
Better Algorithms for Online Bin Stretching

Martin Böhm1,?, Jǐŕı Sgall1,?, Rob van Stee2 and Pavel Veselý1,?

1 Computer Science Institute of Charles University, Prague, Czech Republic.
{bohm,sgall,vesely}@iuuk.mff.cuni.cz.

2 Department of Computer Science, University of Leicester, Leicester, UK.
rob.vanstee@leicester.ac.uk.

Abstract. Online Bin Stretching is a semi-online variant of bin
packing in which the algorithm has to use the same number of bins
as the optimal packing, but is allowed to slightly overpack the bins. The
goal is to minimize the amount of overpacking, i.e., the maximum size
packed into any bin.
We give an algorithm for Online Bin Stretching with a stretching
factor of 1.5 for any number of bins. We also show a specialized algorithm
for three bins with a stretching factor of 11/8 = 1.375.

1 Introduction

The most famous algorithmic problem dealing with online assignment is arguably
Online Bin Packing. In this problem, known since the 1970s, items of size
between 0 and 1 arrive in a sequence and the goal is to pack these items into
the least number of unit-sized bins, packing each item as soon as it arrives.

Online Bin Stretching, which has been introduced by Azar and Regev in
1998 [2], deals with a similar online scenario. Again, items of size between 0 and
1 arrive in a sequence, and the algorithm needs to pack them as soon as each
item arrives, but it has two advantages: (i) The packing algorithm knows m, the
number of bins that an optimal offline algorithm would use, and must also use
only at most m bins, and (ii) the packing algorithm can use bins of capacity R
for some R ≥ 1. The goal is to minimize the stretching factor R.

While formulated as a bin packing variant, Online Bin Stretching can
also be thought of as a semi-online scheduling problem, in which we schedule
jobs in an online manner on exactly m machines, before any execution starts.
We have a guarantee that the optimum offline algorithm could schedule all jobs
with makespan 1. Our task is to present an online algorithm with makespan of
the schedule being at most R.

History. Online Bin Stretching has been proposed by Azar and Regev [2].
The original lower bound of 4/3 for three bins has appeared even before that,
in [10], for two bins together with a matching algorithm. Azar and Regev ex-
tended the same lower bound to any number of bins and gave an online algorithm
with a stretching factor 1.625.

? Supported by the project 14-10003S of GA ČR and by the GAUK project 548214.

The problem has been revisited recently, with both lower bound improve-
ments and new efficient algorithms. On the algorithmic side, Kellerer and Ko-
tov [9] have achieved a stretching factor 11/7 ≈ 1.57 and Gabay et al. [7] have
achieved 26/17 ≈ 1.53. In the case with only three bins, the previously best
algorithm was due to Azar and Regev [2], with a stretching factor of 1.4.

On the lower bound side, the lower bound 4/3 of [2] was surpassed only for
the case of three bins by Gabay et al. [6], who show a lower bound of 19/14,
using an extensive computer search.

Our contributions. In Section 2, we present a new algorithm for Online Bin
Stretching with a stretching factor of 1.5. We build on the techniques of [9,7]
who designed two-phase algorithms where the first phase tries to fill some bins
close to R − 1 and achieve a fixed ratio between these bins and empty bins,
while the second phase uses the bins in blocks of fixed size and analyzes each
block separately. This technique, with some case analysis, seemed to be able to
lead to improved results approaching 1.5. To actually reach 1.5, we needed to
significantly improve the analysis using amortization techniques (represented by
a weight function in our presentation) to amortize among blocks and bins of
different types.

In Section 3, we focus on the case of three bins. For this case, there is a
recent lower bound of 19/14 ≈ 1.357 [6]. We present an algorithm for three bins
of capacity 11/8 = 1.375. This is the first improvement of the stretching factor
1.4 of Azar and Regev [2] for three bins and significantly decreases the remaining
gap.

Related work. The NP-hard problem Bin Packing was originally proposed by
Ullman [11] and Johnson [8] in the 1970s. Since then it has seen major interest
and progress, see the survey of Coffman et al. [4] for many results on classical
Bin Packing and its variants. While our problem can be seen as a variant of Bin
Packing, note that the algorithms cannot open more bins than the optimum
and thus general results for Bin Packing do not translate to our setting.

As noted, Online Bin Stretching can be formulated as the online schedul-
ing on m identical machines with known optimal makespan. Such algorithms
were studied and are important in designing constant-competitive algorithms
without the additional knowledge, e.g., for scheduling in the more general model
of uniformly related machines [1,3,5].

Definitions and notation. Our main problem, Online Bin Stretching, can
be described as follows:
Input: an integer m and a sequence of items I = i1, i2, . . . given online one
by one. Each item has a size s(i) ∈ [0, 1] and must be packed immediately and
irrevocably.
Parameter: The stretching factor R, a limit of the capacity of all bins.
Output: Partitioning (packing) of I into bins B1, . . . , Bm so that

∑
i∈Bj

s(i) ≤
R for all j = 1, . . . ,m.
Guarantee: there exists a packing of all items in I into m bins of capacity 1.
Goal: Design an online algorithm with the stretching factor R as small as pos-
sible which packs all input sequences satisfying the guarantee.

For a bin B, we define the size of the bin s(B) =
∑

i∈B s(i). Unlike s(i), s(B)
can change during the course of the algorithm, as we pack more and more items
into the bin. To easily differentiate between items, bins and lists of bins, we use
lowercase letters for items (i, b, x), uppercase letters for bins (A, B, X), and
calligraphic letters for lists of bins (A, C, L).

In both sections of our paper, we rescale the item sizes and bin capacities for
simplicity. Therefore, in our setting, each item has an associated size s(i) ∈ [0, k],
where k ∈ N is also the capacity of the bins which the optimal offline algorithm
uses. The online algorithm for Online Bin Stretching uses bins of capacity
t ∈ N, t ≥ k. The resulting stretching factor is thus t/k.

We omit some proofs due to space restrictions. Full version available at
http://arxiv.org/abs/1404.5569.

2 Upper bound for an arbitrary number of bins

We rescale the bin sizes so that the optimal bins have size 12 and the bins of the
algorithm have size 18.

We follow the general two-phase scheme of recent results [9,7] which we sketch
now. In the first phase of the algorithm we try to fill the bins so that their size
is at most 6, as this leaves space for an arbitrary item in each bin. Of course,
if items larger than 6 arrive, we need to pack them differently, namely in bins
of size at least 12, whenever possible. We stop the first phase when the number
of non-empty bins of size at most 6 is three times the number of empty bins.
In the second phase, we work in blocks of three non-empty bins and one empty.
The goal is to show that we are able to fill the bins so that the average size is
at least 12, which guarantees we are able to pack the total size of 12m which is
the upper bound on the size of all items.

The limitation of the previous results using this scheme was that the volume
achieved in a typical block of four bins is slightly less than four times the size
of the optimal bin, which then leads to bounds strictly above 3/2. This is also
the case in our algorithm: A typical block may contain in three bins items from
the first phase of size just above 4 plus one item of size 7 from the second phase,
while the last bin contains two items of size 7 from the second phase—a total
of 47 instead of desired 4 · 12. However, we notice that such a block contains
five items of size 7 which the optimum cannot fit into four bins. To take an
advantage of this, we cannot analyze each block separately. Instead, we need to
show that a bin with no item of size more than 6 typically has size at least 13
and amortize among the blocks of different types. Technically this is done using
a weight function w that takes into account both the total size of items and the
number of items larger than 6. This is the main new technical idea of our proof.

There are other complications. We need to guarantee that a typical bin of size
at most 6 has size at least 4 after the first phase. However, this is impossible to
guarantee if the items packed there have size between 3 and 4. Larger items are
fine, as one per bin is sufficient, and the smaller ones are fine as well as we can
always fit at least two of them and this guarantees that we have only two bins

http://arxiv.org/abs/1404.5569

filled below 4. This motivates our classification of items: Only the regular items
of size in (0, 3]∪(4, 6] are packed in the bins filled up to size 6. The medium items
of size in (3, 4] are packed in their own bins (four or five per bin). Similarly, large
items of size in (6, 9] are packed in pairs in their own bins. Finally, the huge items
of size larger than 9 are handled similarly as in the previous papers: If possible,
they are packed with the regular items, otherwise each in their own bin.

The introduction of medium size items in turn implies that we need to revisit
the analysis of the first phase and also of the case when the first phase ends with
no empty bin. These parts of the proof are similar to the previous works, but
due to the new item type we need to carefully revisit it; it is now convenient
to introduce another weight function v that counts the items according to their
type. The analysis of the second phase when empty bins are present is more
complicated, as we need to take care of various degenerate cases, and it is also
here where the novel amortization is used.

Lower bound. We note that this two-phase approach cannot give a better
stretching factor than 1.5. Consider the following instance. Send two items of
size 6 which are in the first phase packed separately into two bins. Then send
m−1 items of size 12 and one of them must be put into a bin with an item of size
6, i.e., one bin receives items of size 18, while all the items can be packed into
m bins of size 12. This instance and its modifications with more items of size 6
or slightly smaller items at the beginning thus show that decreasing the upper
bound below 1.5 would need a significantly different approach, as we would be
forced to pack these items in pairs. This also shows that the analysis of our
algorithm is tight.

Now we are ready to proceed with the formal statement of the algorithm and
proof.

Theorem 1. There exists an algorithm for Online Bin Stretching with a
stretching factor of 1.5 for an arbitrary number of bins.

We take an instance with an optimal packing into m bins of size 12 and,
assuming that our algorithm fails, we derive a contradiction. One way to get a
contradiction is to show that the size of all items is larger than 12m. We also use
two other bounds in the spirit of weight functions: weight w(i) and value v(i).
The weight w(i) is a slightly modified size to account for items of size larger than
6. The value v(i) only counts the number of items with relatively large sizes. For
our calculations, it is convenient to normalize the functions so that they are at
most 0 for optimal bins (see Lemma 1).

We classify the items and define their value v(i) as follows.

Type huge large medium regular

s(i) (9, 12] (6, 9] (3, 4] (0, 3] ∪ (4, 6]
v(i) 3 2 1 0

Definition 1. For a set of items A, we define the value v(A) = (
∑

i∈A v(i))−3
and we define weight w(A) as follows. Let k(A) be the number of large and huge

G

6

12

G G G ML T R R R R R R R RE E

Fig. 1. A typical state of the algorithm after the first phase. The bin labels correspond
to the bin types of the first phase. The non-complete bins (other than G) are ordered
as in the list L at the beginning of the second phase with regular bins.

items in A. Then w(A) = s(A) + k(A) − 13. For a set of bins A we define
v(A) =

∑
A∈A v(A), w(A) =

∑
A∈A w(A) and k(A) =

∑
A∈A k(A).

Lemma 1. For any packing of a valid instance into m bins A of any size, we
have w(A) ≤ 0 and v(A) ≤ 0. ut

First phase. During the first phase, our algorithm maintains the invariant that
only bins of the following types exist. See Figure 1 for an illustration of the types
of the bins.
E Empty bins: bins that have no item.
G Complete bins: all bins A that have w(A) ≥ 0 and s(A) ≥ 12;
H Huge-item bins: all bins A that contain a huge item (plus possibly some

other items) and have s(A) < 12;
L One large-item bin: a bin containing only a single large item;

M One medium-item bin: a bin A with s(A) ≤ 13 and only medium items;
T One tiny bin: a bin with s(A) ≤ 3;
R Regular bins: all other bins with s(A) ∈ (3, 6];

First-phase algorithm:

Let e be the number of empty bins and r the number of regular bins. If
r ≥ 3e, stop the first phase.

Assign the current item i according to its item type, using the first possible
option in the particular column. The first letter in a cell indicates the re-
quired type of the bin before the assignment and the second column denotes
the type of the bin after the assignment. If there are two types listed, the
new bin type depends on the new size and weight of the bin.
Note: As an additional rule when packing regular items, the item is packed
in a regular or tiny bin only if the total size packed into this bin does not
exceed 6 afterwards.

Item type huge large medium regular

Option 1 R → G L → G M→ G/M H → G/H
Option 2 T → H E → L E → M R → R
Option 3 E → H T → T/R
Option 4 E → T/R

First we observe that the algorithm described in the box above is properly
defined. For every type of item, packing it into an empty bin is an option, and
the stopping criterion guarantees that the algorithm stops when no empty bin
is available. We now state properties of the algorithm; all are simple invariants
that follow from the description of the algorithm.

Lemma 2. At any time during the first phase the following holds:

(i) All bins used by the algorithm are of type E, G, H, L, M, T, or R.
(ii) All complete bins B have s(B) ≥ 12, v(B) ≥ 0, and w(B) ≥ 0.

(iii) If there is a huge-item bin, there is no regular and no tiny bin.
(iv) There is at most one large-item bin and at most one medium-item bin.
(v) There is at most one tiny bin T . If T exists, then for any regular bin,

s(T) + s(R) > 6. There is at most one regular bin R with s(R) ≤ 4.
(vi) At the end of the first phase 3e ≤ r ≤ 3e+ 3. ut

If the algorithm packs all items in the first phase, it stops. Otherwise ac-
cording to Lemma 2(iii) we split the algorithm in two very different branches.
If there is no regular bin, follow the second phase with huge-item bins below. If
there is at least one regular bin, follow the second phase with regular bins.

Let G be the set of all complete bins; we do not use these bins in the second
phase. In addition to G and either huge-item bins, or the regular and empty bins,
there may exist at most three special bins denoted and ordered as follows: the
large-item bin L, the medium item bin M , and the tiny bin T .

Second phase with huge-item bins. Let the list of bins L contain first all
the huge-item bins, followed by the special bins L, M , in this order, if they exist.
There are no other non-empty bins by Lemma 2 and no empty bins because we
have 3e ≤ r = 0. We use First Fit on L, without allowing new bins to be opened.
Suppose that we have an instance that has a packing into bins of capacity 12
and on which our algorithm fails. We may assume that the algorithm fails on
the last item f . By considering the total volume, there always exists a bin with
size at most 12. Thus s(f) > 6 and v(f) ≥ 2.

If during the second phase an item n with s(n) ≤ 6 is packed into the last bin
in L, we know that all other bins have size more than 12, thus all the remaining
items fit into the last bin. Otherwise we consider v(L). Any bin B ∈ G has
v(B) ≥ 0 by Lemma 2(ii) and each huge-item bin gets nonnegative value too.
Also v(L) ≥ −1 if L exists. This shows that M must exist, since otherwise
v(L) + v(f) ≥ −1 + 2 ≥ 1, a contradiction.

M is the last bin of L and thus in this last case M contains only medium
items from the first phase and possibly large and/or huge items from the second
phase. We claim that v(M) + v(f) ≥ 2 using the fact that f does not fit into M
and M contains no item a with v(a) = 0: If f is huge we have s(M) > 6, thus M
must contain either two medium items or one medium item and one large or huge
item and v(M) ≥ −1. If f is large, we have s(M) > 9; thus M contains either
three medium items or one medium and one large or huge item and v(M) ≥ 0.
Thus we always have v(L) ≥ −1 + v(M) + v(f) ≥ 1, a contradiction.

Second phase with regular bins. Let E resp. R be the set of empty resp.
regular bins at the beginning of the second phase, and let e = |E|. Let λ ∈
{0, 1, 2, 3} be such that |R| = 3e+ λ; Lemma 4(vi) implies that it exists.

We order the bins that are not complete into a list L as follows. We group
the bins in E ∪ R into blocks of typically one empty and three regular bins as
follows. Denote the empty bins E1, E2, . . . , Ee. The regular bins are denoted by
Ri,j , i = 1, ..., e+1, j = 1, 2, 3. The ith block Bi consists of bins Ri,1, Ri,2, Ri,3, Ei

in this order. There are two exceptions: The last block Be+1 has no empty bin,
only exactly 3 regular bins. The first block contains only λ regular bins instead
of 3 and an empty bin. As the first regular bin we choose the one with size less
than 4, if there is such a bin. By Lemma 2(v) there exists at most one such bin
and all the remaining Ri,j have size at least 4. Denote the first regular bin by R̄
if R 6= ∅; note that R̄ is either the first bin in B1 or the first bin in B2 if λ = 0.

The list of bins L we use in the second phase contains first the special bins
and then all the blocks B1, . . . , Be+1. Thus the list L is (some or all of the first
six bins may not exist):

L,M, T,R1,1, R1,2, R1,3, E1, R2,1, R2,2, R2,3, E2, . . . , Ee, Re+1,1, Re+1,2, Re+1,3.

Whenever we refer to the ordering of the bins, we mean the ordering in L. See
Figure 1 for an illustration.

We use First Fit on the reversed list L for huge items (that is, we pack each
huge item to the last bin in L where it fits) and we use First Fit on L for all
other items.

Suppose that we have an instance that has a packing into bins of capacity
12 and on which our algorithm fails. We may assume that the algorithm fails
on the last item. Let us denote this item by f . Call the items that arrived in
the second phase new (including f), the items from the first phase are old. See
Figure 2 for an illustration of a typical final situation. Our overall strategy is to
obtain a contradiction by showing that

w(L) + w(f) > 0 .

In some cases, we instead argue that v(L) + v(f) > 0 or s(L) + s(f) > 12|L|.
Any of these is sufficient for a contradiction, as all bins in G have both volume
and weight nonnegative and size larger than 12. Note also that s(f) > 6 since
by considering the total volume, there always exists a bin with size at most 12.

Let H denote all the bins from L with a huge item, and let h = |H| mod 4.
First we show that the average size of bins in H is large and exclude some
degenerate cases.

Lemma 3. Let ρ be the total size of old items in R̄ if R̄ ∈ H, otherwise set
ρ = 4.

(i) The bins H are a final segment of the list and H (E ∪ R.
(ii) We have s(H) ≥ 12|H|+ h+ ρ− 4.
(iii) If H does not include R̄, then s(H) ≥ 12|H|+ h ≥ 12|H|.
(iv) If H includes R̄, then s(H) ≥ 12|H|+ h− 1 ≥ 12|H| − 1. ut

FF → ← Huge items

F
F

C
C

D

18

12

6

                                    

L MT

Fig. 2. A typical state of the algorithm after the second phase with regular bins. The
gray (hatched) areas denote the old items (i.e., packed in the first phase), the red
(solid) regions and rectangles denote the new items (i.e., packed in the second phase).
The bins that are complete at the end of the first phase are not shown. The item f
on which the algorithm fails is shown as packed into the final bin F and exceeding the
capacity of the bin.

Let F , the final bin be the last bin in L before H, or the last bin if H = ∅;
by Lemma 3 we have F ∈ E ∪ R. Now modify the packing so that f is put into
F , f is also considered a new item. Thus s(F) > 18 and f as well as all the new
items packed in F or a bin before F satisfy the property that they do not fit
into any previous bin. Let C, the critical bin, be the first bin in L of size at most
12; such a bin exists, as otherwise the total size is more than 12m.

We start by some easy observations. Only items of size at most 9 are packed
in bins before F , in F itself only the item f can be larger. All the new items
in the bins after C are large; f can be also huge. Each bin, possibly with the
exception of L and M , contains a new item, as it enters the phase with size
at most 6, and the algorithm failed. Each bin in E before F contains two new
items. The bin F always has two new items, one that did fit into it and f . More
observations are given in the next two lemmata.

Lemma 4. (i) Let B be any bin before F . Then s(B) > 9.
(ii) Let B,B′, B′′ be any three bins in this order before or equal to F and let

B′′ contain two new items. Then s(B) + s(B′) + s(B′′) > 36 + o, where o
is the size of old items in B′′.

(iii) Let B be arbitrary and B′ ∈ R after both B and C.
If B′ 6= R̄ then s(B) + s(B′) > 22, in particular s(B) > 11 or s(B′) > 11.
If B′ = R̄ then s(B) + s(B′) > 21. ut

Lemma 5. The critical bin C is before F , there are at least two bins between C
and F and C is not in the same block as F . ut

Now we partition L into several parts, see Figure 2 for an illustration of
these parts. Let F = Bi ∪ H, where F ∈ Bi. Let D be the set of all bins after
C and before F . Let C be the set of all bins before and including C. Lemma 5

shows that the parts are non-overlapping. We analyze the weight of the parts
separately, essentially block by block. The proof is relatively straightforward if C
is not special (and thus also F 6∈ B1), which is the most important case driving
our choices for w. A typical block has nonnegative weight, we gain more weight
in the block of F which exactly compensates the loss of weight in C, which occurs
mainly in C itself.

Lemma 6. If F is not in the first block then w(F) > 5, else w(F) > 4. ut

Lemma 7. If C ∈ R then w(C) ≥ −6. If C ∈ E then w(C) ≥ −5. If C is a
special bin then w(C) ≥ −4. ut

Lemma 8. (i) For every block Bi ⊆ D we have w(Bi) ≥ 0.
(ii) If there is no special bin in D, then w(D) ≥ 0. If also C ∈ R then w(D) ≥ 1.

We are now ready to derive the final contradiction. If D does not contain a special
bin, we add the appropriate bounds from Lemmata 7, 8 and 6. If C ∈ R then F is
not in the first block and w(L) = w(C)+w(D)+w(F) > −6+1+5 = 0. If C ∈ E
then F is not in the first block and w(L) = w(C)+w(D)+w(F) > −5+0+5 = 0.
If C is the last special bin then w(L) = w(C) +w(D) +w(F) > −4 + 0 + 4 = 0.
In all subcases w(L) > 0, a contradiction.

If D does contain a special bin we need to analyze several cases depending
on the number of special bins and regular bins in B1.

In all of the cases we can derive a contradiction, which implies that our
algorithm cannot fail. This concludes the proof of Theorem 1. ut

3 Bin stretching for three bins

We scale the input sizes by 16. The stretched bins in our setting therefore have
capacity 22 and the optimal offline algorithm can pack all items into three bins
of capacity 16 each. The three bins of our setting are named A, B, and C. We
prove the following theorem.

Theorem 2. There exists an algorithm that solves Online Bin Stretching
for three bins with stretching factor 1 + 3/8 = 1.375.

A natural idea is to try to pack first all items in a single bin, as long as
possible. In general, this is the strategy that we follow. However, somewhat
surprisingly, it turns out that from the very beginning we need to put items in
two bins even if the items as well as their total size are relatively small.

It is clear that we have to be very cautious about exceeding a load of 6. For
instance, if we put 7 items of size 1 in bin A, and 7 such items in B, then if two
items of size 16 arrive, the algorithm will have a load of at least 23 in some bin.
Similarly, we cannot assign too much to a single bin: putting 20 items of size 0.5
all in bin A gives a load of 22.5 somewhere if three items of size 12.5 arrive next.

On the other hand, it is useful to keep one bin empty for some time; many
problematic instances end with three large items such that one of them has to be

placed in a bin that already has high load. Keeping one bin free ensures that such
items must have size more than 11 (on average), which limits the adversary’s
options, since all items must still fit into bins of size 16.

Deciding when exactly to start using the third bin and when to cross the
threshold of 6 for the first time was the biggest challenge in designing this algo-
rithm: both of these events should preferably be postponed as long as possible,
but obviously they come into conflict at some point.

Good situations. Before stating the algorithm itself, we list several good situa-
tions (GS). These are configurations of the three bins which allow us to complete
the packing regardless of the following input. Obviously the identities of the bins
are not important here; for instance, in the first good situation, all that we need
is that any two bins together have items of size at least 26. We have used names
only for clarity of presentation and of the proofs.

Good Situation 1. Given a partial packing such that s(A) + s(B) ≥ 26 and
s(C) is arbitrary, there exists an online algorithm that packs all remaining items
into three bins of capacity 22.

Proof. Since the optimum can pack into three bins of size 16, the total size of
items in the instance is at most 3·16 = 48. If two bins have size s(A)+s(B) ≥ 26,
all the remaining items (including the ones already placed on C) have size at
most 22. Thus we can pack them all into bin C. ut

Good Situation 2. Given a partial packing such that s(A) ∈ [4, 6] and s(B)
and s(C) are arbitrary, there exists an online algorithm that packs all remaining
items into three bins of capacity 22.

Proof. Let A be the bin with size between 4 and 6 and B be one of the other bins
(choose arbitrarily). Put all the items greedily into B. When an item does not
fit, put it into A, where it fits, as originally s(A) is at most 6. Now the size of all
items in B plus the last item is at least 22. In addition, A has items of size at least
4 before the last item by the assumption. Together we have s(A) + s(B) ≥ 26,
allowing us to apply GS1. ut

Good Situation 3. Given a partial packing such that s(A) ∈ [15, 22] and either
(i) s(C) ≤ 6 and s(B) is arbitrary or (ii) s(B)+s(C) ≥ 22, there exists an online
algorithm that packs all remaining items into three bins of capacity 22.

Proof. If s(B) + s(C) ≥ 22, then max(s(B), s(C)) ≥ 11, so we are in GS1 on
bins A and B or on bins A and C. Else, if s(C) ≤ 6, we pack arriving items into
B. If s(B) ≥ 11, we apply GS1 on bins A and B. Thus we can assume s(B) < 11
and we cannot continue packing into B any further. This implies that an item
i arrives such that s(i) > 11. As s(C) ≤ 6, we pack i into it and apply GS1 on
bins A and C. ut

Good Situation 4. Given a partial packing such that s(A)+s(B) ≥ 15+ 1
2s(C),

s(B) < 4, and s(C) < 4, there exists an online algorithm that packs all remaining
items into three bins of capacity 22. ut

Good Situation 5. Given a partial packing such that an item a with s(a) > 6
is packed into bin A, s(B) ∈ [3, 6], and C is empty, there exists an algorithm
that packs all remaining items into three bins of capacity 22. ut
Good Situation 6. If s(C) ≤ 6 ≤ s(B) and s(A) ≥ s(B) + 4 − s(C), there
exists an algorithm that packs all remaining items into 3 bins of capacity 22. ut
Good Situation 7. Suppose s(C) ≤ s(B) < 6 < s(A). If s(A) ≤ 9 + 1

2 (s(C) +
s(B)) and for some item x we have s(A)+x > 22, there exists an online algorithm
that packs all remaining items into three bins of capacity 22. ut

The algorithm. We now proceed to describe the bin packing algorithm itself.
Its analysis is omitted due to space restrictions. The algorithm will often use a
special variant of First Fit, described as follows:

Definition 2. Let L = (X|k, Y |l, . . .) be a list of bins X,Y, . . . where each bin
X has an associated integral capacity k satisfying s(X) ≤ k. GSFF(L) (Good
Situation First Fit) is an online algorithm for bin stretching that works as fol-
lows:

Algorithm GSFF(L): For each item i:
If it is possible to pack i into any bin (including bins not in L, and using
capacities of 22 for all bins) such that a good situation is reached, do so and
continue with the algorithm of the relevant good situation.
Otherwise, traverse the list L in order and pack i into the first bin X such
that X|k ∈ L and s(X) + s(i) ≤ k.

For example, GSFF(A|4, B|22) checks whether either (A∪{j}, B,C), (A,B∪
{j}, C) or (A,B,C ∪ {j}) is a partial packing of any good situation. If this is
not the case, the algorithm packs j into bin A provided that s(A) + s(j) ≤ 4. If
s(A) + s(j) > 4, the algorithm packs j into bin B with capacity 22. If j cannot
be placed into B, GSFF(A|4, B|22) reports failure and another online algorithm
must be applied.

In the first phase, we pack items into two bins so that either an item of size 6
arrives relatively early in the input sequence, or we can reach a good situation.

Algorithm First Phase:

(1) GSFF(A|4, B|4). Rename the bins so that s(A) ≥ s(B).
(2) Let the item on which Step (1) failed be j. If s(j) > 6 place j into A,

and go to the Second Phase.
(3) Place j into B and rename the bins so that s(A) > s(B) ≥ s(C) = 0.
(4) GSFF(B|4, A|q, C|4) where q ··= 9 + 1

2 (s(B) + s(C)). As soon as C
receives its first item, rename the bins B and C so that s(B) ≥ s(C)
and continue. Note that also the value of q may change between packing
of different items.

We start the algorithm Second Phase only after Step (2) of First Phase
fails when an item j of size s(j) > 6 arrives. We have not entered GS5 before
placing j on A, and so we have s(A \ {j}) ≤ 3.

Algorithm Second Phase:

(1) GSFF(A|q, B|4), where q ··= 6 + s(j).
(2) If the next item x fits into A, apply GSFF(A|22, B|22, C|22).
(3) Else: Place x into B. Let j′ be the smallest item of {j, x}.
(4) Reorder the bins A and B so that j′ ∈ A.
(5) GSFF(A|q, B|22), where q ··= 6 + s(j′).
(6) Place next item y into C. Let j′′ be the smallest item of {j′, y}.
(7) Reorder the bins A and C so that j′′ ∈ A.
(8) GSFF(A|q, B|22, C|22), where q ··= 6 + s(j′′).

Conclusions. With our algorithm for m = 3, the remaining gap is small. For
arbitrary m, we have seen at the beginning of Section 2 that a significantly new
approach would be needed for an algorithm with a better stretching factor than
1.5. Thus, after the previous incremental results, our algorithm is the final step
of this line of study. It is quite surprising that there are no lower bounds for
m > 3 larger than the easy bound of 4/3.

Acknowledgment. The authors thank Emese Bittner for useful discussions
during her visit to Charles University.

References

1. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing
with applications to machine scheduling and virtual circuit routing. J. ACM,
44:486–504, 1997.

2. Y. Azar and O. Regev. On-line bin-stretching. In Randomization and Approxima-
tion Techniques in Computer Science, pages 71–81. Springer, 1998.

3. P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related
machines. J. Algorithms, 35:108–121, 2000.

4. E. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin Packing
Approximation Algorithms: Survey and Classification, In P. M. Pardalos, D.-Z.
Du, and R. L. Graham, editors, Handbook of Combinatorial Optimization, pages
455–531. Springer New York, 2013.

5. T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling: Optimal
algorithms for all speeds. Algorithmica, 53:504–522, 2009.

6. M. Gabay, N. Brauner, V. Kotov. Computing lower bounds for semi-online op-
timization problems: Application to the bin stretching problem. HAL preprint
hal-00921663, 2013.

7. M. Gabay, V. Kotov, N. Brauner. Semi-online bin stretching with bunch tech-
niques. HAL preprint hal-00869858, 2013.

8. D. Johnson. Near-optimal Bin Packing Algorithms. Massachusetts Institute of
Technology, project MAC. Massachusetts Institute of Technology, 1973.

9. H. Kellerer and V. Kotov. An efficient algorithm for bin stretching. Operations
Research Letters, 41(4):343–346, 2013.

10. H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi on-line algorithms for
the partition problem. Oper. Res. Lett., 21:235–242, 1997.

11. J. Ullman. The Performance of a Memory Allocation Algorithm. Technical Report
100, 1971.

	Better Algorithms for Online Bin Stretching

