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Abstract. It is proved that the dlrecUonal algorithm for solving a game tree is optimal, in the sense of 
average run trine, for balanced trees (a family containing all uniform trees). This result implies that the 
alpha-beta pruning method is asymptotJcally opttmal among all game searching algorithms. 

Categones and Subject Descriptors. 1 2.8 [Artificial Intelligence] Problem Solving, Control Methods and 
Search--graph and tree search strategies 

General Terms' None 

Addmonal Key Words and Phrases Game strategies, alpha-beta pruning, average optimal algorithms 

1. Introduction 

A game for two players is given, represented by a rooted tree as follows: Every  
possible position in the game is denoted by a node. The  root  represents the starting 
position, while every leaf denotes a possible end. A n  edge f rom a node  x to another  
node  y (in this case y is called a Son o f  x) represents a possible move  f rom position 
x to posit ion y. At  the beginning o f  the game a token is located on  the root. Each  
player, in his turn, moves the token f rom the node  on which it is located to any  son 
o f  this node. The  game is finished when the token is placed on  any  o f  the leaves. The  
leaves are labeled {0, 1 }. The  player  who puts the token on  a leaf  wins i f  the leaf  is 
labeled 0 and loses if  it is labeled 1. In  order  to analyze the game, we now define for 
every node  x, v(x), the value o f  x as follows: I f  x is a leaf  labeled 0 or  1, then 
v(x) = 0 or  v(x) = 1, respectively. I f  x is not  a leaf, then v(x) = 1 if  there exists y, a 
son o f  x, such that v(y) = 0. Otherwise v(x) = O. v(x) = 1 implies that  the player  
whose turn it is to play f rom x can force a win. By "solving a tree" we mean  
evaluat ing the value o f  the root, f inding whether  the first player  wins or  loses. We  
are looking for an  algori thm to solve a game tree which is opt imal  in the sense o f  
average run time. At the beginning o f  the search the tree is given but  the leaves are 
"covered"  so that  one cannot  see how they are labeled. The  elementary unit  o f  t ime 
is defined as that  amoun t  required for the "exposure"  o f  a leaf  to find whether  it is 
labeled 0 or 1. The  cost o f  a solution is defined as the n u m b e r  o f  leaves exposed 
dur ing the solving process. Assume now that  there is a given probabil i ty p for each 
leaf to be labeled 1. This probabil i ty is equal  for all the leaves, and  the value o f  each 
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leaf does not depend on those of the others. The cost V(A) of an algorithm A for 
solving a given tree is defined as 

V(A) = ~ p(s)VA(s), 
s~S  

where s is any (0, 1} assignments for the leaves, p(s) is the probability for s to occur, 
and VA(S) is the cost of the solution obtained by A, for the tree with s. The sum is 
taken over S, the set of all possible (0, 1) assignments. An algorithm A for a tree T 
is called optimal if V(A) is minimal among all the costs of  algorithms for solving T. 

Before starting the analysis let us use some examples to demonstrate the concepts 
of  this paper. 

I. T1 = ~ " o  

For this tree there exists only one (up to a permutation) reasonable algorithm, AI: 
First expose one leaf. I f  it is labeled 0, then the value of the root is one. If  it is labeled 
1, the second leaf should be exposed. The cost of this algorithm is now evaluated 
(directly from the definition). 

s p (s) Va, (S) 

0 0 (1 -- p)2 1 
0 1 p( l  - p )  l 
1 0 p(1 - p )  2 
1 1 p~ 2 

V(AO = Y.p(s)va,(s) = i + p 

This result can also be obtained by the following consideration: One leaf should be 
exposed and the probability for the need to expose the other one is p (when the first 
is labeled 1). 

r 

II. I"2= 

For this tree we evaluate the costs of  two different algorithms: A2, a, which starts 
with the leaf under the edge a, and A2, b, which first solves the subtree rooted at x. 
For Az, a, if  the first leaf is labeled 1, the whole tree is solved (v(r) = 1); otherwise 
(probability 1 - p )  we have to evaluate v(x), which is equivalent to solving Tx. Thus 

V(Az, a) -- 1 + (1 -p)V(A~) = 2 _pz.  

For V(A2, b) it seems that we have to fred the costs of  evaluating v(x) for v(x) = 0 
and for v(x) = 1 separately, to add 1 to the cost when v(x) = 1 (in this case the third 
leaf should be exposed), and to multiply each cost by its probability. Actually this is 
the same as taking just the average cost of  evaluating x and adding the probability 
for the need to expose the third leaf (multiplied by its cost, which is 1 in this case). 
Thus 

V(A2, b) = V(AO + (l - p~ )  = 2 _p2  + p. 

(From now on we always use the average costs of  some partial evaluation, although 
the cost and the result of the evaluation are not independent. This method is justified 
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by the theorem which says that the expectation of  the sum of  random variables is 
equal to the sum of expectations, even if they are dependent. For more details see, 
for example, [2, p. 222, Th. 1].) 

By considering all feasible algorithms one can easily verify that A~, a is an optimal 
algorithm for T2, for all values ofp.  (Note: Comparing V(A2, a) and V(A1), for some 
values o fp  solving T2 costs more than solving T1, while the opposite occurs for other 
values ofp.) 

We now give an example of  a tree for which the optimal algorithm varies with p. 

III. T 3 -  f N ~ , ,  - y x 
Starting with x the cost is 2 - p, while the cost is 1 + p if we first expose y. 
In all the examples above the optimal algorithms were "straight" in the sense that 

whenever a descendant of  a node x is exposed, v(x) is completely evaluated before 
the exposure of  any leaf which is not a descendant of  x. However, there are trees for 
which a straight optimal algorithm does not exist, as we see in the following example: 

IV. T4 - - ~  

Xl X2 Xa yl 
Assume that p is almost 1. In this case, starting with xl, it probably takes just one 

step to solve the whole tree, but if  xl is found to be labeled 0, then it is better to 
"jump" to yl, which probably requires one more step, instead of  proceeding with x2, 
x3, which probably requires two additional steps. The optimal algorithm for high 
values o fp  (with additional effort one can verify that this "nonstraight" algorithm is 
optimal for everyp) is not straight because it may leave the subtree rooted at x before 
fmding v(x). 

Examples III and IV show that finding an optimal algorithm for an arbitrary and 
sufficiently large tree is probably a very hard job. The algorithm should depend on 
p and should "jump" on the tree from one branch to another. 

The main result of this paper is that the situation is not that bad for a certain 
family of trees. For this family, namely, the balanced trees, there always exists a 
straight algorithm which is optimal for every value ofp.  Before stating the theorem 
we introduce additional notation. 

Definition. A rooted tree is called balanced if 

(a) all the leaves have the same distance d from the root and 
(b) the degrees of all nodes at a given level are equal. 

(The level of  a node is its distance from a leaf; the leaves are at level 0, the root at 
level d.) 

THEOREM. I f  T is a balanced game tree, then the following algorithm named 
SOL VE is optimal for solving T with any value ofF: 

Expose the leaves from left to right, skipping a leaf whenever there is sufficient 
information to evaluate one of its ancestors. 
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SOLVE is defined and its cost for uniform trees is evaluated in [5]. 

PROOF. An algorithm is called n-straight if, whenever a descendant of  a node x 
o f  level n or less is exposed during the solution by A,  v(x) is evaluated before the 
exposure of  any leaf which is not a descendant of  x. 

Obviously, every algorithm is 0-straight and for balanced trees every d-straight 
algorithm is equivalent (up to an automorphism of  the tree) to SOLVE. 

Thus, in order to prove the theorem, we have to prove the existence of  a d-straight 
optimal algorithm. We do this by induction, showing that the existence of  an (n - 1)- 
straight optimal algorithm (n _< d) implies the existence of  an optimal n-straight one. 

Assume A is an optimal algorithm for the solution of  a balanced game tree and 
that A is (n - 1)-straight but not n-straight. This means that there exists a node x of  
level n such that, under some circumstances, some descendants of  x are exposed and 
then x is left before v(x) is found. Since A is (n - 1)-straight, this happens only if 
some, but not all, say t, o f  x's sons had been found to have the value 1 before x was 
left. We now defme some quantities related to the work of  A. 

p l  

0t 
q ~pl 

1 - p2 

Notation 

The probability that a son of  x has the value 1. 
The average cost of  evaluating a son of  x. 
The probability that the first t sons of  x all have the value 1. 
The average cost for A to solve the first t sons of  x. 
The probability that A solves the tree after leaving x (fmding t 1-sons of  x) 
without going back to the (t + 1)st son of  x. 

"t The average cost spent by A, after leaving x, until either going back to the 
(t + 1)st son of  x or solving the tree without coming back to x. 

V1 The average cost of  completing the solution when one son of  x is known to 
have the value 0 (v(x) = 1), without any information about the rest of  the 
tree. 

V2 The average cost of  completing the solution, knowing v(x) ffi 1, having the 
information about the rest of  the tree, obtained by A before solving the 
(t + 1)st son of  x. 

V3 The cost of  completing the solution after the (t + 1)st son of  x is found to 
have the value 1. 

Figure 1 explains the work of  A and the above-defined quantities. The starting 
point is that moment  when A first starts exposing the descendant of  x, although some 
work might be done before. 

fl can be expressed in terms of  a and pl. The first t sons of  x are solved when one 
of  them is found to have the value 0 or all of  them the value 1. Thus 

1 - p _ _ _ _ _ ~  
fl ffi ct + pxa + p~a . . .  + ptx-xa ffi a 1 - p l '  

p l  ffi q, 

and so we get 

=/~ 1 - p l  (1) 
l - q "  

Now we defme two variations of  the algorithm A, namely, B and C. B does not 
enter to x but starts with the rest of  the tree, as A does after fmding t l-sons of  x. B 
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solwng 
the first 
t sons 
ofx 

solwng 
the (t + l)st' 
son of 

search- ? - ~  
ing the 
rest of 
the tree [ 

END 

START 

eX'otS~all I 

END END 

NOTATION 

average cost 

FIG 1 Algorithm A 

goes to x under the same conditions whmh make A go back to the (t + 1)st son of  x. 
C starts in the same way as A but solves t + 1 sons, one more than A does, before 
leaving x. 

Algorithms B and C are represented by Figures 2 and 3. By V(A), V(B), V(C) we 
denote the costs of  the corresponding algorithms, measured since the "start" point. 
From the defmitions, using the flowcharts, we obtain 

V(A) = (1 -- q)Vl + q P2(1 -- pl)V2 + q_/v~P2Va + qp20t + fl + qv, 
V(B) =pz( l  - q)Vz + qp2(1 -p l )V2  + qp~p2V3 + qp2a + pzl~+ "r, 
V(C) = (1 - q)Vx + q(1 -pl)v~ + ClPlpzV3 + qa + fl + qPw. 

Since A is optimal, V(A) <_ V(B), which gives us 

(1 - q)Vl + B -<p2(l - q)V2 +p2B + (1 - q)y. 

Multiplying by q(1 - px)/(1 - q) and applying eq. (1), we get 

q(1 - p~)V~ + qa <_ qp2(l - pl)Vz + qp2a + q(1 - p l ) y ,  

and adding (1 - q)V1 + qplp2Va + fl + qpa~, to both sides, we obtain V(C) <_ V(A), 
which means that C is at least as good as A. Since A is assumed to be optimal, so is 
C. Thus, evaluating one more son before leaving x does not compromise the 
optimality. Applying this technique to all sons of  x leads to an optimal n-straight 
algorithm, and the induction is complete. 

Applications 

Our analysis so far has been confined to game trees with bivalued terminal nodes. 
However, the theorem also has projections on the complexity of  game-playing 
programs. In such programs the terminal nodes are assigned continuous values 
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solving the first 
t sons of x 

solving the (t + l)st 
son of x 

searching the rest 
of the tree 

e x i s t s / / ~  all 

at 

START 

f . ,  / ~ g o  to 

END 

• . 

I 
END 

0 1 

END 

FIG. 2. Algorithm B. 

solving the first 
t sons of x 

solving the (t + l)st 
son of x 

searching the rest 
of the tree 

START 

exists ~ all 

END 

I 

END 

END 

FIG 3. Algorithm C 
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representing estimates of the strength or promise of the corresponding game positions, 
and the task is to determine the minimax value of the root node by examining the 
least number of terminal nodes. 

The standard testing ground adapted for comparing the efficiency of various game- 
searching strategies is a uniform game tree of depth d and degree n, where the 
terminal positions are assigned random values independently drawn from a common, 
continuous distribution function F. 

We refer to such a tree as a (d, n, F)-tree. 

Definition. Let A be a deterministic algorithm which searches a (d, n, F)-tree to 
determine the minimax value of its root, and let 1A(d, n, F) denote the expected 
number of terminal positions examined by A. The quantity 

~A(n, F) --- lim [IA(d, n, Y)] TM 
d---~ oo 

is called the branching factor corresponding to the algorithm A [4]. 

The alpha-beta (a-fl) pruning algorithm is the most commonly used procedure in 
game-playing applications. Yet, though the exponential growth of game-tree search- 
ing is slowed significantly by that algorithm, quantitative analyses of its effectiveness 
are still under way [1, 3-5, 7]. Recently, Pearl [6] has shown that 

in 
• ~ - B  - 1 - in' (2) 

where in is the positive root of the equation x ~ + x - 1 -- 0. The expression 
in/(1 - in) also represents the branching factor of SOLVE under the condition 
p = in, and it lower bounds the branching factor of all directional algorithms which 
evaluate continuous-valued trees [5]. These results establish (x-fl as asymptotically 
optimal over the class of directional algorithms but leave unsettled the question of its 
global optimality. Indeed, Stockman [8] introduced a nondirectional algorithm called 
SSS* which consistently examined fewer nodes than a-ft. Hopes were then raised 
that the superiority of Stockman's algorithm reflected an improved branching factor 
over that of a-ft. 

The optimality of a-fl strongly hinges upon the complexity of  solving bi- 
valued game trees. Pearl has shown [5] that if any algorithm can solve a bivahed 
(d, n, p = fn)-tree with branching factor Rb, then another algorithm (called SCOUT) 
can be devised for evaluating a continuous-valued (d, n, F)-tree with a branching 
factor identical to Rb. 

At the same time the task of solving any bivalued game tree is equivalent to the 
task of verifying an inequality proposition regarding the minimax value of a 
continuous-valued game tree [5] of identical structure, and consequently the former 
cannot be more complex than the latter. These considerations imply that the optimal 
branching factor associated with evaluating a continuous-valued tree is identical to 
that associated with solvmg a standard bivalued game tree in which the terminal 
nodes are assigned the values 1 and 0 with the probabilities in and 1 - in, respectively. 

The main theorem of this paper states that SOLVE spends the minimal average 
search effort on the standard game tree and, therefore, that any algorithm which 
solves such a game tree must, on the average, examine at least (~/(1 - in)) d terminal 
positions. 

This, together with (2), establishes the asymptotm optimality of a-fl over all game- 
searching algorithms, directional as well as nondirectional. 
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