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Abstract

We present a unified optimal semi-online algorithm for preemptive scheduling on uni-
formly related machines with the objective to minimize the makespan. This algorithm
works for all types of semi-online restrictions, including the ones studied before, like sorted
(decreasing) jobs, known sum of processing times, known maximal processing time, their
combinations, and so on. Based on the analysis of this algorithm, we derive some global
relations between various semi-online restrictions and tight bounds on the approximation
ratios for a small number of machines.

1 Introduction

We study online scheduling on uniformly related machines, which means that the time needed
to process a job with processing time p on a machine with speed s is p/s. Preemption is
allowed, which means that each job may be divided into several pieces, which can be assigned
to different machines in disjoint time slots. The objective is to minimize the makespan, i.e.,
the length of a schedule. In the online problem, jobs arrive one-by-one and we need to assign
each incoming job without any knowledge of the jobs that arrive later. When a job arrives,
its assignment at all times must be given and we are not allowed to change this assignment
later. In other words, the online nature of the problem is given by the ordering of the input
sequence and it is not related to possible preemptions and the time in the schedule.

We focus on semi-online algorithms. This term encompasses algorithms that are essen-
tially online, but some partial information about the input is given to the scheduler in advance.
The main motivation behind this approach is the observation that the classical competitive
analysis is too pessimistic compared to practical results, or, in other words, the adversary
who may arbitrarily determine the input sequence is too powerful. In practice, the inputs are
not completely arbitrary, and it may be reasonable to restrict the set of inputs.

The online scheduling problem, also known as list scheduling, was first studied in Graham’s
seminal paper [14] for identical machines (i.e., all speeds equal), where it was shown that the
greedy algorithm (which is online) is a 2-approximation. Soon after that, Graham [15] studied
a semi-online variant: He proved that if the jobs are presented in non-increasing order of their
processing times, the approximation ratio goes down to 4/3. (Note that Graham [14, 15]
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studied the non-preemptive version, but the cited result from [14] holds for the preemptive
version, too.)

Since then, in scheduling, numerous semi-online models have been studied; typical exam-
ples include (sequences of) jobs with decreasing processing times, jobs with bounded pro-
cessing times, sequences with known total processing time of jobs and so on. Most of these
models can be viewed as online algorithms on a restricted set of input sequences. Restrictions
of this type have been studied also for other online problems; the most prominent example is
paging with locality of reference [1].

General results

We give a semi-online algorithm for preemptive scheduling on uniformly related machines
which is optimal for any chosen semi-online restriction. This means not only the cases listed
above—the restriction can be given as an arbitrary set of sequences that are allowed as
inputs. For any semi-online restriction, the algorithm achieves the best possible approximation
ratio for any number of machines and any particular combination of machine speeds; it is
deterministic, but its approximation ratio matches the best possible approximation ratio of
any randomized algorithm.

This generalizes and unifies previous results for various special cases of semi-online pre-
emptive scheduling. We find such a general result providing a provably optimal algorithm
for many problems quite exceptional not only in the area of scheduling but also in the whole
area of online algorithms.

Our result also provides a clear separation between the design of the algorithm and the
analysis of the optimal approximation ratio. While the algorithm is always the same, the
analysis of the optimal ratio depends on the studied restrictions. Nevertheless, the general
result also provides crucial new insights and methods and thus we can analyze the optimal
ratio in cases that have been out of reach with previously known techniques.

Results for specific restrictions

For typical semi-online restrictions, we show that the optimal ratio can be computed by linear
programs (with machine speeds as parameters). Studying these linear programs allows us to
progress in two directions. First, we are able to completely analyze the optimal ratio for
particular cases with a small number of machines. Second, we are able to study the relations
between the optimal approximation ratios for different semi-online restrictions and give some
bounds for a large number of machines.

The exact analysis of special cases for a small number of machines was given in [9, 4,
16, 17, 20] for various restrictions, and in many more cases for non-preemptive scheduling.
Typically, these results involve similar but ad hoc algorithms and an extensive case analysis
which is tedious to verify, and can be done for two uniformly related machines or for more
identical machines. Using our linear programs we can calculate the ratio as a formula in
terms of speeds. This is a fairly routine task which can be simplified (but not completely
automated) using standard mathematical software. Once the solution is known, verification
amounts to checking the given primal and dual solutions for the linear program. Typically
the verification is quite simple for m = 3 or m = 4. We present several examples of such
results for m = 3. For a more detailed discussion of the automated techniques and examples
of calculations for m = 4, see [5].
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Another research direction is to compute, for a given semi-online restriction, the optimal
approximation ratio which works for any number of machines and combination of speeds.
This task appears to be much harder, and even in the online case we only know that the
ratio is between 2.054 and e ≈ 2.718; the lower bound is shown by a computer-generated
hard instance with no clear structure [6]. Only for identical machines, the exact ratio for any
number of machines is known (i) for the online case, where it tends to e/(e − 1) ≈ 1.58 [2],
and (ii) for non-increasing processing times, where it tends to (1 +

√
3)/2 ≈ 1.366 [22].

We are able to prove certain relations between the approximation ratios for different
restrictions. Some basic restrictions form an inclusion chain: The inputs where the first
job has the maximal processing time (which is equivalent to known maximal processing time)
include the inputs with non-increasing processing times, which in turn include the inputs with
all jobs of equal processing time. Typically, the hard instances have non-decreasing processing
times. Thus, one expected result is that the restriction to non-increasing processing times
gives the same approximation ratio as when all jobs have equal processing times, even for any
particular combination of speeds. The overall approximation ratio of these two equivalent
problems (non-increasing and the largest job first) is at most 1.52, see Section 5. On the
other hand, for known maximal processing time of a job we have a computer-generated hard
instance with approximation ratio 1.88 with m = 120. Thus restricting the jobs to be non-
increasing helps the algorithm much more than just knowing the maximal processing time of
a job. This is very different from identical machines, where knowing the maximal processing
time is equally powerful as knowing that all the jobs are equal, see [22].

More interestingly, the overall approximation ratio with known sum of processing times
is the same as in the purely online case—even though for a small fixed number of machines
knowing the sum provides a significant advantage. This is shown by a padding argument,
see Section 6.1. In fact this is true also in presence of any additional restriction that allows
scaling input sequences, taking a prefix, and extending the input by small jobs at the end.
Thus, for example, the overall approximation ratio with non-increasing jobs and known sum
of processing times is at least 1.366, using the bound for identical machines from [22]. (Note
that the ratio with equal jobs and known sum is 1; the restriction to equal jobs does not allow
padding.)

Organization of the paper

In Section 2, in addition to standard preliminaries, we introduce various semi-online restric-
tions and survey the specific results, old and new. In Section 3 we prove our general results,
namely we present the algorithm, prove its optimality, and also introduce notation for the
values of the optimal ratio. In Section 4 we introduce a notion of a proper restriction, which
encompasses the usual semi-online restrictions, and allows to simplify the calculations for the
specific restrictions. Here we also survey the general principles that allow us to construct lin-
ear programs for specific restrictions. The rest of the paper, Sections 5 to 10 is devoted to the
specific restrictions. One unifying purpose is to demonstrate various aspects and possibilities
in calculating the optimal ratio, usually using linear programming. And, not the least, we
present there the specific results, both the general ones mentioned above and specific bounds
typically for three machines.
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2 Preliminaries

Let Mi, i = 1, 2, . . . ,m, denote the m machines, and let si be the speed of Mi. W.l.o.g., we
assume that the machines are sorted so that speeds are non-increasing, i.e., s1 ≥ s2 ≥ . . . ≥
sm. To avoid degenerate cases, we assume that s1 > 0. The vector of speeds is denoted s.
The sum of the speeds is S =

∑m
i=1 si and Sk =

∑k
i=1 si is the sum of the k largest speeds. To

simplify the description of the algorithm, we assume that there are infinitely many machines
of speed zero, i.e., we put si = 0 for any i > m. Scheduling a job on one of these zero-speed
machines means that we do not process the job at the given time at all. Also, note that the
case of m identical machines now corresponds to the case with si = 1 for i ≤ m and si = 0
for i > m. The machines Mi, including the machines of speed zero, are called real machines
(to be distinguished from virtual machines introduced later in the algorithm).

Let J = (pj)nj=1 denote the input sequence of jobs, where n is the number of jobs and
pj ≥ 0 is the the processing time, or the size, of the jth job. (Note that we allow jobs of size
zero, which has technical advantages for formulation of linear programs, as we can easily avoid
sharp inequalities; this is inessential as in all the cases we can replace such jobs by jobs with
size going to 0 in the limit.) The sum of processing times is denoted P = P (J ) =

∑n
j=1 pj .

Given J and i ≤ n, let J[i] be the prefix of J obtained by taking the first i jobs.
The time needed to process a job pj on machine Mi is pj/si; each machine can process at

most one job at any time. Preemption is allowed, which means that each job may be divided
into several pieces, which can be assigned to different machines, but any two time slots to
which a single job is assigned must be disjoint (no parallel processing of a job); there is no
additional cost for preemptions. Formally, if ti denotes the total length of the time intervals
when the job pj is assigned to machine Mi, it is required that t1s1 +t2s3 + · · ·+tmsm = pj . (A
job may be scheduled in several time slots on the same machine, and there may be times when
a partially processed job is not running at all.) In the (semi-)online version of this problem,
jobs arrive one-by-one and at that time the algorithm has to give a complete assignment of
this job at all times, without the knowledge of the jobs that arrive later. The objective is to
find a schedule of all jobs in which the maximal completion time (the makespan) is minimized.

For an algorithm A, let CA
max[J ] be the makespan of the schedule of J produced by A. By

C∗max[J ] we denote the makespan of the optimal offline schedule of J . An algorithm A is an
R-approximation if for every input J , the makespan is at most R times the optimal makespan,
i.e., CA

max[J ] ≤ R ·C∗max[J ]. In case of a randomized algorithm, the same must hold for every
input for the expected makespan of the online algorithm, E[CA

max[J ]] ≤ R · C∗max[J ], where
the expectation is taken over the random choices of the algorithm.

The optimal makespan can be computed as

C∗max[J ] = max
{
P

S
, max

{
Pk
Sk

∣∣∣∣ k = 1, . . . ,m− 1
}}

, (1)

where Pk denotes the sum of the k largest processing times in J and Sk is the sum of the k
largest speeds. It is easy to see that the right-hand side is a lower bound on the makespan,
as the first term gives the minimal time when all the work can be completed using all the
machines fully, and similarly the term for k is the minimal time when the work of the k largest
jobs can be completed using the k fastest machines fully. The tightness of this bound is a
classical result, see e.g. [19, 13, 7].

A useful observation is that the optimal set of jobs in (1) always contains all the jobs of
the same size or none of them. More precisely, if the maximum in (1) is equal to Pk/Sk for
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some k, then we may assume that the (k+ 1)st largest job is strictly smaller than kth largest
job. This follows by a standard manipulation: If there are two or more jobs with equal size,
and adding one of them to Pk increases the bound, then adding another job of the same size
again increases the bound, using the fact that the speeds added to Sk are non-increasing.

In particular this implies that if there are m jobs of the same size, then either the optimum
is P/S or the optimum is Pk/Sk for some k such that Pk does not contain any of these equal
jobs. The possibility that Pk contains all of the jobs is now excluded, since it would imply
that k ≥ m and such a bound is dominated by P/S.

2.1 Semi-online restrictions and previous work

We define a general semi-online input restriction to be simply a set Ψ of allowed inputs,
also called input sequences. We call a sequence a partial input if it is a prefix of some input
sequence; the set of all partial inputs is denoted pref(Ψ). Thus the partial inputs are exactly
the sequences that the algorithm can see at some point. A (randomized) semi-online algorithm
A with restriction Ψ is an R-approximation algorithm if E[CA

max[J ]] ≤ R · C∗max[J ] for any
J ∈ Ψ. Note that this implies that for any prefix J ′ of J , E[CA

max[J ′]] ≤ R · C∗max[J ].
Below we list some of the restrictions that are studied in the literature, together with the

notation that we are going to use, the previous work, and our results. We list previous work
mainly in the preemptive case, the non-preemptive results are a narrow selection mainly of
the papers that introduced the restriction. All our results are for the preemptive case.
Online scheduling. Here Ψ contains all sequences. In our (i.e., the authors and Wojtek
Jawor) previous work [6], we have designed an optimal online algorithm for all speed vectors.
The algorithm and the proof of the main result in this paper generalize that result, using the
same techniques, however, some technical issues have to be handled carefully to achieve the
full generality of our new result. Online preemptive scheduling was studied first in [2].
Known sum of processing times, denoted

∑
pj = P . For a given value P̄ , Ψ contains

all sequences with P = P̄ . Note that we distinguish P , the general notation for the sum of the
processing times in an input J (also used in the name of the restriction), and P̄ , the actual
value given to the algorithm at the beginning; similarly for the other restrictions later. This
restriction, for non-preemptive version on two machines, was studied in [21], which is probably
also the first paper which studied and compared several notions of semi-online algorithms.
We prove that the overall ratio is surprisingly the same as in the general online case, on the
other hand we note that for two machines 1-approximation is possible, and we analyze the
cases of three machines.
Non-increasing processing times, denoted decr. Here Ψ contains all sequences with
p1 ≥ p2 ≥ · · · ≥ pn. For m = 2, the optimal algorithm for all speeds was analyzed in [9] and
for identical machines in [22]. We prove that for any speeds this case is the same as the case
with all jobs equal. We analyze the cases for m = 2, 3, and prove some bounds for larger m.
Known optimal makespan, denoted C∗max = T . For a given value T̄ , Ψ contains all
sequences with C∗max[J ] = T̄ . A 1-approximation semi-online algorithm is known for any s,
see [7].
Known maximal job processing time, denoted pmax = p. For a given value p̄, Ψ
contains all sequences with max pj = p̄. It is easy to see that this restriction is equivalent
to the case when the first job is maximal, as any algorithm for that special case can be
used also for the case when the maximal job arrives later. Thus this restriction also includes
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non-increasing jobs. This restriction was introduced in [18] for non-preemptive scheduling
on 2 identical machines. The complete analysis of the preemptive version on two machines
was given in [16]. In [22] it is shown that for identical machines, the approximation ratio is
the same as when the jobs are non-increasing. We show that this is not the case for general
speeds. We also give a complete analysis for three machines.
Inexact partial information. In this case, some of the previously considered values (the
optimal makespan, the sum of the processing times, the maximal processing time) is not
known exactly but only up to a certain factor. These variants were studied first in [24] without
preemption. The complete analysis of the preemptive version with approximately known
optimum and maximal processing time on two machines and approximately known optimum
on identical machines was given in [20]. We give a complete analysis for an approximately
known optimum for three machines, denoted T ≤ C∗max ≤ αT .
Tightly grouped processing times, denoted p ≤ pj ≤ αp. For given values p̄ and α, Ψ
contains all sequences with pj ∈ [p̄, αp̄] for each j. This restriction was introduced in [18] for
non-preemptive scheduling on 2 identical machines. The complete analysis of the preemptive
version on two machines was given independently in [4, 16]. The case of three identical
machines was analyzed in [17]. We sketch a complete analysis for two machines, reproving
the results of [4, 16] in a simpler way.
Combined restrictions. In this case we have two different types of information. Technically,
in our framework, we have Ψ = Ψ′ ∩ Ψ′′ for some other restrictions Ψ′ and Ψ′′. We denote
such a restriction Ψ′,Ψ′′. Some combinations of the previous restrictions were studied in [23]
for non-preemptive scheduling on identical machines. We present two variants; the restriction
of the known sum of processing time is combined either with the known maximal processing
time or with non-increasing jobs.

We should note that there are also semi-online models that do not fit into our framework.
Some of them can still be solved by extending our methods, for others we do not know a good
solution at this point. We discuss such variants briefly in the conclusions.

3 The optimal algorithm

The new algorithm is based on the algorithm for online scheduling from [6]. In this section
we present the algorithm and the proof of its optimality with emphasis on the issues that
need to be handled differently in the more general semi-online setting.

Suppose that we are given a parameter r and we try to develop an r-approximation
algorithm. In the online case, we simply make sure that the current job completes by time r
times the current optimal makespan. In the semi-online case, if the restriction is not closed
under taking a prefix, this would be too pessimistic. It may happen that the current partial
input is not in Ψ and we know that any extension in Ψ has much larger optimal makespan
(e.g., if the restriction forces that some large jobs will arrive later). In this case we can
schedule the current job so that it complete much later than at time r times the current
optimal makespan. For this purpose, we define the appropriate quantity to be used instead
of the current optimal makespan.

Definition 3.1 For an input restriction Ψ and a partial input I ∈ pref(Ψ), we define the
optimal makespan as the infimum over all possible end extensions of J that satisfy Ψ:

C∗,Ψmax[I] = inf{C∗max[J ] | J ∈ Ψ & I is a prefix of J }
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Note that for any input sequence J ∈ Ψ we have C∗max[J ] = C∗,Ψmax[J ].

3.1 Description of the algorithm

Our algorithm takes as a parameter a number r which is the desired approximation ratio.
Later we show that, for the right choice of r, our algorithm is optimal. Given r, we want
to schedule each incoming job so that it completes at time r · C∗,Ψmax[J[j]]. By the definition
of C∗,Ψmax[J[j]], any schedule for any possible extension of the current partial input will have
makespan at least C∗,Ψmax[J[j]], in particular C∗,Ψmax[J[j]] ≤ C∗max[J ]. Thus, if each job j completes
by time r · C∗,Ψmax[J[j]] ≤ r · C∗max[J ], we have an r-approximation algorithm.

Even when we decide the completion time of a job, there are many ways to schedule it
given the flexibility of preemptions. We choose a particular one based on the notion of a
virtual machine from [7, 6]. We define the ith virtual machine, denoted Vi, so that at each
time τ it contains the ith fastest machine among those real machines M1, M2, . . ., that are
idle at time τ . Due to preemptions, a virtual machine can be thought and used as a single
machine with changing speed. When we schedule (a part of) a job on a virtual machine
during some interval, we actually schedule it on the corresponding real machines that are
uniquely defined at each time. Recall that the real machines include the machines of speed
zero, thus Vi is always defined; scheduling a job on such a real machine means that the job is
not running.

Upon arrival of a job j we compute a value Tj defined as r ·C∗,Ψmax[J[j]]. Then we find two
adjacent virtual machines Vk and Vk+1, and time tj , such that if we schedule j on Vk+1 in the
time interval (0, tj ] and on Vk from tj on, then j finishes exactly at time Tj . We need to show
that we can always find such machines Vk and Vk+1. Since we have added the machines of
speed 0, it only remains to prove that each job can fit on V1. This is true for an appropriate
value of r, as we show in Theorem 3.4.

To facilitate the proof, we maintain an assignment of scheduled jobs (and consequently
busy machines at each time) to the set of virtual machines, i.e., for each virtual machine Vi
we compute a set Si of jobs assigned to Vi. Although the incoming job j is split between two
different virtual machines, at the end of each iteration each scheduled job belongs to exactly
one set Si, since right after j is scheduled the virtual machines assigned to this job are merged
(during the time when j is scheduled to be running on them). The sets Si serve only as means
of bookkeeping for the purpose of the proof, and their computation is not an integral part of
the algorithm.

At each time τ , machine Mi′ belongs to Vi if it is the ith fastest idle machine at time τ , or
if it is running a job j ∈ Si at time τ . At each time τ the real machines belonging to Vi form
a set of adjacent real machines, i.e., all machines Mi′ ,Mi′+1, . . . ,Mi′′ for some i′ ≤ i′′. This
relies on the fact that we always schedule a job on two adjacent virtual machines which are
then merged into a single virtual machine during the times when the job is running, and on
the fact that these time intervals (0, Tj ] increase with j, as adding new jobs cannot decrease
C∗,Ψmax[(pi)

j
i=1]. See Figure 1 for an example of a step of the algorithm.

Let vi(t) denote the speed of the virtual machine Vi at time t, which is the speed of the
unique idle real machine that belongs to Vi. Let Wi(t) =

∫ t
0 vi(τ)dτ be the total work which

can be done on machine Vi in the time interval (0, t]. By definition we have vi(t) ≥ vi+1(t)
and thus also Wi(t) ≥Wi+1(t) for all i and t. Also Wm+1(t) = vm+1(t) = 0 for all t. We leave
out some implementation details. We only note that the functions wi and Wi are piecewise
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Figure 1: An illustration of a schedule of two jobs on three machines produced by RatioStretch.
Vertical axis denotes the time, horizontal axis corresponds to the speed of the machines. The
pictures on the left depict the schedule on the real machines, with bold lines separating the
virtual machines. The pictures on the right show only the idle time on the virtual machines.
The top pictures show the situation after the first job, with the second job being scheduled
on the first two virtual machines. The bottom pictures show the situation after the second
job is scheduled and virtual machines updated.

linear with at most 2n parts. Thus it is possible to represent and process them efficiently.

Algorithm RatioStretch. Let r be a parameter. Initialize T0 := 0, Si := ∅,
vi(τ) := si, for all i = 1, 2, . . . ,m+ 1 and τ ≥ 0. This also sets vm+1(τ) ≡ 0.

For each arriving job j, compute the output schedule as follows:

1. Let Tj := r · C∗,Ψmax[(pi)
j
i=1].

2. Find the smallest k such that Wk(Tj) ≥ pj ≥ Wk+1(Tj). If such k does not
exist, then output “failed” and stop. Otherwise find time tj ∈ [0, Tj ] such
that Wk+1(tj) +Wk(Tj)−Wk(tj) = pj .

3. Schedule job j on Vk+1 in time interval (0, tj ] and on Vk in time interval
(tj , Tj ].

4. Set vk(τ) := vk+1(τ) for τ ∈ (tj , Tj ], and vi(τ) := vi+1(τ) for i = k+1, . . . ,m
and τ ∈ (0, Tj ]. Also set Sk := Sk ∪ Sk+1 ∪ {j}, and Si := Si+1 for i =
k + 1, . . . ,m.

Before we analyze the algorithm, we make a few remarks concerning its efficiency and
uniformity. The only parts of the algorithm that depend on the semi-online restriction are
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(i) the computation of the parameter r, which should be equal to the optimal approximation
ratio, and (ii) the computation of C∗,Ψmax[J ]. The rest of the algorithm is independent of the
restriction and very efficient.

Similarly to the online algorithms, for semi-online algorithms we generally do not require
the computation to be polynomial time. For a general restriction the optimal algorithm cannot
be efficient. (If the set of input sequences is, e.g., not recursive, then it may be algorithmically
undecidable how much time we have even for scheduling the first job. Besides, there are more
possible restrictions than algorithms.)

Nevertheless, the algorithm is efficient for many natural restrictions. Computing C∗,Ψmax[J ]
is usually simple. If the restriction is closed under taking prefixes, then it is equal to C∗max[J ].
In other cases it is easy to see which extension has the smallest makespan. Computing the
optimal approximation ratio is more difficult, but in Sections 5 to 10 it is shown that in
many natural cases it reduces to linear programming or other more explicit expressions.
Alternatively, we can use any upper bound on the approximation ratio and give it to the
algorithm as the parameter r.

3.2 Optimality of Algorithm RatioStretch

Our goal is to show that Algorithm RatioStretch works whenever the parameter r is at least
the optimal approximation ratio for the given Ψ and s. We actually prove the converse:
Whenever for some input J Algorithm RatioStretch with the parameter r fails, we prove that
there is no r-approximation algorithm.

This is based on a generalization of a lemma from [11] which provides the optimal lower
bounds for online algorithms, as shown in [6]. The key observation in its proof is this: On
an input J , if the adversary stops the input sequence at the ith job from the end, any r-
competitive online algorithm must complete by time r times the current optimal makespan,
and after this time, in the schedule of J , only i− 1 machines can be used. This bounds the
total work of all the jobs in terms of r and optimal makespans of the prefixes, and thus gives
a lower bound on r. To generalize to an arbitrary restriction Ψ, we need to deal with two
issues.

First, the adversary cannot stop the input if the current partial input is not in Ψ. Instead,
the sequence then must continue so that its optimal makespan is the current C∗,Ψmax (or its good
approximation). Consequently, the bound obtained uses C∗,Ψmax in place of previous C∗max, which
possibly decreases the obtained bound.

Second, for a general semi-online restriction, using the last m prefixes of J may not give
the best possible lower bound. E.g., the restriction may force that some job is tiny, and thus
using the prefix ending at this job is useless; in general, we also cannot remove such a job from
the input sequence. To get a stronger lower bound, we choose a subsequence of important
jobs from J and bound their total work in terms of values C∗,Ψmax of the prefixes of the original
sequence J .

Lemma 3.2 Let A be any randomized R-approximation semi-online algorithm for preemptive
scheduling on m machines with an input restriction Ψ. Then for any partial input J ∈
pref(Ψ), for any k, and for any subsequence of jobs 1 ≤ j1 < j2 < · · · < jk ≤ n we have

k∑
i=1

pji ≤ R ·
k∑
i=1

sk+1−iC
∗,Ψ
max[J[ji]].
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Proof: Fix a sequence of random bits used by A and the corresponding schedule for J . For
i ≤ k + 1, let Ti denote the last time when at least i machines are running the jobs from
subsequence j1, j2, . . . , jk; note that Tk+1 = 0. First observe that

k∑
i=1

pji ≤
k∑
i=1

siTi. (2)

During the time interval (Ti+1, Ti] at most i machines are busy with jobs from (j`)k`=1, and
their total speed is at most s1 + s2 + . . . + si. Thus the maximum possible work done on
(j`)k`=1 in this interval is (Ti − Ti+1)(s1 + s2 + . . . + si). Summing over all i = 1, . . . , k, we
obtain

∑m
i=1 siTi. In any valid schedule of J all the jobs from (j`)k`=1 are completed, so (2)

follows.
Since the algorithm is semi-online, the schedule for J[ji] is obtained from the schedule for

J by removing the jobs j > ji. At time Ti there are at least i jobs from (j`)k`=1 running,
thus at least one job from (j`)k−i+1

`=1 is running. So we have Ti ≤ CA
max[J[jk−i+1]] for any fixed

random bits. Averaging over random bits of the algorithm and using (2), we have

k∑
i=1

pji ≤ E

[
k∑
i=1

siC
A
max[J[jk−i+1]]

]
=

k∑
i=1

siE
[
CA

max[J[jk−i+1]]
]
. (3)

Since A is R-approximation algorithm, we claim that for any partial input I ∈ pref(Ψ), we
have E[CA

max[I]] ≤ R ·C∗,Ψmax[I]: For I ∈ Ψ this follows from the definition of an approximation
ratio of the semi-online algorithm. Otherwise this follows since the semi-online algorithm has
E[CA

max[I ′]] ≥ E[CA
max[I]] for any end extension I ′ of I and C∗,Ψmax[I] is defined the an infimum

for all such extensions in Ψ.
The bound in the lemma now follows by using the previous claim for each term of the

right-hand side of (3), i.e., for each I = J[jk−i+1] and reindexing the sum backwards. �

We define rΨ to be the largest lower bound on the approximation ratio obtained by
Lemma 3.2.

Definition 3.3 For any vector of speeds s and any partial input J ∈ pref(Ψ),

rΨ(s,J ) = sup
1≤j1<j2<···<jk≤n

∑k
i=1 pji∑k

i=1 sk+1−i · C∗,Ψmax[J[ji]]
.

For any vector of speeds s, let rΨ(s) = supJ∈pref(Ψ) r
Ψ(s,J ).

Finally, let rΨ = sups r
Ψ(s).

With these definitions, we can prove the following main theorem.

Theorem 3.4 For any restriction Ψ and vector of speeds s, Algorithm RatioStretch with a
parameter r ≥ rΨ(s) is an r-approximation algorithm for semi-online preemptive scheduling
on m uniformly related machines.

In particular, rΨ(s) (resp. rΨ) is the optimal approximation ratio for semi-online algo-
rithms for Ψ with speeds s (resp. with arbitrary speeds).

10



Proof: If RatioStretch schedules a job, it is always completed at time Tj ≤ r · C∗,Ψmax[(pi)ni=1].
Thus to prove the theorem, it is sufficient to guarantee that the algorithm does not fail to find
machines Vk and Vk+1 for the incoming job j. This is equivalent to the statement that there is
always enough space on V1, i.e., that pj ≤W1(Tj) in the iteration when j is to be scheduled.
Since Wm+1 ≡ 0, this is sufficient to guarantee that the required k exists. Given the choice
of k, it is always possible to find time tj as the expression Wk+1(tj) + Wk(Tj) − Wk(tj)
is continuous in tj , for tj = 0 it is equal to Wk(Tj) ≥ pj , and for tj = Tj it is equal to
Wk+1(Tj) ≤ pj .

Consider now all the jobs scheduled on the first virtual machine, i.e., the set S1. Let
j1 < j2 < · · · < jk−1 denote the jobs in S1, ordered as they appear on input. Finally, let
jk = j be the incoming job.

Consider any i = 1, . . . , k and any time τ ∈ (0, Tji ]. Using the fact that the times Tj are
non-decreasing in j and that the algorithm stretches each job j over the whole interval (0, Tj ],
there are at least k − i jobs from S1 running at τ , namely jobs ji, ji+1, . . . , jk−1. Including
the idle machine, there are at least k+ 1− i real machines belonging to V1. (Possibly some of
these machines have speed zero, if k − i ≥ m.) Since V1 is the first virtual machine and the
real machines are adjacent, they must include the fastest real machines M1, . . . , Mk+1−i. It
follows that the total work that can be processed on the real machines belonging to V1 during
the interval (0, Tjm ] is at least s1Tjm + s2Tjm−1 + · · · + smTj1 . The total processing time of
jobs in S1 is pj1 + pj2 + · · ·+ pjk−1

. Thus to prove that jk can be scheduled on V1 we need to
verify that

pjk ≤ s1Tjk + s2Tjk−1
+ · · ·+ skTj1 − (pj1 + pj2 + · · ·+ pjk−1

).

Using Tji = r · C∗,Ψmax[J[ji]], this is equivalent to

k∑
i=1

pji ≤ r ·
k∑
i=1

sk+1−i · C∗,Ψmax[J[ji]].

Rearranging, this is equivalent to

r ≥
∑k

i=1 pji∑k
i=1 sk+1−i · C∗,Ψmax[J[ji]]

. (4)

By the assumption of the theorem we have r ≥ rΨ(s,J ). This implies (4), as the right-
hand side of (4) is one of the terms in the supremum of Definition 3.3 for rΨ(s,J ). Thus we
conclude that Algorithm RatioStretch does not stop and achieves approximation ratio r.

Lemma 3.2 implies that not better approximation ratio than rΨ(s) (resp. rΨ) can be
achieved by a any semi-online algorithm. �

4 Proper restrictions and linear programs

From Definition 3.3, we have an abstract formula for rΨ(s) which gives the desired approx-
imation ratio for any speeds and Ψ as a supremum over a bound for all partial inputs and
all their subsequences. It is not obvious how to turn this into an efficient algorithm. In this
section, we develop a general methodology how to compute the ratio using linear programs
and in the rest of the paper we apply it to a few cases.
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In the first part of the section we identify a large set of restrictions for which we can
simplify the computation of the optimal ratio from Definition 3.3. We also show some general
observations that may often be used to restrict the relevant inputs to monotone sequences.

The second part contains informal recipes that appear to be useful for formulating the
linear programs. The tricks described here are used in several sections on specific restrictions,
thus this saves repetition of the similar points later. Moreover, these methods appear to be
useful in more general circumstances, and thus this part can be used as a guide when applying
our methods to further restrictions. Some of the points may become more clear after studying
the specific applications in the later sections.

4.1 Proper restrictions and ordering of input sequences

We observed that for a general restriction it may be necessary to use an arbitrary subsequence
in Definition 3.3. However, for many restrictions it is sufficient to use the whole sequence,
similarly as for online scheduling.

Usual restrictions are essentially of two kinds. The first type are the restrictions that
put conditions on individual jobs or their order. These restrictions are closed under taking
subsequences (not only prefixes), i.e., any subsequence of an input sequence is also in Ψ.
The second type are the restrictions where some global information is given in advance, like∑
pj = P or C∗max = T . These are not closed under taking subsequences, but they are closed

under permuting the input sequence.
We define a large class of restrictions, called proper restrictions that includes both types

of restrictions discussed in the previous paragraph as well as their combinations; in particular
it includes all the restrictions listed in Section 2.1 and studied in this paper. From now on
we focus on proper restrictions.

Definition 4.1 An input restriction Ψ is proper if for any J ∈ Ψ and any subsequence I of
J , we have I ∈ pref(Ψ) and furthermore C∗,Ψmax[I] ≤ C∗,Ψmax[J ].

Definition 4.1 implies that any subsequence of any input sequence is a prefix of another
input. Thus, the sets of all the subsequences and all the prefixes of Ψ coincide, and using
the monotonicity condition in the definition allows us to simplify the computation of rΨ(s).
Compared to Definition 3.3, it is not necessary to take a supremum over all subsequences;
instead we simply use the last prefixes.

Definition 4.2 Let Ψ be a proper semi-online restriction and J ∈ pref(Ψ) a partial input.
We define

r̄Ψ(s,J ) =

∑n
j=1 pj∑n

j=1 sn+1−j · C∗,Ψmax[J[j]]
.

Observation 4.3 For any proper restriction Ψ,

rΨ(s) = sup
J∈pref(Ψ)

r̄Ψ(s,J )

Proof: Fix a small ε > 0. By Definition 3.3 there exists J ∈ pref(Ψ) such that rΨ(s) =
rΨ(s,J )− ε. Let I be a subsequence j1, . . . , jk of J from Definition 3.3 for rΨ(s,J ) which is
ε-close to the supremum. By Definition 4.1, I[i] ∈ pref(Ψ) for all i ≤ k. Furthermore, by the
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monotonicity condition in Definition 4.1, C∗,Ψmax[I[i]] ≤ C∗,Ψmax[J[ji]] for all i ≤ k. Summarizing
and using the notation of Definition 4.2, we obtain r̄Ψ(s, I) ≥ rΨ(s,J ) − 2ε. Taking the
supremum over all I obtained for ε→ 0, we obtain the observation. �

The following observations help us to further limit the set of relevant sequences.

Observation 4.4 Let Ψ be an arbitrary proper restriction, let s be an arbitrary speed vector,
and let J ,J ′ ∈ pref(Ψ) be two partial inputs with n jobs. Suppose that for some b > 0:

n∑
j=1

p′j = b ·
n∑
j=1

pj , and

(∀i = 1, . . . , n) C∗,Ψmax[J ′[i]] ≤ b · C∗,Ψmax[J[i]].

Then r̄(s,J ′) ≥ r̄(s,J ).

Proof: The observation follows immediately from the definition of r̄Ψ(s,J ). �

Observation 4.5 Assume that (i) Ψ is closed under permutations of the sequence and (ii)
increasing the processing time of the last job of a partial input cannot decrease C∗,Ψmax, i.e.,
for any partial inputs J ,J ′ ∈ pref(Ψ) with n jobs such that p1 = p′1, . . . , pn−1 = p′n−1,
and pn ≤ p′n we have C∗,Ψmax[J ] ≤ C∗,Ψmax[J ′]. Then it is sufficient to consider sequences of
non-decreasing jobs, i.e.,

rΨ(s) = sup
J∈pref(Ψ) : p1≤p2≤···≤pn

r̄Ψ(s,J )

Proof: First note that if Ψ is closed under permutations, then Ψ is a proper restriction.
Whenever J contains two jobs with pk > pk+1, swapping them can only decrease C∗,Ψmax[J[k]]
and any other C∗,Ψmax[J[i]] remains unchanged. Using Observation 4.4 with b = 1, it follows
that swapping the two jobs can only increase the lower bound. Since any sequence can be
sorted by swapping adjacent elements, it follows the supremum over non-decreasing inputs in
Ψ is equal to the supremum over all Ψ. �

If the restriction is not closed under permutations, in some cases we can still use Obser-
vation 4.4 in a similar way as in Observation 4.5 to replace two or more jobs by identical jobs
(with processing times equal to the arithmetic mean of the previous processing times). Also,
using b different from 1 we can scale the instance without changing the restriction; this is
used in a subtle way, for example, for the known sum of processing times. Details are given
in appropriate sections.

4.2 General methods for obtaining linear programs

Before we move to the specific restrictions, let us give a few general remarks about constructing
the linear programs for computing the optimal ratio.

Once we restrict the set of instances sufficiently, it is usually possible to describe instances
with a given number of jobs together with the optimal makespans by a set of linear conditions.
In particular, if the sequences are sorted, we know which jobs are the biggest ones and we
can express bounds on the optimal makespans for prefixes easily.

13



To obtain a bounded number of linear programs, we observe that only last m prefixes are
relevant (for a proper restriction). To compute the optimal makespans, we only need to know
the total processing time and the m− 1 largest jobs of each used prefix, which are typically
again the last jobs. Thus it is usually sufficient to represent the last (and largest) 2m−1 jobs
explicitly each by one variable and to represent the remaining small jobs by a single variable
giving their total processing time. This gives us one linear program for each n < 2m and one
additional linear program for all n ≥ m. We can then solve all the linear programs. Often it
is even sufficient to represent only the last m jobs, as we know that for the hardest instances
the previous jobs do not influence the optima.

In the online case, we may represent shorter instances by having additional jobs with
processing time 0, and then we may cover all instances by a single linear program, see [6].
However, in the semi-online case, generally, this does not work. The difference is in computing
C∗,Ψmax[I] for I containing only jobs with processing time 0. In the online case, we have
C∗max[I] = 0, thus these artificial initial segments do not influence the bound. However, if
for example the total or maximal processing time is known, then C∗,Ψmax[I] > 0. In this case
we need to handle sequences with a small number of jobs by separate linear programs. On
the other hand, for sequences with n < m jobs, the linear program is slightly simpler: In
the formula (1) for computing the optimum, the maximum is always achieved in the second
term for some k = 1, . . . , n. Also the programs for small n stay the same for all m ≥ n: the
additional machines simply can have no influence on inputs with fewer jobs. As a further
simplification, the case of n = 1 is necessarily trivial and yields the optimal objective equal
to 1, since a partial input with a single job cannot give any non-trivial lower bound.

Finally, we actually do not optimize a linear function, but a rational function r̄Ψ(s).
However, in all cases that we study the semi-online restriction scales, thus we further restrict
the instances by a convenient normalization, without changing the optimal ratio. Typically
we normalize the denominator of the expression for the approximation ratio to 1, i.e., 1 =
s1On+s2On−1 + · · ·+snO1 or 1 = s1Om+s2Om−1 + · · ·+smO1. Then the objective becomes
linear.

5 Non-increasing processing times, decr

Among other restrictions, we are also interested in sequences of non-increasing jobs, as this
is one of the most studied restrictions. Now the restriction Ψ contains sequences which have
pj ≥ pj+1 for all j. Note that Ψ is closed under taking subsequences and, in particular,
pref(Ψ) = Ψ and C∗,Ψmax[J ] = C∗max[J ] for all J ∈ Ψ.

We cannot swap jobs, however, we can replace all the jobs by jobs with all process-
ing times equal to the arithmetic mean of the original processing times. Since the jobs
are non-increasing, this cannot increase the sum of processing times in any initial segment.
Consequently, as the k largest jobs of any prefix are a (possibly shorter) prefix of J , this
transformation cannot increase any C∗,Ψmax[J[i]]. Thus, by Observation 4.4, to compute rΨ[J ],
we may restrict ourselves to instances J with equal processing times, i.e., p1 = p2 = · · · = pn.
By scaling, the actual size of jobs does not matter, we only need to determine the length of
the sequence which gives the highest ratio.

Let us denote r̂n(s) = r̄decr(s,J ) for a sequence J with n jobs with pj = 1. For this
sequence, C∗,Ψmax[J ] = C∗max[J ] = n/Sn. (Recall that si = 0 for i > m and Sk =

∑k
i=1 si.)
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Using this for the prefixes, we obtain

(r̂n(s))−1 =
1
n

n∑
k=1

ksn−k+1

Sk
. (5)

Using Observation 4.3 and the previous transformations, we obtain that rΨ(s) = supn r̂n(s).
We show that for any speed vector, the sequence r̂n(s) decreases with n for n ≥ 2m: In this
case sn−k+1 = 0 for k < n−m+ 1 and Sk = S for k > m and the right-hand side of (5) after
reindexing j = n− k + 1 is

1
nS

m∑
j=1

(n− j + 1)si.

This increases with n and thus r̂n(s) decreases. Consequently the approximation ratio for
any given speeds reduces to finding a maximum of 2m closed formulas, and this is efficient.

5.1 The overall ratio

A natural approach to estimate the overall ratio is to find for each n the worst speed vector and
the corresponding ratio r̂n = sups r̂n(s). Based on numerical experiments, we conjecture that
for each n, r̂n is attained for some s with s1 = s2 = · · · = sm−1. I.e., almost all the speeds
are equal. This conjecture would imply that with non-increasing jobs, the optimal overall
approximation ratio is the same for the uniformly related machines and for the identical
machines, and this is equal to (1 +

√
3)/2 ≈ 1.366 by [22]. A subtle detail is that our

conjecture allows one machine with a smaller speed (and from the calculations we know that
this is necessary). However, with increasing number of machines, the difference from the value
of the formula (5) with the last machine removed decreases to 0. Since the competitive ratio
for identical machines increases with the number of machines, as shown in [22], the limits
would be equal.

This is related to an intriguing geometric question. Suppose we have numbers xi, yi,
i = 1, . . . , n such that xiyi = i for all i and both sequences (xi)ni=1 and (yi)ni=1 are non-
decreasing. Consider the union of rectangles [0, xi]×[0, yn+1−i] over all i; this is a staircase-like
part of the positive quadrant of the plane. What is the smallest possible area of this union of
rectangles? Any speed vector can be turned into an instance of the geometric sequence with
xi = Si and yi = i/Si. Then, setting x0 = 0, the area is equal to∑

i=1

(xi − xi−1)yn−i+1 =
n∑
k=1

ksn−k+1

Sk
,

which is inversely proportional to r̂n(s). We conjecture that the minimum of the geometric
problem is attained for an instance with y1 = y2 = . . . = yk and xk+1 = xk+2 = . . . = xn for
some k. This would imply the previous conjecture.

We are not able to determine exactly the values of r̂n, but we can prove certain relations
between these values. In particular, for any integers a, n, and n′, r̂an ≥ r̂n and r̂n′ ≤ n+1

n r̂n.
For the first proof, we replace a sequence of speeds from the bound for r̂n by a sequence where
each speed is repeated a times, and the bound follows by manipulating the formula for r̂n.
The second inequality is shown by replacing the speeds for r̂n′ by a shorter sequence where
each new speed is a sum of a segment of a speeds in the original sequence, for a suitable a.
These relations show that whenever we are able to evaluate some r̂n for a fixed n, the optimal
overall ratio is at most n+1

n r̂n.
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Lemma 5.1 For any positive integers n and a and any speed vector s there exists a speed
vector s′ such that r̂n(s) ≤ r̂an(s′). Consequently r̂n ≤ r̂an.

Proof: We choose s′ so that it has a machines with each speed si. Formally, we set s′ua−v = su
for any positive integer u and v = 0, . . . , a−1. Let S′k =

∑k
i=1 s

′
k, and recall that Su =

∑u
i=1 su.

Let k = ua − v for some positive integer u and v ∈ {0, . . . , a − 1}. We claim that
S′k/k ≥ Su/u: We are comparing two averages of some sets of speeds. In S′k we sum a copies
of each speed in the sum Su, except that v copies of the smallest speed are omitted; thus the
average can only increase. Observe also that s′an−k+1 = sn−u+1. Thus

ks′an−k+1

S′k
≤ usn−u+1

Su
. (6)

In the middle step of the following derivation, we use (6) for each term in the sum (ob-
taining a equal terms for each u). The first and the last steps follow from (5).

(r̂an(s′))−1 =
1
an

an∑
k=1

ks′an−k+1

S′k
≤ 1
an

n∑
u=1

a
usn−u+1

Su
=

1
n

n∑
u=1

usn−u+1

Su
= (r̂n(s))−1.

�

Lemma 5.2 For any positive integers n and n′, r̂n′ ≤ n+1
n · r̂n.

Proof: Let N ≥ n and let a =
⌊
N+1
n+1

⌋
. We prove that r̂N ≤ N

an · r̂n.

First we show that this implies the lemma. For N → ∞, N
an converges to n+1

n . Thus
lim supN→∞ r̂N ≤ n+1

n · r̂n. If N is a multiple of n′, Lemma 5.1 implies that r̂n′ ≤ r̂N .
Since the multiples can be taken arbitrarily large, together with the limit property above this
implies r̂n′ ≤ lim supN→∞ r̂N ≤ n+1

n · r̂n.
Now consider an arbitrary speed vector s′. We construct a speed vector s such that

r̂N (s′) ≤ N
an r̂n(s). This implies that r̂N ≤ N

an · r̂n.
Denote again S′k =

∑k
i=1 s

′
k. We choose the speeds s so that we divide s′ into groups of a

speeds, and su is the sum of the speeds in the uth group. Formally, su =
∑a−1

v=0 s
′
ua−v.

By (5) we have

(r̂N (s′))−1 =
1
N

an∑
k=1

ks′an−k+1

S′k
≥ 1
N

n∑
u=1

a−1∑
v=0

(N − na+ ua− v)s′na−ua+v+1

S′N−na+ua−v
,

where the inequality follows by dropping the first N −an terms in the sum and grouping and
reindexing the remaining ones, using the substitution k = N − na + ua − v for some u ≥ 1
and v ∈ {0, . . . , a− 1}.

Now we proceed towards bounding the inner sums. We have S′N−na+ua−v/(N −na+ua−
v) ≤ S′ua/(ua), as by the choice of a we have N ≥ an + a − 1 ≥ na + v and thus on the
left-hand side we take the average of the same speeds as on the right-hand side, plus possibly
some smaller ones. Thus we have

a−1∑
v=0

(N − na+ ua− v)s′na−ua+v+1

S′N−na+ua−v
≥ ua

S′ua
·
a−1∑
v=0

s′na−ua+v+1 =
ua

Su
· sn−u+1 .
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Using this bound for the inner sums we have

(r̂N (s′))−1 ≥ 1
N

n∑
u=1

(
ua

Su
· sn−u+1

)
=
na

N
· 1
n

n∑
u=1

usn−u+1

Su
=
na

N
(r̂n(s))−1 .

�

Now we consider small values of n. For n = 3 the formula is

r̂3(s1, s2, s3) =
(
s3

3s1
+

2s2

3(s1 + s2)
+

s1

s1 + s2 + s3

)−1

Maximizing the function r̂3(s) can be done by hand and the maximum is r̂3 = 1.2 for s1 =
s2 = 1, s3 = 0. This yields an overall upper bound of r̂n ≤ 4

3 ·
6
5 = 1.6. By a computer-

assisted proof we have shown that r̂4 = (
√

7 + 1)/3 ≈ 1.215, yielding an overall upper bound
of r̂n ≤ 5

4 r̂4 = 5
12(
√

7 + 1) ≈ 1.52.

6 Known sum of processing times,
∑
pj = P

Here we are given a value P̄ and Ψ contains all J with P = P̄ . This restriction is not closed
under taking prefixes, thus one has to carefully distinguish the possible input sequences Ψ
and the larger set of possible partial inputs pref(Ψ). In particular, in the computation of the
optimal ratio both in Definition 3.3 and Observation 4.3 one needs to consider the whole set
of partial inputs pref(Ψ).

It can be easily verified that pref(Ψ) contains exactly all sequences J with P ≤ P̄ and
C∗,Ψmax[J ] = max{C∗max[J ], P̄ /S} for any J ∈ pref(Ψ). Since we can permute the jobs and
increasing the size of the last job does not decrease C∗,Ψmax, Observation 4.5 implies that to
compute rΨ(s) = r

P
pj=P (s), we can restrict ourselves to non-decreasing partial inputs J .

Furthermore, we observe that we can restrict ourselves to partial inputs J with less than
m jobs. If n ≥ m, we use the fact that C∗,Ψmax[J[i]] ≥ P̄ /S for any i and obtain

r̄Ψ(s,J ) =
P∑n

i=1 sn+1−i · C∗,Ψmax[J[i]]
≤ P∑n

i=1 sn+1−i
P̄
S

=
P

P̄
≤ 1,

using n ≥ m and P ≤ P̄ in the last step. Thus the partial inputs with n ≥ m cannot lead to
any non-trivial bound.

Finally, we may restrict ourselves to partial inputs J with P = P̄ : If P < P̄ , we scale up
J to J ′ by multiplying all the processing times by b = P̄ /P . Observation 4.4 then applies,
as each C∗,Ψmax[J ′[i]] = max{C∗max[J ′[i]], P̄ /S} increases by at most the scaling factor b.

Summarizing, we can assume that partial input J is a non-decreasing sequence of n < m
jobs with P = P̄ . This reduction seems paradoxical at first, as fewer than m jobs apparently
cannot be the hardest case for m machines. However note that all the machines up to Mm

actually may be used in the lower bound. Even if the sequence J is now in Ψ, the prefixes are
not, and thus the computation of their optima C∗,Ψmax[J[i]] may involve input sequences with
more jobs than n.

To calculate r(s), we solve m − 1 mathematical programs, one for each value of n, and
take the maximum of the optimal values of their objective functions. The program for given
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P , s, and n has variables qi for job sizes and Oi for optimal makespans of the prefixes:

maximize r =
P̄

s1On + s2On−1 + · · ·+ snO1

subject to
q1 + · · ·+ qn = P̄

P̄ ≤ SOk for k = 1, . . . , n
qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ n

qj ≤ qj+1 for j = 1, · · · , n− 1
0 ≤ q1

If we fix the input sequence, i.e., the values of qi, then the smallest objective is achieved for
Ok as small as possible which is exactly the value of the optimal makespan, by the constraints
involving Ok. Thus the mathematical program computes correctly the value r̄Ψ(s,J ).

We can also see that the linear program scales and the optimum does not depend on the
value P̄ . Thus we can normalize using 1 = s1On + s2On−1 + · · ·+ snO1 and also eliminate P̄
by combining the first two constraints. The resulting linear program is:

maximize r = q1 + · · ·+ qn
subject to

1 = s1On + s2On−1 + · · ·+ snO1

q1 + · · ·+ qn ≤ SOk for k = 1, . . . , n
qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ n

qj ≤ qj+1 for j = 1, · · · , n− 1
0 ≤ q1

Observe that the linear program for n = 1 is trivial; this is always true as a partial input
with a single job cannot give any non-trivial lower bound. From the analysis above it follows
that for any s, the maximum of the m − 2 optima of the remaining linear programs for
n = 2, . . . ,m− 1 is the correct value of r

P
pj=P (s).

6.1 Padding

We prove a theorem that shows that knowing the total processing time of jobs does not
improve the overall approximation ratio. This may sound surprising, as for two machines,
knowing the sum allows to generate an optimal schedule, and also for three machines the
improvement is significant, see Section 6.2. The same result holds also in presence of an ad-
ditional restriction with suitable properties. Among others, the requirements are satisfied for
non-increasing jobs and the online case. Recall that by “Ψ,

∑
pj = P” we denote the inter-

section of the two restrictions, i.e., the set of all sequences (pj)nj=1 ∈ Ψ such that
∑n

i=1 pj = P̄

for a given value of P̄
We say that Ψ allows scaling if for any J ∈ Ψ and b > 0, the modified sequence J ′ =

(bpj)nj=1 satisfies J ′ ∈ Ψ. We say that Ψ allows padding if for any J ∈ Ψ, there exists ε0 > 0
such that any sequence J ′ created by extending J by an arbitrary number of equal jobs of
size ε < ε0 at the end satisfies J ′ ∈ Ψ.

Theorem 6.1 Suppose that Ψ is proper, allows scaling, padding, and is closed under taking
prefixes. Let J ∈ Ψ and let s be arbitrary. Then for any δ > 0 there exists J ′ and s′ such
that

r̄Ψ,
P
pj=P (s′,J ′) ≥ r̄Ψ(s,J )/(1 + δ).
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Consequently, rΨ,
P
pj=P = rΨ.

Proof: We fix s, J , and P̄ given to the algorithm with the restriction
∑
pj = P . We proceed

towards constructing the appropriate s′ and J ′.
The intuitive explanation is this. First, we scale J to J ′ with the required total process-

ing time. This guarantees that r̄Ψ,
P
pj=P (s,J ′) is defined, but possibly it is much smaller

than r̄Ψ(s,J ′). Next we modify s to s′ by adding a huge number of slow machines. The
condition that Ψ allows padding guarantees that the values of optima in r̄Ψ,

P
pj=P (s′,J ′) can

be witnessed by extensions of the partial inputs by arbitrarily small jobs. The capacity of the
new machines is chosen to be sufficiently large, so that they can accommodate all these small
jobs, thus guaranteeing that the additional restriction

∑
pj = P has no significant influence

on the value of the optima. At the same time, the new machines are chosen to be sufficiently
slow so that the optimal bounds do not change significantly by adding the new machines.

Let J ′ = (p′j)
n
j=1 be the sequence J scaled by a factor of b (i.e., p′j = bpj for all j) so that

P (J ′) =
∑n

j=1 p
′
j = P̄ . Since Ψ allows scaling, we have C∗,Ψmax[J ′] = b · C∗,Ψmax[J ]. To verify

this, observe that scaling maps the extensions of J one-to-one to the extensions of J ′ and at
the same time scaling does not change membership in Ψ, by the assumption that Ψ allows
scaling. Consequently, we have r̄Ψ(s,J ′) = r̄Ψ(s,J ) by Definition 4.2.

Let Oi = C∗,Ψmax[J ′[i]], i.e., the optimal makespan after the ith prefix of J ′. Choose a small
σ > 0 so that σ < sm and σ < δs1/n. Let s′ be the sequence of speeds starting with s
and continuing with dP̄ /(O1σ)e of values σ. The first condition on σ guarantees that s′ is
monotone and thus a valid sequence of speeds.

We claim that, for speeds s′, we have C∗,Ψ,
P
pj=P

max [J ′[i]] ≤ Oi. We extend J ′[i] by sufficiently
many jobs of size at most σO1 so that the total processing time is P̄ ; this extension is in Ψ
for a sufficiently small size of jobs, since Ψ allows padding. We can schedule the jobs of J ′[i]
in time Oi on the original machines. Furthermore, we can schedule the remaining jobs with
the total processing time at most P̄ on the added machines of speed σ so that they complete
before time O1; this is guaranteed by the choice of the number of new machines and the upper
bound on the job size. Since O1 ≥ Oi, the extension can be completed by time Oi and thus
the extension witnesses our claim.

The claim, together with Definition 4.2 and P (J ′) = P̄ implies that

r̄Ψ,
P
pj=P (s′,J ′) ≥ P̄∑n

i=1 s
′
n−i+1Oi.

At the same time we have

r̄Ψ(s,J ) = r̄Ψ(s,J ′) =
P̄∑n

i=1 sn−i+1Oi.

To complete the proof, it now suffices to compare the denominators in the previous two
formulas. Using the second condition from the definition of σ, we have

n∑
i=1

s′n−i+1Oi ≤
n∑
i=1

sn−i+1Oi + nσOn ≤
n∑
i=1

sn−i+1Oi + δs1On ≤ (1 + δ)
n∑
i=1

sn−i+1Oi.

Thus

r̄Ψ,
P
pj=P (s′,J ′) ≥ P̄∑n

i=1 s
′
n−i+1Oi.

≥ P̄

(1 + δ)
∑n

i=1 sn−i+1Oi
=
r̄Ψ(s,J )

1 + δ
.

�
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6.2 Two and three machines

We now examine the special cases of m = 2, 3. The linear program is trivial for n = 1. From
this we can conclude that for m = 2 the approximation ratio is equal to 1, i.e., RatioStretch
always produces an optimal schedule. We can see this also intuitively: The algorithm starts
scheduling the incoming jobs in the interval [0, T1) where T1 ≥ P̄ /S. Consider the first time
when a job is scheduled at the first real machine M1. It is always possible to schedule this
job at the empty machine M1 so that it completes before the current optimal makespan.
Furthermore, after M1 is used the first time, the algorithm guarantees that in the interval
[0, T1) there is only one real machine idle at any time. This in turn implies that the remaining
jobs can be completed by time T1, as the total processing time of all jobs is P̄ ≤ S · T1.

For m = 3, it remains to solve the linear program for n = 2. In the next theorem we solve
it explicitly to illustrate our techniques for obtaining closed formulas for a fixed number of
machines.

Theorem 6.2 The optimal approximation ratio for semi-online scheduling with known sum
of the processing times on three machines is:

r
P
pj=P (s1, s2, s3) =


s1(s1 + s2)
s2

1 + s2
2

for s2
1 ≤ s2(s2 + s3)

1 +
s2s3

(s1 + s2)2 + s1s3
for s2

1 ≥ s2(s2 + s3)

Proof: We know that the optimal approximation ratio is given by the following linear program
for n = 2 jobs (as the case n = 1 is trivial). We write it explicitly:

maximize r = q1 + q2

subject to
1 = s1O2 + s2O1 (znorm)

q1 + q2 ≤ (s1 + s2 + s3)O1 (z1)
q1 + q2 ≤ (s1 + s2 + s3)O2 (z2)

q1 ≤ s1O1 (z1,1)
q1 + q2 ≤ (s1 + s2)O2 (z1,2)

q2 ≤ s1O2 (z2,2)
q1 ≤ q2 (z≤)
0 ≤ q1 (z0)

(7)

We can see that condition (z2) is implied by condition (z1,2). So we omit (z2) in the
following computations.

We distinguish two cases. In each case we simply give explicit primal and dual optimal
solutions. The primal solution is essentially the hardest sequence of jobs, together with the
values of Oi corresponding to the values of C∗,Ψmax on the prefixes of the sequence. The dual
solution gives a linear combination of the constraints such that if we add up these multiples
of the constraint, we derive a tight upper bound on r. By the slackness conditions for
linear programming, we only need to use the inequalities that are tight in the primal optimal
solution.
Case I: s2

1 ≤ s2(s2 + s3).
Let D = s2

1 + s2
2. This will be the common denominator for all values in the feasible

solution of this case.
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The hardest sequence has two jobs: p1 = s1s2/D and p2 = s2
1/D. These jobs induce a

feasible solution, where q1 = p1, q2 = p2, O1 = s2/D, O2 = s1/D. We can see that (z≤) and
(z0) are satisfied. Moreover (z1,1), (z2,2) and (z1,2) are satisfied and an equality is attained.
Thus it remains to prove (z1). After substitution we get (s1 + s2)s1/D ≤ (s1 + s2 + s3)s2/D.
If we multiply both sides by D and subtract s1s2, we can see that this is equivalent to case
condition. Finally, we check that the objective value is s1s2/D+s2

1/D = s1(s1 +s2)/(s2
1 +s2

2)
which is equal to the claimed bound.

To demonstrate the dual solution, we add up inequalities in (7) with the following co-
efficients (each coefficient corresponds to the inequality with the same label): z1,1 = z2,2 =
s2(s1 + s2), z1,2 = s1(s1 − s2), znorm = −s1(s1 + s2). We obtain the inequality

(q1 + q2)(s2
1 + s2

2)− s1(s1 + s2) ≤ 0.

Equivalently, we get r = q1 + q2 ≤ s1(s1 + s2)/(s2
1 + s2

2). Thus for every feasible primal
solution, r satisfies this bound.

This completes the proof that s1(s1 + s2)/(s2
1 + s2

2) is the optimal approximation ratio for
three machines in Case I.
Case II: s2

1 ≥ s2(s2 + s3).
Let D = s1(s1 + s2 + s3) + s2(s1 + s2) = (s1 + s2)2 + s1s3.
The worst sequence has two jobs: p1 = s2(s1 + s2 + s3)/D and p2 = s1(s1 + s2 + s3)/D.

These jobs induce a feasible solution, where q1 = p1, q2 = p2, O1 = (s1 + s2)/D and O2 =
(s1 + s2 + s3)/D. We can see that (z≤) and (z0) are satisfied. Moreover (z1,2), (z2,2) and
(z1) are satisfied and equality holds. We need to prove (z1,1). After substitution we get
s2(s1 + s2 + s3)/D ≤ s1(s1 + s2)/D, which is equivalent to the case condition. Finally, the
objective value is q1 + q2 = s2(s1 + s2 + s3)/D + s1(s1 + s2 + s3)/D, which is equal to the
claimed bound.

Again we need to prove a matching upper bound. We add up inequalities in (7) with the
following coefficients: z1 = s2(s1 +s2), z1,2 = s1(s1 +s2 +s3), znorm = −(s1 +s2)(s1 +s2 +s3).
We obtain (q1 + q2)D− (s1 + s2)(s1 + s2 + s3) ≤ 0. This gives the upper bound r = q1 + q2 ≤
(s1 + s2)(s1 + s2 + s3)/D which is equal to the claimed bound. �

The overall worst case ratio for three machines is 2+
√

2
3 ≈ 1.138 for s1 =

√
2, s2 = s3 = 1.

This should be compared with the unrestricted online case where the optimal ratio for two
machines is 4/3 and for three machines 1.461.

7 Known maximal processing time, pmax = p

Here we are given p̄, the maximal size of a job. As noted before, any algorithm that works
with the first job being the maximal one can be easily changed to a general algorithm for
this restriction. First it virtually schedules the maximal job and then it compares the size
of each job to p̄. If it is equal for the first time, it schedules the job to the time slot(s) it
reserved by virtual scheduling at the beginning. Other jobs are scheduled in the same way
in both algorithms. Thus we can work with the equivalent restriction Ψ containing all the
sequences where the first job is a maximal one, i.e., p1 ≥ pi for all i ≤ n. Then pref(Ψ) = Ψ
and C∗,Ψmax[J ] = C∗max[J ] for any J ∈ Ψ.

Using the same argument as in the proof of Observation 4.5, by Observation 4.4, the other
jobs can be reordered as in the previous case, and we can maximize only over sequences with
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non-decreasing processing times from the second job on. Furthermore, we can replace the
first and last jobs (which are now the two largest jobs) by two jobs with processing time
(p1 + pn)/2. By Observation 4.4, the value r̄Ψ(s,J ) cannot decrease.

We proceed towards the formulation of the linear programs. In this case we need to solve
separately m− 1 mathematical programs, one for each n = 2, . . . ,m− 1 and one for n ≥ m,
and take the maximum value. In all the programs we can use scaling and normalization, to
obtain a linear program, using a variable p for p1 instead of a constant p̄.

The resulting linear programs are the following. For each 2 ≤ n < m, we have the following
linear program:

maximize r = p+ q2 + · · ·+ qn
subject to

1 = s1On + · · ·+ snO1 (znorm)
p ≤ s1Ok (zk,k) 1 ≤ k ≤ n

p+ qj+1 + · · ·+ qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j < k ≤ n
0 ≤ q2 (z0,2)
qk ≤ qk+1 (z≤,k) 2 ≤ k ≤ n− 1
qn = p (substitution)

The constraint (zn,n) is implied by (zn−1,n), thus we can omit it.
For n ≥ m, we have a single linear program. Here the variables are p for the processing time

of the first job, q1 for the total processing time of the small jobs, i.e., q1 = p2 + · · ·+ pn−m+1,
and qi = pn−m+i, for i = 2, . . . ,m.

maximize r = p+ q1 + · · ·+ qm
subject to

1 = s1Om + · · ·+ smO1 (znorm)
p+ q1 + · · ·+ qk ≤ SOk (zk) 1 ≤ k ≤ m

p ≤ s1Ok (zk,k) 1 ≤ k ≤ m
p+ qj+1 + · · ·+ qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j < k ≤ m

0 ≤ q1 (z0,1)
0 ≤ q2 (z0,2)
qk ≤ qk+1 (z≤,k) 1 ≤ k ≤ m− 1
qm = p (substitution)

The constraint (z1,m) is implied by (zm) and (zm,m) is implied by (zm−1,m), thus these two
constraints can be omitted.

To verify that the maximum of the m linear programs is rΨ(s), we observe that from each
input J we can construct a feasible solution of one of the linear programs with objective at
least r̄Ψ(s,J ) and vice versa. The first direction, from the instance to a feasible solution, is
described during the construction of the linear programs.

Given a feasible solution of a linear program for n < m, the corresponding input is simply
the sequence of n jobs with p1 = p and pi = qi for i = 2, · · · , n. Given a feasible solution of
a linear program for n ≥ m, we need to replace q1 by a prefix of jobs with total processing
time q1. We choose k = max{m, dq1/pe}. The input instance has n = m + k jobs and the
processing times are p1 = p, p2 = · · · = pk+1 = q1/k, and pk+i = qi for i = 2, . . . ,m. The
choice of k guarantees that p is the maximal processing time. The fact that we replace q1 by
at least m jobs of equal size guarantees that the maximum in (1) is given either by P/S or
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by Pi/Si for some i such that Pi does not contain any of these jobs replacing q1, using the
observation after (1). Thus C∗,Ψmax[J[n−i+1]] ≤ Oi for all i = 1, . . . ,m, and the lower bound
given by J is at least the objective of the linear program.

For this restriction, the best lower bound is given by a computer-generated hard instance
with approximation ratio 1.88 with m = 120.1 This instance is obtained by treating the
above mathematical program as a quadratic program with variables p, qj , Oi, and si. After
some heuristic substitutions, the solver finds a reasonably good solution, which can be verified
easily.

7.1 Three machines

Next we give a complete solution for m = 3, generalizing the analysis for m = 2 in [16].

Theorem 7.1 The optimal approximation ratio for semi-online scheduling with known max-
imal processing time on three machines is

rpmax=p(s1, s2, s3) =


1 +

s1(s2 + s3)
S2 + s2

1

for s1s2 ≥ s3S

1 +
s1s2 + 2s1s3

S2 + 2s2
1 + s1s2

for s1s2 ≤ s3S

Proof: We need to solve one linear program for n = 2 and one linear program for m = 3
(covering all the cases n ≥ 3), and take the maximum.

The linear program for n = 2 is simple, as the only considered sequence has two jobs of
size p and the bound can be written explicitly as

rpmax=p(s1, s2) =
2s2

1 + 2s2
2

2s2
1 + s1s2 + s2

2

= 1 +
s1s2 − s2

2

2s2
1 + s1s2 + s2

2

It turns out that optimal solution of linear program for m = 3, which we solve below, is
always larger than the previous formula, we omit this calculation. The program for m = 3 is:

maximize r = 2p+ q1 + q2

subject to
1 = s1O3 + s2O2 + s3O1 (znorm)

p+ q1 ≤ (s1 + s2 + s3)O1 (z1)
p+ q1 + q2 ≤ (s1 + s2 + s3)O2 (z2)

2p+ q1 + q2 ≤ (s1 + s2 + s3)O3 (z3)
p ≤ s1O1 (z1,1)
p ≤ s1O2 (z2,2)

p+ q2 ≤ (s1 + s2)O2 (z1,2)
2p ≤ (s1 + s2)O3 (z2,3)
0 ≤ q1 (z0,1)
0 ≤ q2 (z0,2)
q2 ≤ p (z≤,2)

Case I s1s2 ≥ (S − s1 − s2)S.
This case holds for any m ≥ 2 and we prove it here in this general form. Let D = S2 + s2

1.
1See the Maple output at http://kam.mff.cuni.cz/~sgall/ps/semirel-pmax.mpl
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The primary optimal solution is q1 = (S− s1)S/D, q2 = . . . = qm−1 = 0, p = s1S/D,O1 =
. . . = Om−1 = S/D,Om = (S + s1)/D. All inequalities can be easily verified. This gives a
lower bound on the ratio of (S2 + s1S)/(S2 + s2

1).
To obtain an upper bound (and demonstrate the optimal dual solution) we sum the

inequalities multiplied by the following non-negative coefficients: zi,i = sm−i+1S(S + s1) for
i = 1, · · · ,m−2, zm−1,m−1 = (s1s2−(S−s1−s2)S)S, zm−1 = s1(S−s1)S, and zm = s2

1(S+s1).
The resulting inequality yields the bound after substituting the identity (znorm).
Case II s1s2 ≤ s3S.

Let D = S2 + 2s2
1 + s1s2.

The primary optimal solution is: q1 = (S − s1)S/D, p = q2 = s1S/D, O1 = S/D,
O2 = (s1 +S)/D, O3 = (2s1 +S)/D. Again, all the inequalities can be easily checked as well
as the resulting value of the lower bound.

To obtain an upper bound we sum the inequalities multiplied by the following non-negative
coefficients: z≤,2 = z1 = s3S − s1s2, z2 = s2(2s1 + S), z3 = s1(2s1 + S), z1,1 = (s2 + 2s3)S.

The linear programs for n = 2 is trivial. The only remaining input sequence has two
identical jobs. The resulting ratio is r = 1 + s1s2−s22

2s21+s1s2+s22
. We verify that this ratio is strictly

smaller than the resulting formula of program for m = 3:
We prove s1s2−s22

2s21+s1s2+s22
≤ s1(s2+s3)

S2+s21
by:

(s1s2 − s2
2)(S2 + s2

1) = 2s3
1s2 + 2s2

1s2s3 − s1s
3
2 + s1s2s

2
3 − s4

2 − 2s3
2s3 − s2

2s
2
3

≤ 2s3
1s2 + 2s2

1s2s3 + s1s2s
2
3

= s1s2(2s2
1 + s1s3 + s2

3) + s2
1s2s3

≤ s1(s2 + s3)(2s2
1 + s1s2 + s2

2)

The second case s1s2−s22
2s21+s1s2+s22

≤ s1s2+2s1s3
S2+2s21+s1s2

is proved by:

(s1s2 − s2
2)(S2 + 2s2

1 + s1s2) = 3s3
1s2 + 2s2

1s2s3 − 2s1s
3
2 + s1s2s

2
3 − s4

2 − 2s3
2s3 − s2

2s
2
3

≤ 3s3
1s2 + 2s2

1s2s3 + s1s2s
2
3

= s1s2(2s2
1 + s1s3 + s2

3) + s3
1s2 + s2

1s2s3

≤ (s1s2 + 2s1s3)(2s2
1 + s1s2 + s2

2)

�

The approximation ratio for three machines is maximized at s1 = 2, s2 = s3 =
√

3, which
falls into the second case and gives the ratio (8 + 12

√
3)/23 ≈ 1.252.

8 Approximately known optimal makespan, T ≤ C∗max ≤ αT .

If some value from previous restrictions is given not exactly but it is only known to belong
to some interval, typically it means that the linear program is weakened by relaxing some
equation to a pair of inequalities, or by relaxing some inequality. Then the optimal ratio is
again computed using a linear program.

In this particular variant, we have two parameters, T̄ and α > 1. The semi-online restric-
tion contains all job sequences with the optimal makespan between T̄ and αT̄ . We proceed

24



towards the formulation of the linear programs. Here we need to solve separately m mathe-
matical programs, one for each n = 1, . . . ,m− 1 and one for n ≥ m, and take the maximum
value.

We now describe the usual simplifications; they apply to all the m mathematical programs.
Since we can permute the jobs and increasing the size of the last job does not decrease C∗,Ψmax,
Observation 4.5 implies that we can restrict ourselves to non-decreasing sequences J .

To express the constraint bounding the optimum, one can simply assert that T̄ ≤ Ok ≤
αT̄ . We can see that the mathematical program scales and its value does not depend on the
value of T̄ . Thus we can treat T̄ as a variable and normalize the denominator of the objective
function to be 1. To further simplify the linear program, we note that in the optimal solution
we have O1 ≤ O2 ≤ · · ·, i.e., the values of the variables for the optima are ordered. Then the
constraint for bounding the optima in terms of T̄ simplifies to On ≤ αO1 or Om ≤ αO1 and
the variable T̄ no longer appears in the program.

The resulting linear programs are the following. For each n < m, we have the linear
program

maximize r = q1 + q2 + · · · qn
subject to

1 = s1On + s2On−1 + · · ·+ snO1

qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ n
qj ≤ qj+1 for j = 1, . . . , n− 1
0 ≤ q1

Ok ≤ Ok+1 for k = 1, . . . , n− 1
On ≤ αO1

For n ≥ m we have a single linear program, where the variable q1 denotes the sum of the
first processing times, i.e., q1 = p1 + p2 + · · ·+ pn−m+1.

maximize r = q1 + q2 + · · · qm
subject to

1 = s1Om + s2Om−1 + · · ·+ smO1

q1 + q2 + · · ·+ qk ≤ SOk for 1 ≤ k ≤ m
qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 2 ≤ j ≤ k ≤ m

qj ≤ qj+1 for j = 2, . . . ,m− 1
0 ≤ q1

0 ≤ q2

Ok ≤ Ok+1 for k = 1, . . . ,m− 1
Om ≤ αO1

To verify that the maximum of the m linear programs is rΨ(s), we observe that from each
input J we can construct a feasible solution of one of the linear programs with objective at
least r̄Ψ(s,J ) and vice versa. The first direction, from the instance to a feasible solution, is
again described during the construction of the linear programs.

Given a feasible solution of a linear program for n < m, the corresponding input is simply
the sequence of n jobs with pi = qi. Given a feasible solution of a linear program for n ≥ m, the
corresponding input has n = 2m− 1 jobs and the processing times are p1 = · · · = pm = q1/m
and pm+i = qi+1 for i = 1, . . . ,m−1. In both cases we set T̄ = O1. Again, as for the previous
restriction, the optima Oi are computed correctly and we obtain a desired lower bound on
the approximation ratio.
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8.1 Three machines

Next we give a complete analysis for m = 3, generalizing the analysis for m = 2 in [20].

Theorem 8.1 The optimal approximation ratio for semi-online scheduling with approxi-
mately known optimum up to a factor α on three machines is

rT≤C
∗
max≤αT (s1, s2, s3) =



αS

(α− 1)s1 + S
for S ≥ α(S − s1)

αS2

αs1S + αs2(S − s1) + s3S
for


S ≤ α(S − s1),
S ≥ αs3, and
S2 ≥ α(S − s1)2

S2

S2 − s1s2 − s1s3 − s2s3
for

{
S ≤ αs3 and
s2S ≤ s1(S − s1)

S3

s1S2 + s2(S − s1)S + s3(S − s1)2
for

{
S2 ≤ α(S − s1)2 and
s2S ≥ s1(S − s1)

Proof: We need to solve the linear programs for n = 2 and m = 3, and take the maximum.
It turns out that optimal solution of linear program for m = 3 is always the maximal of these
two.

Here we list the linear program for m = 3 explicitly, followed by its optimal solutions:

maximize r = q1 + q2 + q3

subject to
1 = s1O3 + s2O2 + s3O1 (znorm)
q1 ≤ (s1 + s2 + s3)O1 (z1)

q1 + q2 ≤ (s1 + s2 + s3)O2 (z2)
q1 + q2 + q3 ≤ (s1 + s2 + s3)O3 (z3)

q2 ≤ s1O2 (z2,2)
q2 + q3 ≤ (s1 + s2)O3 (z2,3)

q3 ≤ s1O3 (z3,3)
O3 ≤ αO1 (zα)
O1 ≤ O2 (zb,1)
O2 ≤ O3 (zb,2)

0 ≤ q1 (z0,1)
0 ≤ q2 (z0,2)
q2 ≤ q3 (z≤,2)

Case I: S ≥ α(S − s1).
This case holds for general values of m, and we prove it here in this general form. Let

D = (α− 1)s1 + S.
The primary optimal solution is q1 = S/D, q2 = · · · = qm−1 = 0, qm = (α − 1)S/D,

O1 = . . . = Om−1 = 1/D, Om = α/D. It is easy to verify that this is feasible; note
that (zm,m) is equivalent to the case condition. The objective is the desired lower bound of
αS/((α− 1)s1 + S).

To prove the upper bound we first derive inequalities O1 ≤ Ok from (zb,i). Now sum the
corresponding inequalities multiplied by the following coefficients: zα = (S−s1)S/D, zm = 1,
and inequalities O1 ≤ Ok multiplied by αskS/D for 2 ≤ k ≤ m− 1.
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Case II: S ≤ α(S − s1), S2 ≥ α(S − s1)2, and S ≥ αs3.
Let D = αs1S + αs2(S − s1) + s3S.
The primary optimal solution is q1 = S2/D, q2 = (α(S − s1) − S)S/D, q3 = αs1S/D,

O1 = S/D, O2 = α(S − s1)/D, O3 = αS/D. Due to the first case condition, q2 ≥ 0. We get
the ratio r = αS2/D.

For the upper bound we sum the inequalities with following coefficients: zα = s3S
2,

z2 = z3,3 = αs2S, z3 = s3S + αs1(s1 + s3).

Cases III and IV. The ratios in these cases are equal to the ratios for online scheduling.
Thus the upper bound is trivial. To verify the lower bound, we use the same sequences as
for online scheduling. In addition we need to verify that (zα) is satisfied for these cases: it
turns out to be equivalent to the case conditions S ≤ αs3 for Case III and S2 ≤ α(S − s1)2

for Case IV. We omit the proofs and sequences here as they can be found in [6].

The linear program for n = 2 has maximum

r = min
{
s2

1 + s1s2

s2
1 + s2

2

,
αs1 + αs2

αs1 + s2

}
.

We omit the proof here. It can be easily verified that this formula is dominated by the formula
in Case I. For Case II the verification is a bit harder, but it is possible to substitute the case
condition S ≤ α(S−s1) into the value of the approximation ratio to obtain a formula without
α, and the rest is a mechanical calculation. In Cases III and IV the approximation ratio is
the same as for the online scheduling, thus the linear program for n = 2 cannot give a larger
bound and no verification is needed. �

9 Tightly grouped processing times, p ≤ pj ≤ αp

In this case we have two parameters p̄ and α, and the restriction Ψ contains all sequences J
with p̄ ≤ pj ≤ αp̄, for all j = 1, . . . , n. Once again, Ψ is closed under taking subsequences
and, in particular, pref(Ψ) = Ψ and C∗,Ψmax[J ] = C∗max[J ] for all J ∈ Ψ.

The case of tightly grouped jobs is interesting, because it is not clear how to set up a single
linear program for a sufficiently large n. The problem is that the possible total processing
time of small jobs do not form a single interval, and thus the domain of the mathematical
program is not convex. (Even for a fixed α it is not straightforward to form a single linear
program for n ≥ n0 for any n0.) However, we observe that for a fixed α and s, starting from
some n0, the value of r̄Ψ(s,J ) decreases with the number of jobs. Thus a constant number
of linear programs is sufficient.

To form the linear programs for a fixed n is now routine, even though in this case we
possibly need also values n > m (in which case we use the notation si = 0 for i > m). Since
Ψ is closed under permutations, we may restrict ourselves to sequences with non-decreasing
processing times. The restriction on the processing times is now handled similarly as in the
previous case the restriction of approximately known optimum. Also, we can normalize as
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usual. The resulting linear program for a fixed n is:

maximize r = q1 + q2 + · · · qn
subject to

1 = s1On + s2On−1 + · · ·+ snO1

q1 + q2 + · · ·+ qk ≤ SOk for 1 ≤ k ≤ n
qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ n

qj ≤ qj+1 for j = 1, · · · , n− 1
qn ≤ αq1

Now we want to bound the number of the linear programs needed for a fixed α and s. We
observe that for a sufficiently large n, we have C∗,Ψmax[J ] = P/S. Indeed, to guarantee this for
all sequences of length n, it is sufficient to guarantee that P/S is at least the bound in the
second term of (1) for all k. For a given k, the worst possible sequence has exactly k jobs
with processing times αp̄ and the remaining jobs with processing times p̄. Then the required
inequality is

n+ k(α− 1)
S

≥ kα

Sk
for all k = 1, . . . ,m. (8)

Clearly, for some n1 (dependent on α and s), (8) holds for any n ≥ n1.
Take n0 = n1 + m − 1; note that n0 ≥ m. Now, for any J with n ≥ n0 jobs and any

i ≥ n − m + 1, we have C∗,Ψmax[J[i]] = (p1 + p2 + · · · + pi)/S. Consequently, expanding the
terms, we have

r̄Ψ[s,J ] =
(s1 + · · ·+ sm)(p1 + · · ·+ pn)

s1(p1 + · · ·+ pn) + s2(p1 + · · ·+ pn−1) + · · ·+ sm(p1 + · · ·+ pn−m+1)
. (9)

Consider this as a linear rational function in pi’s. The coefficient of p1 is equal to S both in
the numerator and in the denominator, while the whole ratio is at least 1. Thus, assuming
n > n0, by removing all the occurrences of p1, the value of the fraction does not decrease.
However, the obtained expression is equal to the one for r̄Ψ[s,J ′], where J ′ is the sequence
with the first job removed (which still has at least n0 jobs). This shows that in computing
rΨ[s], we can restrict ourselves to sequences J with n ≤ n0 jobs.

For n = n0, we can further analyze the formula (9). Since the ratio is a linear rational
function, it is monotone in each pi (it can be decreasing or increasing, depending on the
speeds, always decreasing in p1). Thus the hardest sequence of n0 jobs has p1 = 1 and
pi ∈ {1, α} for i = 2, . . . , n0 (after scaling), and we can simply calculate the ratio for these n0

sequences.
Thus we can compute rΨ[s] by taking the maximum among these n0 sequences and the

optima of the linear programs for n < n0. Note that we have not tried to find a good bound
for n0 or for the number of the conditions in the linear programs. For special cases, e.g., for
a small number of machines, it is possible to give better bounds.

9.1 Two machines

We now examine the case of m = 2, to obtain the results of [16] using our framework. Denote
s = s1/s2; by scaling we can assume that s1 = s and s2 = 1.

From the previous results for the online problem [25, 10], we know that in the online case,
the hardest sequence has three jobs with p1 = p2 = 1 and p3 = 2s. This sequence is in Ψ
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whenever α ≥ 2s. Thus for α ≥ 2s, the optimal algorithm for the current restriction is the
optimal online algorithm.

Now consider the case α < 2s. The condition (8) reduces to a single condition (n+ (α−
1))/(s + 1) ≥ α/s, or equivalently n ≥ 1 + α/s. Since α/s < 2, we can take n1 = 3 and
n0 = 4. For n = n0 = 4, the ratio (9) is decreasing in p1, p2, and p3, thus maximized by a
sequence (1, 1, 1, r), i.e., with p1 = p2 = p3 = 1 and p4 = α.

To completely analyze the case of m = 2, it is sufficient to analyze the sequences with
n = 2 and n = 3, and take the maximum of these and the sequence (1, 1, 1, r). For analyzing
the sequences with n = 2 and n = 3 we can directly use the formula for r̄Ψ[s,J ] instead of
solving the linear program. We can take advantage of scaling so that p1 = 1 and also of the
fact that for n = 3 the optimum is P/S, as we proved above. For n = 3 it is then easy to
see that the bound is increasing in p3, thus we have p3 = α in the worst case. In both cases
n = 2, 3 it remains to find the value of p2. A routine calculus calculation which we omit shows
that the only possible extremal sequences are (1,min{r, s}) and (1, 1, r).

Finally, it turns out that for r < 2s, the optimum for the sequence (1, 1, r) is P/S, as well
as for its prefix (1, 1) thus the sequence (1, 1, r) always gives a larger bound than (1, 1, 1, r),
using our previous analysis of (9).

Thus the only possible extremal sequences are (1,min{r, s}) and (1, 1, r), yielding the
result of [16].

10 Combined restrictions

If Ψ is given as an intersection of two standard restrictions, the same methods for reducing the
number of candidates for the worst case instances apply. Sometimes we need to be somewhat
careful as some simplifications connected to the two restrictions are not compatible. We give
two examples, in each we know the total processing time and in the first one also the maximal
processing time, while in the second the jobs are non-increasing. In both cases Theorem 6.1
allows padding and thus the overall approximation ratio is the same as without knowledge of
the total processing time.

10.1 Known total and maximal processing times,
∑
pj = P, pmax = p

In this section we construct the linear program for the first combined semi-online restriction.
We are given two parameters, P̄ and p̄. The restriction Ψ contains all inputs J with P = P̄ ,
p1 = p̄, and pj ≤ p̄ for all j ≤ n. The interesting feature of this variant is that not all the
simplifications used before are possible, as they could change the ratio of P and the maximal
processing time. Consequently, the results for small m split into more cases, depending on
this ratio.

Similarly to the case pmax = p, the restriction of knowing the maximal processing time is
equivalent to the restriction to the set of inputs where the first job is the maximal one. This
modified restriction allows padding and scaling, and thus the overall approximation ratio is
the same as for the restriction pmax = p by Theorem 6.1.

Furthermore, similarly to the case of pmax = p, we may restrict ourselves to partial inputs
with non-decreasing processing times from the second job on. (However, the jobs in the
extensions that define the optima may be small.) Using the same calculation as in the case
of
∑
pj = P , it follows that we may restrict ourselves to partial inputs with n < m.
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On the other hand, unlike in the previous cases, we cannot scale so that P = P̄ and we
cannot assume that the last job has the maximal processing time. These arguments break
down, as the appropriate transformation changes the ratio of P̄ and p̄.

Let β = P̄ /p̄. Note that β ≥ 1, as otherwise Ψ is empty. Here we have two cases where
the competitive ratio is 1, and both of them can be explained intuitively. One case is when
β is so small that when the largest job is processed on the fastest machine, then all the other
jobs can be completed in the same time on the second machine. The other case is the opposite
extreme: β is so large so that we know that the optimum is always given by the total volume
of the jobs, not the large jobs. It is also not very surprising that solutions are very different
for the case of β ≤ 2 when the maximal job is larger than all the remaining jobs and for
the case of β ≥ 2. Surprisingly, for β close to 2 there is always one subcase where the exact
competitive ratio does not depend on β; we do not have an intuitive explanation for this
phenomenon.

The mathematical program for a fixed n < m is:

maximize r = p+ q2 + · · ·+ qn
subject to

1 = s1On + · · ·+ s1On
βp ≤ SOk for 1 ≤ k ≤ n
p ≤ s1Ok for 1 ≤ k ≤ n

p+ qj+1 + · · ·+ qk ≤ (s1 + · · ·+ sk−j+1)Ok for 1 ≤ j < k ≤ n
p+ q2 + · · ·+ qn ≤ βp

qn ≤ p
0 ≤ q2

qk−1 ≤ qk for 3 ≤ k ≤ n

Theorem 10.1 The optimal approximation ratio for semi-online scheduling with known total
and maximal processing times on three machines for β ≤ 2 is following:

r
P
pj=P,pmax=p(s1, s2, s3) =



1 for βs1 ≤ s1 + s2

βs1(s1 + s2)
βs2

1 + s1s2 + s2
2

for s1 + s2 ≤ βs1 ≤ S

(s1 + s2)S
s1S + (s1 + s2)s2

for βs1 ≥ S

and for β ≥ 2 is following:

r
P
pj=P,pmax=p(s1, s2, s3) =



1 for β(s1 + s2) ≥ 2S

2(s1 + s2)S
2s1S + βs2(s1 + s2)

for
{
βs1 ≥ S and
β(s1 + s2) ≤ 2S

2s1(s1 + s2)
s1(s1 + s2) + s2

1 + s2
2

for βs1 ≤ S

We omit the proof of this theorem, see [5] for the solutions of the linear programs.
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10.2 Known total processing time and non-increasing jobs,
∑
pj = P, decr

We conclude by a restriction Ψ containing all sequences with total processing time equal to a
parameter P̄ and non-increasing processing times. Similarly as for non-increasing processing
times, we do not need to solve linear programs.

Again, similarly to the non-increasing jobs, we can assume that all the jobs in the partial
input J are equal; we normalize their size to be 1. Once all jobs are equal we have

C∗,Ψmax[J ] = max
{
n

Sn
,
P̄

S

}
. (10)

Note that again the jobs in the extensions defining C∗,Ψmax[J ] are possibly smaller than 1.
It must hold that P̄ ≥ n, as otherwise the sequence cannot be completed to satisfy∑
p = P̄ . If n ≥ m, then all optima are equal, yielding approximation ratio of 1. I.e., if the

algorithm gets first job smaller or equal P/m, it can always schedule all jobs optimally. So
we can restrict ourselves only to cases with n < m.

Also, we can scale the whole sequence by b−1 = P̄ /n, i.e., the scaled sequence has pj =
P̄ /n. From Observation 4.4 we get that the scaled sequence yields larger lower bound. Thus
we can restrict ourselves to instances with P̄ = n.

Let us denote r̂n(s) = r̄
P
pj=P,decr(s,J ) for a sequence J with n jobs with pj = 1

and for P̄ = n. Using Observation 4.3 and the previous transformations, we obtain that
r

P
pj=P,decr(s) = maxm−1

n=1 r̂n(s).
Using (10) we obtain

(r̂n(s))−1 =
n∑
k=1

sn−k+1 ·max
{

k

nSk
,

1
S

}
.

Note that because k/Sk is nondecreasing with k, the maximum for the first few values of k is
1/S and for the remaining ones it is k/(nSk).

Now we examine the cases for two, three, and four machines. The restriction
∑
p = P

ensures that in case m = 2 the algorithm achieves approximation ratio 1.
For three machines, we only need to calculate r̂2. We have

(r̂2(s))−1 = s2 ·max
{

1
2s1

,
1

s1 + s2 + s3

}
+

s1

s1 + s2
.

The approximation ratio is maximized at s1 = 2, s2 = s3 = 1, and its value is r = 12
11 ≈ 1.091.

For four machines we take the maximum of r̂2 and r̂3. The first one is maximized when
s2 = s3 = s4 and has the approximation ratio is (7

√
2 + 2)/7 ≈ 1.094, which is the same

as without the restriction
∑
pj = P . The formula for r̂3 is maximized at s1 = s2 = 1,

s3 = s4 = 1
2 , where the ratio is r = 10/9 ≈ 1.111.

Conclusions and open problems.

We have provided a general algorithm for semi-online preemptive scheduling. Now, instead
of re-inventing the whole machinery for new cases of interest and going through the ad hoc
case analysis, we can just analyze the appropriate linear programs as we have demonstrated
on a variety of special cases.
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10.3 Other restrictions

Similar methods can be used to analyze other semi-online restrictions, their combinations
and inexact versions, or give formulas for the approximation ratios for more machines. This
becomes a somewhat mechanical exercise; we have not found any surprising phenomenon in
the cases we have examined so far.

We should note that there are also semi-online models that do not fit into our framework
at all. For example, the algorithm may be allowed to store some job(s) in a buffer. This model
was introduced for the non-preemptive version in [21], later tight bounds on identical machines
were given in [8]. The preemptive version was recently studied in [3]. The technical reason
why this semi-online variant cannot be analyzed using our techniques is that a schedule for
an initial prefix of jobs cannot be obtained from the final schedule by removing the remaining
job. This property is essential in our proof.

On the other hand, some models that do not exactly fit in our description in this paper,
yet they can be analyzed in the same way. One example is the model studied in [26, 12].
Here we are guaranteed that the largest job comes last, which fits into our framework, and
the scheduler learns that the jobs is the last one when it is released, which is more difficult
to handle. To analyze this model, we need to allow the input instance to contain with
each job some additional information, for example, here a bit indicating the last job. With
this modification, all the proofs work with no changes. We have not performed the actual
calculation. Analyzing this and similar models, as well as further extending the scope of our
methods remains as a topic for future research.

10.4 Open problems

It would be interesting, and it seems hard to us but not impossible, to determine the exact
overall approximation ratios for the basic restrictions.

The most interesting question in this area is if some similar results can be proven for
non-preemptive algorithms. There we do not have the same understanding of the optimal
makespan, so perhaps one can only hope for some reasonably good bound on the approxima-
tion ratios. The current best overall upper bounds are 5.828 for deterministic and 4.311 for
randomized algorithms, while the lower bounds are only 2.438 and 2. Also for a fixed number
of machines very little is known.
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