus

1 - p _ _ _ _ _ ~
fl ffi ct + pxa + p~a . . . + ptx-xa ffi a 1 - p l '

p l ffi q,

and so we get

=/~ 1 - p l (1)
l - q "

Now we defme two variations of the algorithm A, namely, B and C. B does not
enter to x but starts with the rest of the tree, as A does after fmding t l-sons of x. B

Optimal Search on Some Game Trees 393

solwng
the first
t sons
ofx

solwng
the (t + l)st'
son of

search- ? - ~
ing the
rest of
the tree [

END

START

eX'otS~all I

END END

NOTATION

average cost

FIG 1 Algorithm A

goes to x under the same conditions whmh make A go back to the (t + 1)st son of x.
C starts in the same way as A but solves t + 1 sons, one more than A does, before
leaving x.

Algorithms B and C are represented by Figures 2 and 3. By V(A), V(B), V(C) we
denote the costs of the corresponding algorithms, measured since the "start" point.
From the defmitions, using the flowcharts, we obtain

V(A) = (1 -- q)Vl + q P2(1 -- pl)V2 + q_/v~P2Va + qp20t + fl + qv,
V(B) =pz(l - q)Vz + qp2(1 -p l)V2 + qp~p2V3 + qp2a + pzl~+ "r,
V(C) = (1 - q)Vx + q(1 -pl)v~ + ClPlpzV3 + qa + fl + qPw.

Since A is optimal, V(A) <_ V(B), which gives us

(1 - q)Vl + B -<p2(l - q)V2 +p2B + (1 - q)y.

Multiplying by q(1 - px)/(1 - q) and applying eq. (1), we get

q(1 - p~)V~ + qa <_ qp2(l - pl)Vz + qp2a + q(1 - p l) y ,

and adding (1 - q)V1 + qplp2Va + fl + qpa~, to both sides, we obtain V(C) <_ V(A),
which means that C is at least as good as A. Since A is assumed to be optimal, so is
C. Thus, evaluating one more son before leaving x does not compromise the
optimality. Applying this technique to all sons of x leads to an optimal n-straight
algorithm, and the induction is complete.

Applications

Our analysis so far has been confined to game trees with bivalued terminal nodes.
However, the theorem also has projections on the complexity of game-playing
programs. In such programs the terminal nodes are assigned continuous values

394 MICHAEL TARSI

solving the first
t sons of x

solving the (t + l)st
son of x

searching the rest
of the tree

e x i s t s / / ~ all

at

START

f . , / ~ g o to

END

• .

I
END

0 1

END

FIG. 2. Algorithm B.

solving the first
t sons of x

solving the (t + l)st
son of x

searching the rest
of the tree

START

exists ~ all

END

I

END

END

FIG 3. Algorithm C

Optimal Search on Some Game Trees 395

representing estimates of the strength or promise of the corresponding game positions,
and the task is to determine the minimax value of the root node by examining the
least number of terminal nodes.

The standard testing ground adapted for comparing the efficiency of various game-
searching strategies is a uniform game tree of depth d and degree n, where the
terminal positions are assigned random values independently drawn from a common,
continuous distribution function F.

We refer to such a tree as a (d, n, F)-tree.

Definition. Let A be a deterministic algorithm which searches a (d, n, F)-tree to
determine the minimax value of its root, and let 1A(d, n, F) denote the expected
number of terminal positions examined by A. The quantity

~A(n, F) --- lim [IA(d, n, Y)] TM
d---~ oo

is called the branching factor corresponding to the algorithm A [4].

The alpha-beta (a-fl) pruning algorithm is the most commonly used procedure in
game-playing applications. Yet, though the exponential growth of game-tree search-
ing is slowed significantly by that algorithm, quantitative analyses of its effectiveness
are still under way [1, 3-5, 7]. Recently, Pearl [6] has shown that

in
• ~ - B - 1 - in' (2)

where in is the positive root of the equation x ~ + x - 1 -- 0. The expression
in/(1 - in) also represents the branching factor of SOLVE under the condition
p = in, and it lower bounds the branching factor of all directional algorithms which
evaluate continuous-valued trees [5]. These results establish (x-fl as asymptotically
optimal over the class of directional algorithms but leave unsettled the question of its
global optimality. Indeed, Stockman [8] introduced a nondirectional algorithm called
SSS* which consistently examined fewer nodes than a-ft. Hopes were then raised
that the superiority of Stockman's algorithm reflected an improved branching factor
over that of a-ft.

The optimality of a-fl strongly hinges upon the complexity of solving bi-
valued game trees. Pearl has shown [5] that if any algorithm can solve a bivahed
(d, n, p = fn)-tree with branching factor Rb, then another algorithm (called SCOUT)
can be devised for evaluating a continuous-valued (d, n, F)-tree with a branching
factor identical to Rb.

At the same time the task of solving any bivalued game tree is equivalent to the
task of verifying an inequality proposition regarding the minimax value of a
continuous-valued game tree [5] of identical structure, and consequently the former
cannot be more complex than the latter. These considerations imply that the optimal
branching factor associated with evaluating a continuous-valued tree is identical to
that associated with solvmg a standard bivalued game tree in which the terminal
nodes are assigned the values 1 and 0 with the probabilities in and 1 - in, respectively.

The main theorem of this paper states that SOLVE spends the minimal average
search effort on the standard game tree and, therefore, that any algorithm which
solves such a game tree must, on the average, examine at least (~/(1 - in)) d terminal
positions.

This, together with (2), establishes the asymptotm optimality of a-fl over all game-
searching algorithms, directional as well as nondirectional.

396 MICHAEL TARSI

REFERENCES

1. BAuDEr, G.M. On the branching factor of the alpha-beta pruning algorithm. Artif. lntell. 10 (1978),
173-199.

2. FFLt.~R, W. An Introduction to Probabdity Theory and Its Applications. Wiley, New York, 1968.
3. FULLER, S.H., GASCRNIG, J.G., AND GILLOGLY, J.J. An analysis of the alpha-beta pruning algorithm.

Department of Computer Science Rep., Carnegie-Mellon Univ., Pittsburgh, Pa., 1973.
4. KNUTH, D.E., AND MOORE, R.N. An analysis of alpha-beta pruning. Artif. Intell. 6 (1975), 293-326.
5. PEARL, J. Asymptotic properties of minimax trees and game-searching procedures. Artif Intell I4,

2 (1980), 113-138.
6. PEARL, J. The solution for the branching factor of the alpha-beta prunmg algorithm and its

optimality. Commun ACM 25, 8 (Aug. 1982), 559-564
7. SLAGLE, J.R, AND DIXON, J.K. Experiments with some programs that search game trees. £ A CM 2,

1969, 189-207.
8. STOCKMAN, G. A mmunax algorithm better than alpha-beta? Art~ Intell. 12 (1979), 179-196

RECEIVED JULY 1981, REVISED MAY 1982; ACCEPTED MAY 1982

Journal of the Association for Computing Machinery, Vol 30, No 3, July 1983

