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1 Introduction

In this article we prove new lower bounds for online

makespan minimization for a small number of uniformly

related machines. The competitive ratio (as a function

of the number of machines) for this fundamental prob-

lem is upper bounded by a constant but there has been

little progress on determining its exact value, as well as

the values for a fixed m.

The instance of this problem consists of a sequence

of machines with possibly different speeds and a se-

quence of jobs specified by their processing times. A

schedule assigns each job to one of the machines; the

time needed to process a job is equal to its processing

time divided by the speed of the machine where it is

assigned. The objective is to minimize the makespan

(also called the length of the schedule, or the maximal

completion time). Usually a schedule also needs to spec-

ify the timing of each job (its starting and completion

times) so that the jobs on each machine do not overlap.

Due to the simplicity of the problem we consider, this

is not necessary and it is sufficient to specify the as-

signment to the machines, silently assuming that each

job is started as soon as all the previous jobs on its

machine are processed. Instead of calculating the com-

pletion times individually for each job, we can calculate

the completion time of each machine as the total pro-

cessing time of the jobs allocated to it divided by the

speed of the machine; the makespan is then the maxi-

mum of the completion times over all machines.

In the online version of the problem, jobs appear

online one-by-one. When a job appears, an online algo-

rithm has to make an irrevocable decision and assign

the job to a machine. This decision is permanent and

made without the knowledge of the future jobs; the al-

gorithm is not even aware of whether any future jobs

exist or not. An online algorithm is R-competitive if for

each instance it produces a schedule with makespan at

most R times the optimal makespan.

We prove lower bounds of 2.141391 for m = 4 and

2.314595 for m = 5. Our lower bound is based on

an instance where the processing times are a geomet-

ric sequence, similarly as in previous works (Berman

et al 2000; Epstein and Sgall 2000; Ebenlendr and Sgall

2012). The speeds are chosen so that any online algo-
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rithm can use only the two fastest machines, called the

active machines. The bound is then obtained by care-

fully analyzing the possible patterns of scheduling the

jobs on these machines.

Generalizing this to larger values of m, we use com-

puter search for elimination of possible patterns and

give instances with up to 5 active machines.

Our and previous bounds are summarized in Ta-

ble 1.

lower bounds algorithms

m previous new best known LS

2 φ ≈ 1.618 – – φ ≈ 1.618

3 2 – – 2

4 – 2.141391 – 2.2248

5 – 2.314595 – 2.4143

6 2.2880 2.347312 – 2.5812

7 – 2.439957 – < 2.7321

8 – 2.439957 – < 2.8709

9 2.4380 2.462775 – ≤ 3

10 – 2.483120 – < 3.1214

11 – 2.502672 – < 3.2361

∞ 2.5648 5.8284 Θ(logm)

Table 1 Previous and our bounds for online makespan min-

imization on uniformly related machines; LS stands for List

Scheduling.

Related work

It is known that for two and three machines, the tight

bounds are 1.618 and 2 respectively (see the next para-

graph). Two other lower bounds for a small number of

machines were 2.2880 for m = 6 and 2.4380 for m = 9

by Berman et al (2000). That paper is not interested in

the exact number of machines, as its focus is on the

overall bounds, and consequently their choice of the

speeds of machines is not optimal. Their lower bounds

can be modified using our Lemma 1 to work for m = 5

and m = 7, respectively; see an explanation at the end

of Section 2. For an arbitrary (large) number of ma-

chines, the current lower bound is 2.5648 (Ebenlendr

and Sgall 2012), the only improvement of the mentioned

lower bound of 2.4380 for m = 9.

Naturally, the lower bounds need to be compared to

the existing algorithms. For a small number of machines

the best currently known algorithm is the greedy List

Scheduling (LS). Here List Scheduling is defined so that

the next job is always scheduled so that it will finish as

early as possible. Its competitive ratio for m = 2 is

exactly φ ≈ 1.618, the golden ratio, and for m ≥ 3 it is

at most 1+
√

(m− 1)/2; this bound is tight for 3 ≤ m ≤

6 (Cho and Sahni 1980). Moreover, for m = 2, 3 it can

be checked easily that there is no better deterministic

algorithm. For m = 2 it is even possible to give the
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exact optimal ratio for any speed combination and it

is always achieved by greedy List Scheduling (Epstein

et al 2001). Already for three machines, it is not known

exactly for which speed combinations List Scheduling is

optimal, even though we know it is optimal in the worst

case. Some recent progress is reported in (Cai and Yang

2011; Han et al 2011). Another special case when some

partial results about optimality of List Scheduling are

known is the case when m− 1 machines have the same

speed, see, e.g., Han et al (2011); Musitelli and Nicoletti

(2011).

For an arbitrary (large) number of machines, the

greedy algorithm is far from optimal: its competitive

ratio isΘ(logm) (Aspnes et al 1997). The first constant-

competitive algorithm for non-preemptive scheduling

on related machines was developed in (Aspnes et al

1997). The currently best algorithms are 3 +
√

8 ≈

5.828-competitive deterministic and 4.311-competitive

randomized ones (Berman et al 2000). For an alterna-

tive very nice presentation see (Bar-Noy et al 2000). All

these algorithms use doubling, i.e., strategies that work

with some estimate of the optimal makespan and when

it turns out that the estimate is too low, it is multiplied

by 2 or some other constant. While this is a standard

technique for obtaining a constant competitive ratio,

it would be surprising if it led to optimal algorithms.

Designing better algorithms both for small and large

number of machines remains one of the central open

problems in this area.

Very little is known for randomized algorithms in

addition to the 4.311-competitive algorithm mentioned

above. For an arbitrary m, the current lower bound is

2, see (Epstein and Sgall 2000). For two machines, we

know that the best randomized algorithm has compet-

itive ratio between 1.5 and 1.527 (Epstein et al 2001).

We are not aware of any other studies of randomized al-

gorithms for online makespan minimization on related

machines.

The problem of non-preemptive scheduling can be

formulated in the language of online load balancing as

the case where the jobs are permanent and the load is

their only parameter corresponding to our processing

time. Consequently, there are many results on load bal-

ancing that extend the basic results on online schedul-

ing in a different direction, see e.g. (Azar 1998).

It is interesting to compare our results to the re-

lated problem of preemptive scheduling on uniformly

related machines. In that problem, each job can be di-

vided into several pieces that may be scheduled on dif-

ferent machines so that the corresponding time slots

are non-overlapping; the time slots may also be non-

consecutive, so that at some times a partially completed

job is not being processed at all. Contrary to our (non-

preemptive) problem, with preemption it is necessary
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to specify the schedule completely, including the timing

information. In the online version, for each job we have

to specify its schedule completely before the next job is

revealed. Interestingly, for this preemptive problem, it

is possible to provide an optimal online algorithm for

any combination of the speeds and its competitive ratio

is between 2.1163 and e ≈ 2.7182, see (Ebenlendr et al

2009; Ebenlendr 2011). Similar results seem to be out

of reach for non-preemptive scheduling, as the combina-

torial structure is much more difficult and the value of

the optimum is NP-hard to compute, while for the pre-

emptive scheduling it is efficiently computable, in fact

given by an easy formula.

The state of the art should be also compared with

makespan minimization on identical machines (i.e., the

special case with all the speeds equal). There the com-

petitive ratio of List Scheduling is known to be equal to

2−1/m (Graham 1966), and it is optimal for m = 2 and

m = 3 (Faigle et al 1989). Better algorithms are known

for m = 4 (Chen et al 1994) and larger (Galambos

and Woeginger 1993). For an arbitrary m, the optimal

competitive ratio is between 1.88 (Rudin III 2001) and

1.92 (Fleischer and Wahl 2000).

2 Preliminaries

We number the machines as well as the jobs from 0

(to obtain simpler formulas). Thus we have machines

M0,M1, . . . ,Mm−1 and jobs J0, J1, . . . , Jn−1. The speed

of machine Mi is denoted si; we order the machines

so that their speeds are non-increasing. The processing

time of job Jj is denoted pj ; thus the job takes time

pj/si to be processed on Mi.

For a given sequence of jobs J , let Ji be the set

of indices of jobs scheduled on machine Mi. The com-

pletion time of the machine is then simply the sum of

processing times of the jobs scheduled to the machine

divided by its speed: Ci = 1
si

∑
j∈Ji

pj . We compare

the maximum completion time in the output of the al-

gorithm with the maximum completion time of the op-

timal schedule.

In all our lower bounds, we let J denote an infi-

nite sequence of jobs j0, j1, . . ., where ji has processing

time pi = αi for some α > 1. We shall consider the

algorithm’s assignment of jobs for the prefixes of J ; we

denote the prefix of J consisting of the first t+ 1 jobs

j0, j1, . . . , jt by J [t].

2.1 Three machines

We first briefly review the proof of the tight lower bound

of 2 for m = 3, to introduce the main ideas.

The machine M0 has speed 1, the machines M1 and

M2 have speed 1/2. We set α = 2, i.e., pi = 2i. We ob-

serve that the optimal makespan for J [t] is pt = 2t: jt is

scheduled on M0, jt−1 on M1 and all the remaining jobs
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on M2. Assume we have an algorithm with a competi-

tive ratio smaller than 2. If a job jt is scheduled on one

of the slow machines, the makespan on J [t] is 2pt, twice

the optimum. Thus the algorithm schedules all jobs on

M0. But then the makespan on J [t] is 2pt−1, by taking

t sufficiently high we get a contradiction again.

2.2 More machines

To obtain a lower bound of R for more machines, we ar-

range the instance so that an R-competitive algorithm

is forced to schedule all jobs on the k fastest machines

(instead of one for m = 3), for some k. With k = 2

we obtain combinatorial bounds for m = 4, 5 while for

larger values of k we use computer search and obtain

bounds for larger k. The value of α will be chosen later,

separately for each case.

The machines M0,M1, . . . ,Mk−1 are called active

machines; we set the speed of the active machine Mi to

si = α−i. All the remaining machines, i.e., Mk, Mk+1,

. . . , Mm−1 are called inactive and have the same speed

sk. This speed is chosen so that:

(A) sk ≤ 1/R and

(B) for any t, the optimal makespan for J [t] equals pt.

The condition (A) limits the possible lower bound

on R and needs to be verified separately in each case.

As we shall see later, for some values of α, k and m it

gives the tightest bound on R, while for other values

not. In any case, it is desirable to choose sk as small

possible, so that we have a chance of proving a large

bound on R.

Thus we investigatee what is the smallest possible

speed sk such that (B) holds, and it turns out that

a simple argument gives an exact bound. Due to our

choice of speeds of active machines, the k largest jobs

of J [t] fit on the k active machines so that they all

complete exactly at time pt. Thus it is necessary that

all the remaining jobs together do not overflow the ca-

pacity of all the inactive machines. With this in mind,

we set the speeds

sk = sk+1 = · · · = sm−1

= α−k ·max

1,
1

m− k
∑
i≥0

α−i


= α−k ·max

{
1,

α

(m− k)(α− 1)

}
, (1)

and in Lemma 1 we prove that this choice of sk indeed

guarantees that (B) holds.

Lemma 1. The optimum makespan for J [t] is pt = αt.

Proof. First observe that the optimum makespan is at

least pt because processing jt alone takes pt on M0,

the fastest machine. To prove that a schedule with the

makespan pt indeed exists, we assign the jobs greedily

in the decreasing order of their processing times, i.e., in

a reverse order, from jt, jt−1, . . . , to j0. The job jt−i,

for i = 0, 1, . . . , k − 1 is assigned to Mi. Thus Mi will
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take pt−i/si = αt = pt to process its only job. If t < k,

we are done.

If t ≥ k, define the available work of a machine M as

pt multiplied by M ’s speed minus the total processing

time of jobs already assigned to M . Thus M ’s available

work is the maximum total processing time of jobs that

can yet be assigned to M while keeping its completion

time no larger than pt. We prove the following claim.

Claim: When the job jn is to be assigned, the total

available work on the m−k inactive machines is at least

pn ·max
{
m− k, α

α−1

}
.

Assuming the claim holds, one of the machines has

available work of at least pn, thus jn can be assigned to

it. Applying this to all jobs yields the desired schedule.

It remains to prove the claim. First we observe that

it holds for n0 = t − k: At this point, no job is yet

assigned to inactive machines, so using (1), the total

available work is

(m− k)ptsk = (m− k)ptα
−k ·max

{
1,

1

m− k
· α

α− 1

}
= pn0

·max

{
m− k, α

α− 1

}
.

To prove the claim for n < n0, note that before

scheduling jn, the available work decreases by exactly

pn+1 = αn+1 once jn+1 is scheduled. Thus to prove the

claim, assuming its validity for n+ 1, it is sufficient to

show that the bound in the claim decreases by at least

αn+1. As the actual decrease is

(pn+1 − pn) ·max

{
m− k, α

α− 1

}
= (αn+1 − αn) ·max

{
m− k, α

α− 1

}
≥ αn(α− 1)

α

α− 1
= αn+1 ,

this completes the proof of both the claim and the

lemma.

The lower bound proofs in each case continue by ex-

amining the possible patterns of scheduling jobs on the

active machines. Intuitively it is clear that the best al-

gorithm uses an eventually periodic pattern, which then

matches the lower bound. For the actual proof we pro-

ceed by gradually excluding more and more patterns.

For k = 2 active machines this requires only a few steps

and thus can be performed by hand. For larger k we use

computer search.

We note that our lower bounds, both combinatorial

and computer-assisted ones, are optimized in the follow-

ing sense: For every choice of α, assuming the speeds

and the jobs in the instance are as above, and assum-

ing that R equals our lower bound, there either exists a

periodic pattern so that the sequence can be scheduled

on the active machines with makespan at most R times

the optimum or the speed of the inactive machines is

larger than 1/R and thus the algorithm can use them.

Finally, let us explain our previous remark concern-

ing the lower bounds from Berman et al (2000). In these



8  Lukasz Jeż et al.

bounds, the authors set the speeds of inactive machines

to continue the geometric sequence of the speeds of the

active machines, only the last machine has the speed

equal to the sum of the tail of the geometric sequence,

so that all the small jobs exactly fit. Thus, in their anal-

ysis the analog of our Lemma 1 holds trivially. However,

using Lemma 1 we can change the speeds of the inactive

machines to be equal and thus decrease their number

from m = 6 to m = 5 for the bound of 2.288 for 2 ac-

tive machines and from m = 9 to m = 7 for the bound

of 2.438 for three active machines, without any other

changes in their proofs.

3 Combinatorial Lower Bounds

We give improved lower bounds for m = 4 and m = 5

machines. In both cases we use only k = 2 active ma-

chines. However, having three inactive machines instead

of only two allows us to use smaller α and consequently

obtain stronger lower bound for five machines.

3.1 Four Machines

Theorem 2. Let α ≈ 1.72208 be the largest real root

of z4 − z3 − z2 − z + 1. For makespan minimization

on m = 4 uniformly related machines there exists no

online algorithm with competitive ratio smaller than

R =
α4

α3 − 1
= 1 +

α(α+ 1)

α3 − 1
≈ 2.141391 . (2)

Proof. Assume for the sake of contradiction that an on-

line algorithm has competitive ratio smaller than R.

Lemma 1 then implies that, for every t, the algorithm’s

makespan on J [t] is strictly smaller than R · pt. Con-

sider the algorithm’s assignment of jobs to machines

while serving J .

Note that α/ (2(α− 1)) ≈ 1.1476 > 1, so s2 = s3 =

1/ (2α(α− 1)) ≈ 0.3654 by (1). Thus s2 ≤ 1/R ≈

0.4670, so the algorithm never assigns any job to any

inactive machine, as otherwise the makespan on J [t] is

at least pt/s2 ≥ pt · R after scheduling some jt on an

inactive machine.

Fact 3. The algorithm never assigns two out of three

consecutive jobs to M1.

Proof. Suppose that the algorithm does assign two out

of three consecutive jobs to M1, and that jt (for some t)

is the later of those two jobs. Then the completion time

of M1 on J [t] is at least (pt+pt−2)/s1 = pt ·(1+1/α2) ·

α = pt ·(α+1/α) ≈ 2.3 ·pt > R ·pt, a contradiction.

Using Fact 3, we further notice that the assignment

to M0 is also constrained.

Fact 4. There exists an integer t0 such that the algo-

rithm never assigns three consecutive jobs, jt−2, jt−1,

and jt to M0 for any t ≥ t0.
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Proof. Suppose that the algorithm does assign jt−2,

jt−1, and jt to M0. The algorithm never assigns any

job to an inactive machine, and by Fact 3 it assigned

at most every third job from J [t− 3] to M1. Thus the

completion time of M0 on J [t] divided by pt is at least

pt + pt−1 + pt−2 + pt−4 + pt−5 + pt−7 + pt−8 + . . .

pt · s0
,

which for t→∞ tends to

1 +

(
1

α
+

1

α2

)
· α3

α3 − 1
= R ,

where equality follows from (2), a contradiction.

Together, Facts 3 and 4 imply that after the initial t0

steps, the algorithm’s behavior is fixed: its assignment

has period 3, within which the algorithm assigns the

first job to M1 and the other two to M0.

Take a large enough t such that the algorithm as-

signed jt to M1. As t→∞, the ratio of the completion

time of M1 on J [t] to pt tends to

1

pt · s1
(pt + pt−3 + pt−6 + . . .) −−−→

t→∞
α · α3

α3 − 1
= R ,

where equality follows from (2). This is the final con-

tradiction.

3.2 Five Machines

Theorem 5. Let α ≈ 1.52138 be the only real root of

z3 − z − 2. For makespan minimization on m = 5 uni-

formly related machines there exists no online algorithm

with competitive ratio smaller than R = α2 ≈ 2.314595.

Proof. Assume for the sake of contradiction that an on-

line algorithm has competitive ratio smaller than R.

Lemma 1 then implies that, for every t, the algorithm’s

makespan on J [t] is strictly smaller than R · pt. Con-

sider the algorithm’s assignment of jobs to machines

while serving J .

The choice of α implies that

α+ 1

α3 − 1
= 1 and R =

α2(α+ 1)

α3 − 1
≈ 2.3146 . (3)

Note that α/ (3(α− 1)) ≈ 0.9727 < 1, so s2 = s3 =

s4 = 1/α2 = 1/R by (1). Since s2 = 1/R, the algo-

rithm never assigns any job to any inactive machine, as

otherwise the makespan on J [t] is at least pt/s2 = pt ·R

after scheduling some jt on an inactive machine.

Fact 6. The algorithm never assigns two consecutive

jobs, jt−1 and jt, to M1.

Proof. Suppose that the algorithm does assign jt−1 and

jt to M1 for some t. Then the completion time of M1

on J [t] is at least (pt + pt−1)/s1 = pt · (1 + 1/α) · α =

pt · (α+ 1) ≈ 2.5214 · pt > R · pt, a contradiction.

Using Fact 6, we further notice that the assignment

to M0 is also constrained.

Fact 7. There exists an integer t0 such that the algo-

rithm never assigns three consecutive jobs, jt−2, jt−1,

and jt, to M0 for any t ≥ t0.
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Proof. Suppose that the algorithm does assign jt−2,

jt−1, and jt to M0. The algorithm never assigns any

job to an inactive machine, and by Fact 6 it assigned

at most every other job from J [t− 3] to M1. Thus the

completion time of M0 on J [t] divided by pt is at least

1

pt · s0
((pt + pt−1 + pt−2) + (pt−4 + pt−6 + . . .)) ,

which for t→∞ tends to

1 +
1

α
+

1

α2 − 1
≈ 2.4179 > R ,

a contradiction.

Now with Fact 7 in turn we realize that assignment

to M1 is further constrained.

Fact 8. There exists an integer t1 such that the algo-

rithm never assigns two jobs jt−2 and jt to M1 for any

t ≥ t1.

Proof. Let t1 ≥ t0+3. Suppose that the algorithm does

assign jt−2 and jt toM1. As t ≥ t0+3, the algorithm did

not assign all three jobs jt−3, jt−4, jt−5 to M0. There-

fore, the completion time of M1 on J [t] is at least

(pt + pt−2 + pt−5)/s1 = pt · (1 + 1/α2 + 1/α5) · α ≈

2.365pt > R · pt, a contradiction.

Together, Facts 6 up to 8 imply that after the initial

t1 steps, the algorithm’s behavior is fixed: its assign-

ment has period 3, within which the algorithm assigns

the first job to M1 and the other two to M0.

Take large enough t such that the algorithm as-

signed jt and jt−1 to M0 and jt−2 to M1. As t → ∞,

the ratio of the completion time of M0 on J [t] to pt

tends to

1

pt
(pt + pt−1 + pt−3 + pt−4 + . . .)

−−−→
t→∞

(
1 +

1

α

)
· α3

α3 − 1
= R ,

where the last equality follows from (3). This is the final

contradiction.

4 Computer Search

The Lower Bounds described in Berman et al (2000)

were found via search through possible assignments of

jobs to k = 3 active machines. We present a general-

ization of their computer search technique in order to

find the exact pattern of allocations that maximizes the

lower bound obtainable for k = 3, 4, 5 active machines.

It also confirms the previous section’s results for k = 2

active machines.

First, we describe our technique. Fix some competi-

tive ratio R that we want to achieve. We maintain a vec-

tor S = (S0, . . . , Sk−1) that tracks the relative load on

each of the active machines. Now, we build a graph with

states representing all such vectors such that Si ≤ Rα−i

and edges being the possible vectors after a single job

is scheduled. Our initial state is (0, . . . , 0). To get the

relative load after a job scheduled on machine i on a
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given state S, we first divide each entry of our relative

load vector S by α and then add 1 to the ith entry of

our vector. So, we get up to k edges out of each vertex.

This is the same infinite graph as the one consid-

ered by Berman et al (2000), though they only con-

sidered k = 3 active machines. We also consider all

possible competitive ratios R, whereas they always set

R to equal αk. Clearly, there is an R-competitive de-

terministic scheduling algorithm if and only if there is

an infinite path in the graph starting from the initial

state. In order to make this graph computer search-

able, Berman et al. made the graph finite by discretiz-

ing the S vector. This, however, led to large rounding

errors except for large choices of n, the factor of dis-

cretization. So, we use a different method for which it

is sufficient to search only a part of the graph.

Rather than building the entire graph, we only build

the tree generated by scheduling r jobs for a small

choice of r. Normally, this would generate a tree with

kr states, but since we do not include states with Si >

Rα−i, many branches of the tree are pruned. From this

graph, we can determine if there is a path of length r

in the infinite graph. Thus, for a given choice of r, α,

and k, if there is no path of length r, then there is

no deterministic scheduling algorithm with competitive

ratio R, giving us a lower bound.

As we are proving a lower bound of R, the common

speed of the inactive machines has to be at most 1/R,

or else it would be possible to schedule at least one job

on the inactive machines. Hence, by Lemma 1, we have

that the number of inactive machines, m− k, is no less

than (R/αk)
∑
i≥0 α

−i = R · α1−k(α − 1)−1. So, this

limits our choice of α to a certain range for a given

combination of k and m. We maximize the choice of R

over this range to obtain our lower bound.

We can also calculate the pattern that the online al-

gorithm can follow to achieve a competitive ratio close

to our lower bound. We select an R slightly larger than

the maximum R for which the graph was finite. Then,

any sufficiently long path is guaranteed to follow an op-

timal pattern; in principle there could be several opti-

mal patterns, actually we did not even prove that there

exists one. However, it is sufficient for us to find a sin-

gle one matching the lower bound, since any such pat-

tern shows that our lower bound cannot be improved

further—and we have done this for each m for the op-

timal value of α.

As we saw in the analysis of m = 4 and m = 5,

such pattern does not necessarily make the completion

times of all machines equal, i.e., for some i the i-th entry

might be much smaller than αk−i. While for our choice

of α all paths in the tree will follow the pattern after

some point, there is some flexibility in the allocation
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of the first few jobs, as they are very small. As we are

using DFS to find a single long path in the tree in order

to find the optimal pattern, our search is likely to find

the pattern after inspecting only a small number out of

many feasible initial allocations. After finding a cyclic

pattern of length `, it is simple to check if it attains the

desired ratio by inspecting the relative load vector that

it yields. Our method works for values of k up to 5. We

are unable to find lower bounds and matching patterns

for k ≥ 6, as the tree becomes too large.

As described, we are able to verify for a given k, m,

α and R if there is an R-competitive algorithm for our

sequences. For the optimal values of α, it is feasible to

find R by binary search. To speed up computations, we

have not searched the whole tree, but only a random

sample of the initial branches. This works in practice,

since if there is an infinite branch and R is not too

close to the real bound, most initial branches can be

extended. If an infinite branch is found, it is proven

that the bound is smaller. If none is found, we first

verify the result by extending the random sample and

then we have verified the results by a complete search

for selected values of α.

Our computer search results are presented in Table 2

and, in more detail, in Figures 1, 2 and 3. The data in

Table 2 is presented as follows. First, the number of ac-

tive machines, k, then the optimal number of machines,

m, then the approximation to the optimal value of α.

This is followed by the optimal pattern, presented as fol-

lows. The integer i denotes Mi, the ith fastest machine

(counting from 0), and the pattern repeatedly assigns

jobs to the machines in the order given. The next col-

umn gives the number h of the machine Mh that attains

the highest load for this pattern and this value of α. Fi-

nally, the last column gives the value of the lower bound

ratio R given by the computer search and matched by

the pattern found.

Figure 1 shows the bounds for all values of m and

k. For each value of α, the largest lower bound R is

displayed. The values of m and k are implicit, as given

by the condition (A) and setting of the speeds. Most

importantly, for a given α and R, k is the smallest num-

ber such that αk ≥ R, since sk ≥ α−k and (A) would

be violated otherwise. Similarly, since (m − k)sk ≥

α1−k/(α− 1), the number of inactive machines (m−k)

needs to satisfy (m−k)αk−1(α−1) ≥ R. These bounds

on R are drawn as thin, fast increasing functions. As α

decreases, the number of active or inactive machines in-

creases once one of these curves is crossed. The largest

values of α correspond to m = 4 (and k = 2), but as α

decreases, the curve for R crosses 1/s2 = 2α(α− 1), so

an additional inactive machine is required for smaller α.

Hence at that point the region corresponding to m = 5

and k = 2 starts, and extends to the left until the R
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k m α Pattern h R

2 4 1.722081 001 1 2.141391

2 5 1.521380 001 0 2.314595

3 6 1.450217 001021001020100102010010201 2 2.347312

3 7 1.346256 0010201012 1 2.439957

4 8 1.346256 0010201012 1 2.439957

4 9 1.255564 0102103012010210301201023 2 2.462775

5 10 1.222412 010321041230012013021041023012 0 2.483120

5 11 1.209132 010213020140312010230412010321040120310210340120132010423 . . . 4 2.502672

. . . 010210341020130120412031020134

Table 2 The results of the computer search for lower bounds, together with cyclic patterns that attain upper bounds slightly

larger than these lower bounds.

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

m = 11 (α ϵ [1.200748,1.222412))
m = 10 (α ϵ [1.222412,1.251809))
m = 9 (α ϵ [1.251809,1.285761))
m = 8 (α ϵ [1.285761,1.346256))
m = 7 (α ϵ [1.346256,1.393838))
m = 6 (α ϵ [1.393838,1.52138))
m = 5 (α ϵ [1.52138,1.644902))
m = 4 (α ϵ [1.644902,2])

α

R

α2 2*α*(α-1)

α3 3*α2*(α-1)

α4

4*α3*(α-1)

α5

5*α4*(α-1)

Fig. 1 The graph presents what lower bounds our strategy yields for α ∈ (1.2, 2.0).
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1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28
2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

2.5

2.51

m = 11 (α ϵ [1.200748,1.222412))

m = 10 (α ϵ [1.222412,1.251809))

m = 9 (α ϵ [1.251809,1.285761))

α

R

5*α4*(α-1)α5 α4

Fig. 2 A zoom-in on the left part of Figure 1, i.e., α ∈ (1.20, 1.28).

curve crosses 1/s2 = α2; at that point an active ma-

chine is added and the region corresponding to m = 6

and k = 3 starts, and so on.

The patterns found for k = 2 match the patterns

found in our analysis of m = 4, 5. The lower bound we

found for k = 3 is slightly better than the previous lower

bound found by computer search for 3 active machines

(2.438).

In general, the lower bounds increase with increasing

number of machines. However, as the figures show, the

exact dependence on α is complicated.

While the optimal R is at most αk in general, some-

times it is strictly smaller: This is the case for all evenm ≤

10, including m = 4, for which we gave a combinatorial

proof. Thus, trying all possible values of R, rather than

fixing it at αk (as Berman et al (2000) did) allowed us

to obtain new bounds for even k. Additionally, it is in-

teresting that for m = 9 and m = 11, the optimal R

is strictly smaller than αk, leading to improved bounds

for odd m as well. Another anomaly is that for m = 8,

the best bound matches the bound for m = 7. Thus, it

does not always help to add an active machine without

an accompanying inactive machine.
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1.440 1.445 1.450 1.455 1.460
2.325

2.330

2.335

2.340

2.345

2.350

2.355

α

R

Fig. 3 A zoom-in on the center part of Figure 1, i.e., α ∈ (1.44, 1.46).

Our program for finding these lower bounds as well

as a spreadsheet summarizing its results can be found

at http://iuuk.mff.cuni.cz/~sgall/ps/smallm/.

5 Conclusions

We have shown new lower bounds for online makespan

scheduling on a small number of uniformly related ma-

chines. In contrast to the recent asymptotic bound from

(Ebenlendr and Sgall 2012), for small m we are able to

take an advantage of the combinatorial structure of the

problem and of the fact that even for the optimal online

algorithm (pattern), the completion times of the active

machines will be uneven. The gaps between the current

lower and upper bounds are still significant and exist-

ing methods are limited to using geometric sequences

of processing times for the lower bounds and doubling

techniques for the algorithms. Finding new techniques

seems necessary for further progress.
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