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Abstract

We consider a problem of repeatedly scheduling n jobs on m parallel machines. Each
job is associated with a profit that is gained each time the job is completed, and the goal
is to maximize the average profit per time unit. Once the processing of a job is completed,
it goes on vacation and returns to the system, ready to be processed again, only after its
vacation is over. This problem has many applications, in production planning, machine
maintenance, video-on-demand and databases query processing, among others.

We show that the problem is NP-hard already for jobs with unit processing times and
unit profits and develop approximation algorithms, as well as optimal algorithms for certain
subclasses of instances. We first show that a 5/3-approximation algorithm can be obtained
for instances with unit processing times, using known results for windows scheduling. We
then present a preemptive greedy algorithm, which yields a ratio of e/(e−1) to the optimal
for general instances, with arbitrary processing times and arbitrary profits. For the special
case where all jobs have the same (unit) processing times and the same (unit) profits, we
present a 1.39-approximation algorithm. For this case we also show that, when the load
generated by an instance is sufficiently large (in terms of n and m), any algorithm which
uses no intended idle times yields an optimal schedule.

1 Introduction

We consider a scheduling problem in which jobs need to be scheduled repeatedly. The input
is a set of m identical parallel machines and a set of n jobs, J = {1, . . . , n}, that need to be
scheduled on the machines. All the jobs are ready at time t = 0. Each job j, is associated
with a processing time pj ≥ 1, and a window aj ≥ pj; once the processing of j is completed,
it goes on vacation and returns after aj − pj time units, ready to be processed again. Thus, a
feasible schedule is one where each machine processes at most one job at any time, and there is
a gap of at least aj − pj time units between two consecutive executions of job j. The jobs are
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sequential, i.e., no job can be scheduled on more than one machine at the same time. There is
also a profit, bj , associated with each execution of job j; the goal is to find a feasible schedule
that maximizes the average profit per time unit. We call this problem scheduling with vacations
(SWV). Our problem arises in many practical scenarios where tasks need to be accomplished
periodically, but due to setup times or maintenance requirements there must be some gap
between two consecutive executions of a task. The following are two of the applications that
motivate our study.

Surveillance Camera Scheduling: Consider a system of robots carrying surveillance cam-
eras, which patrol an area periodically [16]. Each robot has a predefined path that it needs
to patrol, while recording all the events along this path. Upon completion of each patrol, the
robot returns to the controller, where the recorded data is downloaded/processed, and the
robot is prepared for its next tour. Each patrol j is associated with a revenue bj , that is gained
once the corresponding robot completes the tour. The controller can handle at most m robots
simultaneously, and it takes pj time units to complete the processing of robot j. The time it
takes robot j to traverse its path is tj ≥ 1. The goal of the controller is to process the robots
in a way that maximizes the profit gained from all robots, throughout the operation of the
system. This yields an instance of SWV, where job j has a processing time pj , and a window
aj = pj + tj .

Commercial Broadcast: In a broadcasting system which transmits data (e.g., commercials
on a running banner) there is some profit associated with the transmission of each commercial.
This profit is gained only if some predefined period of time elapsed since the previous trans-
mission. The goal is to broadcast the commercials in a way that maximizes the overall profit
of the system. Thus, we get an instance of SWV, where the window of each job corresponds
to the time interval between consecutive transmissions of each commercial.

1.1 Our Results and Related Work

The problem of scheduling with vacations belongs to the class of periodic scheduling problems,
where each job may be scheduled infinite number of times. Periodic scheduling is a well-
studied problem. Problems of this type arise in many areas, including production planning,
machine maintenance, telecommunication systems, video-on-demand, image and speech pro-
cessing, robot control/navigation systems, and database query processing. Liu and Layland
introduced in [15] the periodic scheduling problem: they considered the goal of scheduling each
of the jobs such that the average gap between two executions of job j is aj , using the minimum
number of machines. Another early example is the chairman assignment problem [17], in which
the number of executions of job j in any prefix of the schedule of length t must be at least
bt/ajc and at most dt/aje. For both problems the earliest deadline first algorithm was shown
to be optimal. A more restricted form of periodic scheduling, known as pinwheel scheduling,
requires that job j is scheduled at least once in any sub-sequence of aj jobs {J`+1, . . . , J`+aj

}
(see, e.g., [12]).

Our problem differs from previously studied variants of periodic scheduling in two major
aspects. First, our goal is to maximize the total profit of the server. This may result in
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lack of fairness. Indeed, in a schedule which maximizes the profit, some jobs may be waiting
indefinitely, while other (more profitable) jobs are repeatedly processed as soon as they return
from vacation. In other works (e.g., [15, 9, 10, 12]), the performance of a periodic schedule
is measured by some fairness criterion, or (e.g. [3, 11]) the two objectives are combined; that
is, each job comprises a mandatory and an optional part, with which a non-decreasing reward
function is associated. In other variants of the periodic scheduling problem (see, e.g., [1]),
the processing of each job incurs a service cost, depending on the time that elapsed since the
last service of this job, and the goal is to minimize the cost of the schedule; however, the
cost increases with job delays − implying that an optimal solution requires some fairness.
Other periodic scheduling problems arise in Broadcast Disks environment (e.g., [2]) where
satellites broadcast popular information pages to clients, and in TeleText (e.g., [4]) where
running banners appear in some television networks.

The other major difference from well-studied variants of periodic scheduling is that in
our problem, due to the vacation requirement, jobs cannot be processed too often. In the
windows scheduling problem [6, 7], the parameter associated with each job gives the maximal
gap between any two executions of job j, however, it is feasible to schedule a job more often.
In the periodic machine scheduling problem (PMSP) [5], this parameter specifies the exact gap
between any two executions of j. To the best of our knowledge, there is no earlier work on
periodic job scheduling with minimum gap requirement between consecutive executions of a
job.

We first show that SWV is NP-hard already for jobs with unit length and unit profits.
Since the total number of different configurations of the system is finite, an optimal solution
can be found (inefficiently) by applying the buffer scheme designed for the windows scheduling
problem [8].

We present several approximation algorithms for various subclasses of instances. We show
that a 1.67-approximation algorithm can be obtained for instances with unit processing times,
using known results for windows scheduling. For the special case where all jobs have the same
(unit) processing times and the same (unit) profits, we present an algorithm with approxi-
mation ratio 2 ln 2(≈ 1.39). For this case we also show that, when the load generated by an
instance is sufficiently large (in terms of n and m), any algorithm which uses no intended idle
times yields an optimal schedule. Our approximation algorithms for unit length jobs apply a
transformation of the instance to an aligned instance, where all window sizes satisfy certain
properties. Our approximation technique, based on finding an optimal schedule for the re-
sulting aligned instance, builds on a technique of [7] for the windows scheduling problem. To
obtain better approximation ratio, we extend this technique: Our algorithm for unit processing
times and unit profits applies the best align technique, which finds an aligned instance that
yields the best approximation ratio for the original instance.

We then present a preemptive greedy algorithm, which yields a ratio of e/(e− 1) ≈ 1.58 to
the optimal for general instances in a preemptive model, with arbitrary processing times and
arbitrary profits.
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2 Preliminaries

2.1 Definitions and Notation

As mentioned above, each job j is associated with three parameters: aj , bj , and pj, denoting the
scheduling window (for short, window), the profit, and the processing time of job j, respectively;
we assume that these parameters are positive integers. The load incurred by job j is defined as
`(j) = pj/aj . The best service job j can receive is to be processed for the first time as early as
possible, and then whenever it returns from vacation (i.e., no waiting time). Thus, the load of
job j represents the average processing requirement of j per time unit. The total load of the
input is L(J) =

∑

j∈J `(j). In the special case of unit processing times (i.e., for all j, pj = 1),
we get that `(j) = 1/aj , and L(J) =

∑

j∈J 1/aj . Each job is associated with an additional
parameter, bj , the profit gained from each execution of job j.

We say that a job j is denser than j ′ if bj/pj > bj′/pj′ , or bj/pj = bj′/pj′ and j > j′. A
denser job achieves larger profit per unit time of its execution; the second part of the definition
only breaks ties consistently for the whole instance. Let J≥j denote the set of jobs at least as
dense as j.

To define the profit of a schedule formally, let compl S
T (j) denote the number of times job j

is completed in the first T time units in schedule S. The profit of schedule S is defined as

profit(S) = lim inf
T→∞

1

T

n
∑

j=1

complST (j)bj . (1)

Note that in calculating the profit of a schedule S we consider an infinite time horizon; thus,
profit(S) is not affected by changes in a finite part of the schedule.

A schedule is periodic with period q if, for any T , the jobs scheduled at time T are the
same as the jobs scheduled at time T + q. From the definition of profit(S) it is not clear that
there exists an optimal schedule. However, as we show in Theorem 2.2, for any instance there
exists an optimal schedule which is even periodic.

For a schedule S with period q, ‘lim inf’ in (1) can be replaced by ‘lim’ which always exists,
and it is actually equal to the value of the remaining expression for T = q. For a periodic
schedule, it is meaningful to consider the load (or, relative frequency) of a job j in S, denoted
by `S(j): this is the number of time slots in a period in which j is scheduled, divided by q.
Let LS(J ′) =

∑

j∈J ′ `S(j) denote the load of a set of jobs J ′ ⊆ J in a schedule S.

Example: Figure 1 presents two possible schedules on a single machine of an instance consist-
ing of three unit-length jobs (i, j, k) having windows (2, 3, 4) (that is, vacations (1, 2, 3)) and
profits (1, 5, 1) respectively. Schedule (a) has period 4 and profit (=average profit per time
slot) (1 + 5 + 1 + 1)/4 = 2. Schedule (b) has period 9 and profit (5 · 1 + 3 · 5)/9 = 2.22. Note
that in the last slot of the period the machine is idle. This idle is inevitable because all the
jobs are on vacation during this slot. A simple upper bound for the profit from this instance
is 5/3 + 1/2 + 1/4 = 2.42. For the schedule (a), we have `S(i) = 2/4, `S(j) = `S(k) = 1/4,
and taking J ′ = {i, j, k}, LS(J ′) = 1; for the schedule (b) we have `S(i) = 3/9, `S(j) = 3/9,
`S(k) = 2/9, and LS(J ′) = 8/9.
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i j i k i kij …

j k i j jki idlei …

(a)

(b)

i j i k i kij …

j k i j jki idlei …

(a)

(b)

Figure 1: Two possible periodic schedules of the same instance.

2.2 NP-Hardness

The hardness of SWV with a single machine, unit profits, and unit processing times is shown
by a reduction from the periodic machine scheduling problem (PMSP), which is known to be
NP-hard (see in [5]). In PMSP, there is a set of n devices; the j-th device requires maintenance
every aj time units, where

∑n
j=1 1/aj ≤ 1. The maintenance of any device takes one time unit,

and at any time only one device can be attended. It is assumed that the first maintenance
of device j can be done in any of the first aj time units. The goal is to find a maintenance
schedule that satisfies exactly all the requirements, that is, for all j, device j is maintained
exactly once in any window of aj time units.

Theorem 2.1 SWV is NP-hard, even with a single machine, unit profits and unit processing
times.

Proof: Given an instance of PMSP with n devices in which the j-th device requires main-
tenance every aj time units, construct an instance of SWV with unit profits, unit processing
times, and scheduling windows aj for jobs j = 1, . . . , n. Since

∑n
j=1 1/aj ≤ 1, there is a feasible

schedule for PMSP if and only if the average profit per time-unit from job j is exactly 1/aj ,
that is, if and only if there is a schedule of the SWV instance with average profit

∑n
j=1 1/aj .

Note that
∑n

j=1 1/aj is the maximal possible profit for this SWV instance, and it is achieved
only when each job is processed immediately after it returns from vacation. This implies that
the transformation above reduces the NP-hard problem PMSP to SWV.

The SWV instances produced in the above reduction have total load at most 1. In Sec-
tion 4.2 we characterize several classes of instances with L(J) > 1 for which the SWV problem
is solvable in polynomial time.

2.3 Optimal Periodic Schedules and an Exponential Algorithm

We first describe an exponential time algorithm that finds an optimal schedule among the
periodic ones. Then, based on some insights from this algorithm, we observe that a non-
periodic schedule cannot improve upon the best periodic schedule.

The general buffer scheme [8] is a tool designed for solving optimally the windows scheduling
problem. We explain below how it can be modified to solve optimally the problem of scheduling
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with vacations. We consider unit-length jobs and arbitrary profits, however, the algorithm can
be easily extended to handle jobs with arbitrary lengths (both preemptive and non-preemptive)
similar to the extension for windows scheduling shown in [8]. The buffer scheme is based on
representing the system as a nondeterministic finite state machine, in which any directed closed
walk corresponds to a valid periodic schedule and vice-versa.

Let a∗ = maxj{aj}. The state of a schedule is represented using a set of buffers, B0, B1,
. . . , Ba∗−1. Each job is stored in some buffer. A job is stored in Bi when i time slots remain
till the end of its vacation. Initially, all jobs are ready to be processed so they are all stored in
B0. In each iteration, the scheme schedules at most m jobs from B0 and updates the content
of the buffers:

• For all i > 0, all jobs stored in Bi are moved to Bi−1 (note that none of them is scheduled).

• Each scheduled job j is moved from B0 to Baj−1 (this ensures that at least aj − 1 time
slots will elapse before j is scheduled again).

Note that the total number of buffer configurations is at most Πjaj. In the state machine,
each configuration is represented by a vertex, and there is an edge connecting configuration
f to configuration g if it is possible to move from the state corresponding to f to the state
corresponding to g in a single time slot. Each edge e = (f, g) has a weight be whose value is the
profit gained by moving from f to g; this is the total profit of the jobs selected for execution.

A periodic schedule with period q corresponds to a closed walk of length q in the state
machine. The profit of this schedule is given by the average edge weight along this walk. Note
the subtle difference between a walk and a schedule. Since the walk may not contain the initial
configuration, during the first q steps of the schedule, the actual configurations may differ from
those in the corresponding vertices of the walk. However, if we take a walk, it still generates
a feasible schedule, and the correspondence is one-to-one.

To find an optimal periodic schedule, notice that each closed walk can be decomposed into
simple cycles. By averaging, the average profit of the best cycle is at most that of the best
walk. Thus a cycle with maximal mean weight corresponds to an optimal schedule. Such a
cycle can be found by using the classic Max Cycle Mean algorithm of Karp [13]. The running
time is polynomial in the graph size, which is polynomial in Πjaj .

Clearly, this algorithm is applicable only for small instances, however, since the problem is
NP-hard, it is unlikely to admit a polynomial time algorithm for general instances.

Theorem 2.2 Any instance J has an optimal schedule which is periodic.

Proof: Let X be the profit of the best periodic schedule obtained by the algorithm above.
For a contradiction, assume that for some ε > 0, there exists a schedule S with profit at least
X + 2ε.

Define a configuration at time T as in the previous algorithm. Since the number of config-
urations is finite, and the schedule is infinite, there must exist a configuration which appears
in S infinitely often at times T1, T2, . . . . Since the profit of S is strictly larger than X + ε, one
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of the time intervals between Ti and Ti+1 has profit at least X + ε. (In fact, there are infinitely
many such time intervals.) By repeating the scheduling section between Ti and Ti+1 we get a
periodic schedule with the same profit, which is a contradiction to the assumption that X is
the maximal profit of a periodic schedule.

In the rest of the paper we consider only periodic schedules.

2.4 A Technical Lemma

The next lemma is used to compare our schedules to an optimal schedule S∗. Essentially it
asserts that to be R-competitive, it is sufficient to guarantee that in our schedule, for any
threshold, the load of jobs denser than the threshold is at least 1/R of their load in some
optimal schedule. In fact, it is sufficient to have this condition hold on the average over several
schedules.

Lemma 2.3 Let S∗ be an arbitrary schedule for an instance J and let R ≥ 1.

(i) Suppose that for a schedule S of J , and for any job j,

LS(J≥j) ≥ LS∗

(J≥j)/R, (2)

then profit(S) ≥ profit(S∗)/R.

(ii) Let S be some set of feasible schedules of J , and suppose that the schedule S is selected by
some probability distribution over S. Also, assume that ExpS∈S [LS(J≥j)] ≥ LS∗

(J≥j)/R.
Then one of the schedules S ∈ S satisfies profit(S) ≥ profit(S∗)/R.

Proof: Recall that the profit of a schedule is the average profit per time slot, and let
Jβ = {j ∈ J | bj ≥ β}. To show (i) we note that, for any schedule S,

profit(S) =

∫

β≥0
LS(Jβ) dβ.

To see this, note that each job j contributes to the integral exactly for β ∈ [0, bj ], and the
contribution is equal to lS(j). Now, since (2) holds for all j, it follows that for any β > 0, the
set of jobs Jβ satisfies LS(Jβ) ≥ LS∗

(Jβ)/R. Therefore, profit(S) ≥ profit(S∗)/R. The proof
of (ii) is similar, since the inequality is linear and thus holds also in expectation.

3 Approximating by Aligned Instances

In this section we study a natural approach for handling instances with unit processing times,
inspired by previous work on window scheduling (see, e.g., [7]). We call an instance aligned if
there exists an integer q such that for each j, aj = q · 2αj for some integer αj ≥ 0, or aj = 1.
(Note that this generalizes the case where all the windows are powers of 2.) The following
result is due to [7].
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Theorem 3.1 An optimal solution for an aligned instance can be computed in polynomial
time.

For completeness, we describe such an optimal solution.

Schedule the jobs in order of increasing windows, always keeping the period of the schedule
equal to the maximal window processed so far. The machines are utilized in an arbitrary
order. When a new job is processed, if needed, increase the period by doubling the period and
repeating the current schedule, until the period is equal to the currently processed window.
Then, if possible, schedule the current job in an empty slot on some machine. Otherwise, if
the current job has a bigger profit than some of the scheduled jobs, run this job in a slot of
the scheduled job with the smallest profit. (This job can still remain scheduled in some other
slots, due to a possible previous doubling of the period.)

An alternative view of this schedule S will be useful. Let j be the densest job such that
L(J≥j) ≥ m. Then the schedule above has the property that all jobs j ′ denser than j are
scheduled as often as possible, i.e., `S(j′) = `(j′), and no jobs lighter than j occur in the
schedule. The borderline job j is scheduled in all the remaining slots.

Note the solution described above works also if we start not with an empty schedule but
with some schedule with period q, where some slots are already used by other jobs, assuming
that the jobs are sufficiently dense (e.g., in the case of unit jobs and unit profits, where we use
this observation).

It follows that a simple 2-approximation algorithm can be achieved by rounding the window
of each job to the next higher power of 2 and using the optimal algorithm for aligned instances.
(And this is no better than 2-approximation: Consider an instance with a single job with
aj = 2α + 1 for a large α.)

Below we give an algorithm that refines this idea and achieves better approximation ratio.
This algorithm is deterministic: Randomization is used only in the analysis.

3.1 A 5/3-approximation Algorithm

Algorithm SimpleAlign

Produce instance J ′ where any window aj > 1 is rounded up to the next power of 2.
Produce instance J ′′ where any window aj > 1 is rounded up to the next number of
the form 3 · 2α, for some integer α ≥ 0.
Find an optimal schedule S ′ for J ′.
Find an optimal schedule S ′′ for J ′′.
Choose the better of S ′ and S′′.

Theorem 3.2 SimpleAlign is a 5/3 ≈ 1.67 approximation algorithm for unit processing
times and arbitrary profits.
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Proof: Using Theorem 3.1, SimpleAlign runs in polynomial time.

Consider a distribution which chooses S ′ with probability 2/5 and S ′′ with probability 3/5.
We prove that the condition of Lemma 2.3 is satisfied with R = 5/3. We use the following
claim, where by `J ′

(j) we denote the load of a job j rounded as in the instance J ′, and similarly
for `J ′′

and J ′′.

Claim 3.3 For any job j, 2
5`J ′

(j) + 3
5`J ′′

(j) ≥ `(j)/R.

Proof: We consider two cases:

(i) If for some integer α, 2α+1 ≤ aj ≤ 3 · 2α, then

2

5
`J ′

(j) +
3

5
`J ′′

(j) ≥
2

5
·

1

2α+2
+

3

5
·

1

3 · 2α
=

3

5 · 2α+1
≥

`(j)

R
.

(ii) Otherwise, for some integer α, 3 · 2α < aj < 2α+2, in which case

2

5
`J ′

(j) +
3

5
`J ′′

(j) ≥
2

5
·

1

2α+2
+

3

5
·

1

3 · 2α+1
=

1

5 · 2α
≥

`(j)

R
.

Now, given an optimal schedule S∗ and a job j, we prove that Lemma 2.3 can be applied
here. We distinguish between two cases.

(a) First, assume that both LS′
(J≥j) < m and LS′′

(J≥j) < m. Then LS′
(J≥j) =

∑

j∈J≥j
`J ′

(j),

by the construction of an optimal schedule for aligned instances, and similarly for S ′′.
From Claim 3.3, we obtain Exp[LS(J≥j)] ≥ L(J≥j)/R ≥ LS∗

(J≥j)/R.

(b) Otherwise it must be the case that LS′
(J≥j) = m or LS′′

(J≥j) = m (note that the load
in a schedule cannot be larger than m). Either way, it implies that L(J≥j) ≥ m in
the original instance. In both J ′ and J ′′, the size of each window is at most doubled,
therefore LS′

(J≥j) ≥ m/2 and LS′′
(J≥j) ≥ m/2. Then the average load is bounded by

Exp[LS(J≥j)] ≥ 2/5 · m + 3/5 · m/2 = 7m/10 ≥ m/R ≥ LS∗
(J≥j)/R.

The proof is completed by an application of Lemma 2.3.

We remark that our analysis of SimpleAlign is tight. Suppose that, for a large α, we
have two jobs with windows 2 · 2α +1 and 3 · 2α +1, with unit weight. In the optimal schedule,
the load is close to 5/(6 · 2α). In J ′, the rounded windows are both 4 · 2α and the load in S ′ is
1/(2 ·2α). In J ′′, the rounded windows are 3 ·2α and 6 ·2α, thus the load in S ′′ is also 1/(2 ·2α).
The ratio for a large α approaches (5/6)/(1/2) = 5/3.

The following theorem shows an interesting consequence for instances with unit profit,
where we can compare against the load of the instance instead of the optimal schedule.

Theorem 3.4 For any instance J with unit profits, the load achieved by SimpleAlign is at
least 0.6 · L(J). In particular, if L(J) ≥ 5m/3, it produces the optimal schedule with a full
profit.

Proof: If LS′
(J) = m or LS′′

(J) = m, we are done. Otherwise LS′
(J) = L(J ′) and

LS′′
(J) = L(J ′′). by the construction of an optimal schedule for aligned instances, and From

Claim 3.3, summing over all jobs, we obtain Exp[LS(J)] ≥ L(J)/R = 0.6 · L(J).
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4 Unit Processing Times and Unit Profits

In this section we consider the special case where all jobs have the same (unit) processing
times and the same (unit) profit. Thus, the average profit is equal to the load of the schedule.
In particular, if the schedule has no idle time, it is optimal. By Theorem 2.1 the problem is
NP-hard already for this case even on a single machine.

4.1 A 1.39-approximation Algorithm

As in Section 3, we use in our algorithm aligned instances; however, instead of using two sched-
ules with periods 2 and 3 times a power of 2, the next algorithm uses one of k schedules with
periods q = k +1, k +2, . . . , 2k times a power of 2. For a large but constant k, the approxima-
tion ratio approaches 2 ln 2 ≈ 1.39. The jobs with large windows are rounded similarly to the
rounding in Section 3.1.

The idea of using more than two schedules as in Section 3.1 faces several difficulties. First,
we cannot use the same argument as in Theorem 3.2, case (b) in the proof. When we have
more rounded instances and only one of them has a full load of big jobs, the obtained ratio is
not sufficiently good. This is the reason why we can analyze the algorithm in this section only
for jobs with unit profit.

Another obstacle is that we need to handle the jobs with windows smaller than k. These
jobs are handled separately. Given a constant q and a set of jobs with windows at most q,
we find an optimal schedule with period q in polynomial time. If the number of machines is
constant, then the number of such schedules is constant and we can find an optimal one simply
by exhaustive search.

For arbitrary m, we can use, e.g., Lenstra’s polynomial algorithm for integer programming
in fixed dimension (see [14]), similarly to its other applications in scheduling. Since q is a
constant, we have a constant number of job types specified by their windows, and for each
type of jobs we have a constant number of patterns specifying in which time slots it runs. The
variables of the integer program correspond to the number of jobs of each type following each
pattern; the number of these variables is a constant exponential in q. The constraints specify
that (i) the number of scheduled jobs of each type equals to the number of such jobs in the
instance, and that (ii) the number of jobs scheduled in any given time unit is at most m.

Formally, we number the patterns by 1, . . . , Q, where Q ≤ 2q. Let Pi denote the set of slots
associated with pattern i, and ri = |Pi| is the profit of pattern i. Also, denote by Invalidj the
set of patterns which are invalid for type j (due to vacation constraints), and let xij denote
the number of jobs of type j that follow pattern i. Finally, nj is the number of jobs of type j,
1 ≤ j ≤ q. Then the integer program can be formulated as follows.

(IP ) max
∑

i ri
∑

j xij

s.t.
∑

i xij ≥ nj for j = 1, . . . , q
∑

j

∑

{i|`∈Pi} xij ≤ m for ` = 1, . . . , q

xij = 0 for all j, i ∈ Invalidj

xij ∈ {0, 1, . . . , nj } for all j, i /∈ Invalidj
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Feasible integral solutions then correspond to schedules in a straightforward way. Given
an instance, the integer program can be produced in linear time, and solved in time polyloga-
rithmic in n and m, with a multiplicative constant doubly exponential in q. This follows from
the fact that the time complexity of Lenstra’s algorithm is exponential in the dimension of the
program, but polynomial in the logarithms of the coefficients. In the above IP, the dimension
is O(2q) and the coefficients are bounded by max{n,m}.1

Algorithm BestAlign

Let ε > 0 be given.
Let K = d1/εe.
For all k ∈ {K, 4K, . . . , 4xK, . . . , 4KK} do

For all q = {k + 1, k + 2, . . . , 2k} do
Let J ′ be the set of jobs with windows at most k/4.
Let J ′′ be the set of jobs with windows larger than k.
Generate from J ′′ the aligned instance J ′′′ by rounding up the window of each
job to the next number of the form q2α, for some integer α ≥ 0.
Find the best schedule with period q for J ′.
Schedule J ′′′ in the remaining slots, using an optimal algorithm for
aligned instances.

Output the best schedule over all values of k and q.

Theorem 4.1 BestAlign is (2 ln 2 + O(ε))-approximation algorithm for the jobs with unit
processing times and unit profits. In other words, there exists an R-approximation algorithm
for any R > 2 ln 2 ≈ 1.39.

Proof: We first note that BestAlign can be implemented in polynomial time. Indeed,
by the above discussion, we can find in polynomial time an optimal schedule for J ′, since q
is a constant depending on ε. Also, we can schedule optimally the aligned instance J ′′, using
Theorem 3.1.

Let S∗ be an optimal schedule for a given instance. For the proof, fix a value of k among
those used in the algorithm, so that the contribution of the jobs with windows between k/4
and k to L(S∗) is at most ε · L(S∗). Since there are d1/εe + 1 choices of k, one of them has a
sufficiently small contribution. This defines the sets of jobs J ′ and J ′′. Let S′ and S′′ denote
the schedule S∗ restricted to J ′ and J ′′, respectively, i.e., all the other jobs are simply removed
from the schedule.

For any q, let Sq be the schedule generated by BestAlign for this choice of q and for k
fixed as above. If any of Sq has load m, it is optimal for J and the theorem follows. Thus,
for the remaining proof we can assume that Sq always schedules all the jobs in J ′′′ with their
maximal load, i.e., LSq(J ′′′) = L(J ′′′).

We prove that one of the schedules Sq has load at least 3/4 ·LS′
(J ′)+L(J ′′)/(2 ln 2+O(ε)).

1In fact, among the jobs with windows at most q, the algorithm schedules only those whose windows are at
most k/4.
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The theorem then follows since, by the choice of k, LS∗
(J) ≤ (1 + O(ε))(LS′

(J ′) + LS′′
(J ′′);

furthermore, LS′′
(J ′′) ≤ L(J ′′), and 2 ln 2 > 4/3.

The schedule generated by BestAlign for J ′ has load at least 3/4 of L(S ′): Indeed, if we
take in S′ a segment of length q − k/4 with the maximal load and append to it k/4 empty
slots, we get a schedule with period q and load at least 3/4 of L(S ′). The optimal schedule for
J ′ with period q chosen by BestAlign has at least the same load.

Now we complete the proof of the theorem by showing that for some distribution over the
schedules Sq, Exp[LSq (J ′′′)] ≥ L(J ′′)/(2 ln 2 + O(ε)). Define the probability distribution so
that the probability of choosing Sq is πq = X/(q − 1), where X is chosen so that the sum of
the probabilities is 1, i.e.,

(

1

k
+ . . . +

1

2k − 1

)

X = 1. (3)

We proceed with the proof job by job, as in Theorem 3.2. Since Sq schedules all the jobs
with maximal rate, it is sufficient to prove for each job j that its expected load in J ′′′ (i.e., after
rounding) is at least `(j)/(2 ln 2+O(ε)). Assume that the integers α ≥ 0 and t ∈ {k, . . . , 2k−1}
satisfy t2α < aj ≤ (t+1)2α (for each j, there exist unique values of t and α). Then the average
load of j in J ′′′ is

t
∑

q=k+1

πq ·
1

q2α+1
+

2k
∑

q=t+1

πq ·
1

q2α
= t





t
∑

q=k+1

πq ·
1

2q
+

2k
∑

q=t+1

πq ·
1

q





1

t2α

≥ t





t
∑

q=k+1

πq ·
1

2q
+

2k
∑

q=t+1

πq ·
1

q



 `(j).

It remains to bound the coefficient on the right-hand side. By the definition of πq, we have

πq

q
=

X

(q − 1)q
=

(

1

q − 1
−

1

q

)

X. (4)

Using (4) and telescoping the sums we have

t





t
∑

q=k+1

πq ·
1

2q
+

2k
∑

q=t+1

πq ·
1

q



 = tX

(

1

2k
−

1

2t
+

1

t
−

1

2k

)

=
X

2
.

Using (3), we have

2

X
= 2

(

1

k
+ . . . +

1

2k − 1

)

≤ 2

∫ 2k

k

dx

x
+

2

k
= 2(ln(2k) − ln k) +

2

k
≤ 2 ln 2 + O(ε).

This completes the proof of the theorem.

By a similar example as for SimpleAlign, we can show that our analysis of BestAlign

is tight.
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4.2 Instances with Large Load

In the case where pj = bj = 1, the goal is to maximize the utilization of the machines. A simple
observation is that the best one can expect to achieve is a schedule in which the machines are
busy all the time. In this section we focus on two cases where such a schedule can be generated.

Theorem 3.4 shows that if L(J) ≥ 5m/3, then SimpleAlign produces a schedule with
load m. The next theorem gives a (generally more restrictive) condition under which any
greedy algorithm is optimal for scheduling jobs with unit lengths and unit profits. In the
resulting schedule, we get full utilization of all machines. In other words, no machine is ever
idle, regardless of the jobs selected to be scheduled at any time slot.

Theorem 4.2 Suppose that n = km+ r for some r < m (i.e., k = bn/mc and r = n mod m).
If L(J) > mHk − 1 + (r + 1)/(k + 1) then any algorithm with no intended idle times achieves
the optimal profit. In particular, for m = 1, the condition is L(J) > Hn+1 − 1.

Proof: We show that if a machine is idle, L(J) must be small. Assume that some machine
is idle for the first time at t. Thus, none of the n jobs is available, meaning that all jobs are
either processed on the other machines or on vacation. Order the jobs by the last execution
up to time t, including possible executions on the other m − 1 machines at time t. The last
m−1 jobs in this order are possibly executed at time t, we have no bound on their vacation, so
each can contribute as much as 1 to L(J). The previous m jobs in this order are scheduled no
later than at time t − 1, they are on vacation at time t, thus they have aj ≥ 2 and contribute
at most 1/2 each to L(J). Similarly, the previous m jobs are scheduled no later than at time
t − 2 and contribute at most 1/3 each to L(J), and so on. The last r + 1 jobs contribute at
most 1/(k + 1) each. Thus, the total load of the input is

L(J) ≤ m − 1 + m

(

1

2
+

1

3
+ . . . +

1

k

)

+
r + 1

k + 1
= mHk − 1 +

r + 1

k + 1
.

Therefore, L(J) > mHk − 1 + (r + 1)/(k + 1) implies that there is no idle time.

5 A Greedy Algorithm for Preemptive Scheduling

We describe below a simple greedy algorithm which improves upon the algorithm in Section 3.

This algorithm works also for arbitrary-length jobs in the following preemptive model. A
job may be preempted at any time and the execution of a preempted job can be resumed at
any time; the vacation-constraint refers only to the gaps between different executions of a job.
Thus the job cannot be scheduled during aj − pj time steps following its completion. Note
that this corresponds to the motivation of surveillance camera scheduling.

We can also consider an alternative preemptive model where the restriction is weaker,
namely, any two times when a job j starts differ by at least aj. The greedy algorithm and our
analysis are valid also in this model.
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Algorithm Greedy

At any time t, schedule for one time unit the m densest available jobs. (Recall that
m is the number of machines.)

It is easy to see that Greedy always generates a periodic schedule, as the possible number
of different states is finite.

Theorem 5.1 Greedy is an e/(e − 1)-approximation algorithm.

Proof: Sort the jobs in non-decreasing order of the ratio bj/pj . Using this order renumber
the jobs such that J1 is the lightest and Jn is the densest. Let S be the schedule of Greedy,
then we define LS(J>j) = LS(J≥j+1). We use in the proof the next two Claims.

Claim 5.2 For any job j,
`S(j)

`(j)
≥ 1 −

LS(J>j)

m
.

Proof: If the distance between two executions of j in S is aj + d, then dense jobs must
occupy d out of aj +d time slots; note that this holds in both models of preemptive scheduling.
Considering the average of all executions of j, we obtain LS(J>j)/m ≥ d/(aj + d). Now, we
have that `S(j)/`(j) = aj/(aj + d) = 1 − d/(aj + d). This completes the proof.

Claim 5.3 For any job j,
LS(J≥j)

m
≥ 1 − e−L(J≥j)/m.

Proof: We prove the claim using backward induction on j. Specifically, we show that if the
claim holds for J>j , then it also holds for J≥j .

For the base case we take j = n (i.e., the densest job), then J>j is empty and the claim
trivially holds.

Now, assume that the claim holds for J>j , and let x = L(J>j)/m, y = LS(J>j)/m and
z = `(j)/m. By the induction hypothesis and Claim 5.2, we have

LS(J≥j)

m
=

LS(J>j)

m
+

`S(j)

m

≥ y + z(1 − y) = y(1 − z) + z

≥ (1 − e−x)(1 − z) + z = 1 − e−x(1 − z)

≥ 1 − e−xe−z = 1 − e−L(J≥j)/m.

The third inequality follows from the fact that e−z ≥ 1 − z for all z ≥ 0, and the last
equality holds since L(J≥j)/m = x + z.

To complete the proof of the theorem, let x = L(J≥j)/m. If x ≥ 1, then we have LS(J)/m ≥
1 − e−1, from Claim 5.3. We are done, since the optimum (i.e., the load in S∗) is at most m.
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Otherwise, 1 − e−x ≥ (1 − e−1)x for 0 ≤ x ≤ 1, as the left-hand side is a concave function
right-hand side is linear and at x = 0 and x = 1 equality holds. Thus, from Claim 5.3, we
have, LS(J≥j) ≥ (1 − e−1)L(J≥j) ≥ (1 − e−1)LS∗

(J≥j), and we are done as well.

Finally, using Lemma 2.3, the ratio is at most 1/(1 − e−1) = e/(e − 1).

We now show that our analysis of Greedy is tight: In fact, e/(e − 1) ≈ 1.58 is a lower
bound for Greedy already for unit-length jobs. Consider the following example. Let a be an
integer and let A = {a + 1, a + 2, . . . , beac}. We have

∑

i∈A 1/i = ln beac − ln a + O((ea)−2) ≤
ln e+O((ea)−2). For a sufficiently large, this sum is arbitrarily close to 1. Let m = LCM{a+
1, a + 2, . . . , beac}. That is, each of the numbers a + 1, a + 2, . . . , ea divides m. The instance
consists of m machines, and m jobs having window aj = i for each i = a + 1, a + 2, . . . , beac.
The profits are all almost equal to 1, with a slight preference to jobs having long vacation.

The Greedy schedule: In the first slot, the most profitable jobs are those having vacation
beac, so these m jobs are scheduled first on each of the m machines. Next, Greedy schedules
on all m machines the jobs whose vacation is beac − 1, and so on. The resulting schedule
has period beac repeating on each machine [beac , beac − 1, ..., (a + 1), ∗, . . . , ∗], where stars
denote a consecutive idle slots. The average profit per slot on each of the machines is therefore
arbitrarily close to (ea − a)/(ea) = (e − 1)/e.

An optimal schedule: For each i, m/i machines schedule with no idle time all the jobs
having the window i. Since

∑

i∈A 1/i ≈ 1, there are enough jobs to ‘saturate’ this way all the
machines with no idle times. Therefore the average profit per slot is arbitrarily close to 1 and
the approximation ratio tends to e/(e − 1).

6 Discussion and Open Problems

We introduced a variant of the classic periodic scheduling problem in which, once the processing
of a job j is completed, it goes on vacation and returns after aj − pj time units, ready to be
processed again. We developed algorithms that yield constant factor approximations where the
objective is to maximize the total profit of the schedule. Several interesting questions remain
open.

• Are there subclasses of instances on which the problem admits polynomial time approx-
imation schemes?

• We expect the Greedy algorithm to perform well in practice. It would be interesting to
analyze (via simulation) its average-case performance on randomly generated instances,
and compare these results to the average-case performance of BestAlign.

• Our results for arbitrary length jobs apply only to preemptive scheduling. An interesting
avenue for further research is to develop approximation algorithms for non-preemptive
scheduling of the jobs.2

2Note that, as shown in Section 2.3, the problem can be solved optimally by the (exponential time) buffer
scheme.
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• Consider the generalization of our problem where each job j has several possible va-
cations; whenever j is completed it specifies the duration of its next vacation. This
problem has application, e.g., in scheduling commercials on TV. Depending on the slot
in the evening program to which a commercial is assigned, the system can schedule it
again at some later time. Thus, the vacation of each job can take several possible values.
The goal is to schedule the jobs subject to the varying vacation constraints so as to
maximize the total profit.

• Finally, we measure the quality of a solution by the profit gained from the scheduled
jobs. In many scenarios, there is a cost associated with an extended vacation of a job.
Formally, each job j has to be processed exactly aj − pj time units after completing its
previous execution. A cost cj is incurred for any time unit in which job j is waiting to be
processed (once j has returned from vacation). The objective is to find a schedule which
minimizes the total cost.

Acknowledgments. We thank Gerhard Woeginger for stimulating discussions on this paper.
Also, we thank an anonymous referee for many insightful comments and suggestions.
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