
Journal of Scheduling manuscript No.
(will be inserted by the editor)

Scheduling Shared Continuous Resources on
Many-Cores

Ernst Althaus · André Brinkmann ·
Peter Kling · Friedhelm Meyer auf der
Heide · Lars Nagel · Sören Riechers ·
Jǐŕı Sgall · Tim Süß

Received: date / Accepted: date

Abstract We consider the problem of scheduling a number of jobs on m
identical processors sharing a continuously divisible resource. Each job j comes
with a resource requirement rj ∈ [0, 1]. The job can be processed at full
speed if granted its full resource requirement. If receiving only an x-portion
of rj , it is processed at an x-fraction of the full speed. Our goal is to find a
resource assignment that minimizes the makespan (i.e., the latest completion
time). Variants of such problems, relating the resource assignment of jobs to
their processing speeds, have been studied under the term discrete-continuous
scheduling. Known results are either very pessimistic or heuristic in nature.

In this article, we suggest and analyze a slightly simplified model. It focuses
on the assignment of shared continuous resources to the processors. The job
assignment to processors and the ordering of the jobs have already been fixed.
It is shown that, even for unit size jobs, finding an optimal solution is NP-hard
if the number of processors is part of the input. Positive results for unit size jobs

Supported by the Federal Ministry of Education and Research (BMBF) under Grant
01IH13004 (Project “FAST”), by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (SFB 901), by the Center of Excel-
lence – ITI (project P202/12/G061 of GA ČR), and by the Pacific Institute of Mathematical
Sciences (PIMS).

Ernst Althaus (ernst.althaus@uni-mainz.de)
Computer Science Institute, Johannes Gutenberg-Universität Mainz, Germany.

André Brinkmann (brinkman@uni-mainz.de) · Lars Nagel (nagell@uni-mainz.de) · Tim Süß
(suesst@uni-mainz.de)
Zentrum für Datenverarbeitung, Johannes Gutenberg-Universität Mainz, Germany.

Peter Kling (pkling@sfu.ca)
School of Computing Science, Simon Fraser University, Canada.

Friedhelm Meyer auf der Heide (fmadh@upb.de) · Sören Riechers (soeren.riechers@upb.de)
Heinz Nixdorf Institute & Computer Science Dept., University of Paderborn, Germany.

Jǐŕı Sgall (sgall@iuuk.mff.cuni.cz)
Computer Science Institute, Charles University, Prague, Czech Republic.

2 Ernst Althaus et al.

include a polynomial-time algorithm for any constant number of processors.
Since the running time is infeasible for practical purposes, we also provide
more efficient algorithm variants: an optimal algorithm for 2 processors and a
(2− 1/m)-approximation algorithm for m processors.

Keywords scheduling · approximation algorithms · resources

1 Introduction

The processor scheduling problem considered in this article is motivated by the
observation that, in many cases, it is not a device’s speed or energy consumption
that limits the progress of a given computation but the fact that data cannot
be provided at the necessary rate. In extreme cases, this may lead to situations
where changing the available I/O rate (or bandwidth) by some factor x may
directly affect the running time by (approximately) the same factor [19].

At first glance, this seems more a network issue than a problem of interest for
processor scheduling. After all, bandwidth bottlenecks are typically imposed by
the interconnection of devices (e.g., networks or data buses), and there is a huge
body of literature concerned with such issues on the network layer. However,
the analysis in this area typically concentrates on the network’s performance. In
contrast, our model focuses on how the distribution of the bandwidth shared by
a fixed set of processing units can affect their computational performance. That
is, given some information about the bandwidth requirement of a program (e.g.,
when does it need how much bandwidth to progress at full speed), the scheduler
can speed up critical jobs by a suitable assignment of the available bandwidth
to the different processors. Typical examples for such settings are many-core
systems: They provide an immense computing power through the sheer number
of processor cores. Yet, many (if not all) of the chip’s cores share a single
data bus to the outside world. If such a system has to process I/O-intensive
tasks (as typical for scientific computing), the available bandwidth becomes
the computational bottleneck, and the bandwidth distribution becomes the
decisive scheduling factor. One can find similar effects, if at different scales,
on many other levels. For example, consider virtual systems, where different
virtual machines share a single, arbitrarily and dynamically divisible resource
(like CPU or Memory) of a given host system.

A First Glimpse at the Model. From a more abstract point of view, the afore-
mentioned bandwidth scheduling can be seen as a variant of resource constrained
scheduling, the bandwidth being an example for the resource. Imagine a sys-
tem consisting of several identical processors that run at a fixed speed and
share a given resource. Assume that the resource is the system’s performance
bottleneck, in the sense that the running time of programs (tasks) depends
directly (that is to say, linearly) on the share of the resource they are allowed to
use. Each task provides information about its resource requirements by stating
what share of the resource it needs at different phases of its processing to run
at full speed. Thus, we can imagine a task i to consist of a number ni of jobs

Scheduling Shared Continuous Resources on Many-Cores 3

that must be processed sequentially, one after another. Each job represents a
phase of the task’s processing where the resource requirement is constant. The
length of the phase (i.e., the job’s processing time) is minimal at full speed and
increases by a factor of 1/x if only a portion x ∈ [0, 1] of the requested resource
share is provided. We use the term CRSharing to refer to this problem of
sharing continuous resources; see Section 3 for a more formal description.

We will see, especially in Section 2, that this type of resource assignment
problem is comparatively complex. Most work considering similar problems
seems to be of heuristic nature and analytical results are scarce (and, if surfaced,
quite negative). Since we are interested in more analytical insights, we approach
the problem by concentrating on the assignment of resources, removing the
(classical) scheduling aspect almost completely. That is to say, we consider a
scenario in which each processor has exactly one task, and each task consists
of jobs of unit workload (but different resource requirements). Moreover, we
assume discrete time steps, such that the scheduler can change the resource
assignment only at the beginning of such a time step. As we will see, even this
simple setting proves to be challenging.

Outline. Section 2 surveys the related work and describes our contribution in
view of known results. A formal model description of the CRSharing problem
is provided in Section 3. Section 4 equips the reader with basic definitions and
results and discusses a first, simple result for a round robin algorithm. Our
main results are given in Sections 5 to 8, where we study the complexity and
achievable approximation ratio for the CRSharing problem. We conclude
with a short outlook in Section 9.

2 Related Work & Contribution

The proposed CRSharing problem is a classical resource constrained schedul-
ing problem. In such settings, the scheduler does not only manage the com-
putational resources (e.g., the assignment of jobs to processors) but also the
allocation of one or more additional resources to the currently processed jobs.
In our context (processor scheduling), the most obvious examples for such
resources are probably bandwidth and memory. However, note that models
similar to ours are also used in project planning or for manufacturing systems.

The following discussion focuses on results for cardinality constrained bin
packing of splittable items as well as so-called discrete-continuous models,
where the computational resource is discrete (e.g., several processors) and the
additional resources are continuous (e.g., bandwidth allotted in a continuous
manner to the available processors). For a more general overview of resource
constrained scheduling, the interested reader is referred to [13, Chs. 23-24]
and [1, Ch. 12].

Packing splittable items with cardinality constraints. This problem setting was
originally introduced by Chung et al. [3]. Here, we are given bins of size 1

4 Ernst Althaus et al.

and n items with size s1, s2 . . . , sn (with si > 0 for all i). Items can be split
arbitrarily (splittable items), but each bin is only allowed to hold at most k ∈ N
many item parts (cardinality constraints). The objective is to minimize the
number of bins used. This problem shows some resemblance to CRSharing by
understanding the number of processors as cardinality constraints and the bins
with a limited capacity as time steps. However, note that, unlike CRSharing,
this problems allows for arbitrary preemption and migration, and jobs can
be assigned to processors arbitrarily. This provides a much higher degree of
freedom, making it easier for algorithms to avoid “leftovers” of the resource.

Chung et al. [3] show that this problem is NP-hard for any k ≥ 2. For
k = 2, they show an approximation factor of 3

2 + o(1) for a simple NextFit
algorithm as well as a more general class of algorithms. Epstein and van Stee [5]
later proved that the performance of the NextFit algorithm for arbitrary
k ≥ 2 yields an absolute approximation factor of 2− 1

k . They also show that
the general case for k ≥ 3 is NP-hard and give an efficient 7

5 -approximation
algorithm for k = 2. Finally, Epstein and van Stee [4] present polynomial-time
approximation schemes for sublinear k.

Discrete-continuous Scheduling. The notion of discrete-continuous scheduling
traces back to several papers by Józefowska and Weglarz, first and foremost [11].
While most results in this area study scenarios where the amount of allocated
resources influences the processing time or release dates of jobs (see [6] for a
survey), Józefowska and Weglarz [11] consider the case where the amount of
allocated resources influences the processing speed of jobs. More precisely, if
the function Rj : R≥0 → [0, 1] models the share of the resource that job j gets
assigned at some time t ∈ R≥0, its workload is processed at a speed of fj

(
Rj(t)

)
.

Here, fj models how a job’s processing speed is affected by the received resource
amount and is assumed to be continuous and non-decreasing with fj(0) = 0.
Using this resource model, the authors consider the problem of scheduling
n non-preemptable and independent jobs on m processors. They propose an
analysis framework based on a mathematical programming formulation and
demonstrate it for the objective of minimizing the schedule’s makespan. For
certain classes of fj , this yields a simple analytical solution [11,7]. This holds
especially for convex functions fj , which encourage the scheduler to assign the
full resource to a single processor. Finding an optimal solution for more realistic
cases (especially concave fj) remains infeasible. The results in [11] initiated
several research efforts in this area, including a transfer of the methodology to
other scheduling variants (e.g., average flow time instead of makespan [10]) as
well as several heuristic approaches to obtain practical solutions in the general
case [8,9,12,16]. A detailed and current survey about these results can be
found in [17] (especially Section 7).

Our CRSharing problem shares several characteristics with discrete-
continuous scheduling problems. In particular, the jobs’ resource requirements
can be modeled via concave functions fj of the form fj(R) = min(R/rj, 1),
where the value rj denotes the resource requirement of job j (cf. Section 3).
That is, the speed used to process a job depends linearly on the share of

Scheduling Shared Continuous Resources on Many-Cores 5

the resource it receives, but is capped at one. Our model contains several
other important differences, the most obvious being that the assignment of
jobs to processors as well as the order of jobs on a given processor is fixed.
This severely limits the possibilities of the scheduler, which can no longer
try to distribute the jobs evenly among the available processors. Instead, it
is compelled to use a sophisticated resource assignment in order to yield a
schedule of low makespan. Still, this simplification allows us to focus on the
inherent problem complexity of assigning the continuous resource such that the
schedule’s makespan is minimized, and to derive provably good algorithms. In
contrast, most of the aforementioned results for the discrete-continuous setting
are of heuristic nature and do not provide any provable quality guarantees with
respect to the resulting schedules, and cases that can be analyzed analytically
turn out to feature quite simple solution structures [11,7].

Contribution. We introduce a new resource-constrained scheduling model for
multiple processors, where job processing speeds depend on the assigned share
of a common resource. Our focus lies on a variant with unit size jobs where
the scheduler only has to manage the distribution of the resource among
all processors. The objective is to minimize the total makespan (maximum
completion time over all jobs). Even this simple variant turns out to be NP-
hard in the number m of processors. For fixed m, we show that the problem is
solvable in polynomial time. Since the respective algorithm is not practical, we
also provide an exact quadratic-time algorithm for m = 2 and an approximation
algorithm for any fixed m. The latter achieves a worst-case approximation ratio
of exactly 2− 1/m. Our approach uses a hypergraph representation that allows
us to capture non-trivial structural properties. To the best of our knowledge,
this is the first strong analytical result for this type of problem.

3 Model & Notation

We start by defining the model for the general version of the CRSharing
problem, which considers jobs of arbitrary sizes. Afterward, we discuss an
alternative interpretation of our model that will ease our argumentation in the
analysis part. Note that, while the model description considers jobs of arbitrary
sizes, most of our analysis focuses on the case where all jobs are of unit size.

3.1 Formal Model Description

Consider a system of m identical fixed-speed processors sharing a common
resource. At every time step t ∈ N, the scheduler distributes the resource
among the m processors. To this end, each processor i is assigned a share
Ri(t) ∈ [0, 1] of the resource, which it is allowed to use in time step t. It is
the responsibility of the scheduler to ensure that the resource is not overused.
That is, it must guarantee that

∑m
i=1Ri(t) ≤ 1 holds for all t ∈ N. For each

6 Ernst Althaus et al.

processor i, there is a sequence of ni ∈ N jobs that must be processed by
the processor in the given order. We write (i, j) to refer to the j-th job on
processor i. A processor is not allowed to process more than one job during
any given time step. Each job (i, j) has a processing volume (size) pij ∈ R>0

and a resource requirement rij ∈ [0, 1]. The resource requirement specifies what
portion of the resource is needed to process one unit of the job’s processing
volume in one time step. In general, when a job is granted an x-portion of its
resource requirement (x ∈ [0, 1]), exactly x units of its processing volume are
processed in that time step. There is no benefit in granting a job more than its
requested share of the resource. That is, a job’s processing cannot be sped up
by granting it, for example, twice its resource requirement. A feasible schedule
for an instance of the CRSharing problem consists of m resource assignment
functions Ri : N → [0, 1] that specify the resource’s distribution among the
processors for all time steps without overusing the resource. At any time t,
each processor i uses its assigned resource share Ri(t) to process the job (i, j)
with minimal j among all unfinished jobs. We measure a schedule’s quality
by its makespan (i.e., the time needed to finish all jobs). Our goal is to find
a feasible schedule having minimal makespan. To simplify notation, we often
identify a schedule S with its makespan (e.g., writing S/OPT for the makespan
of schedule S divided by the makespan of an optimal schedule OPT).

Alternative Model Interpretation. An alternative interpretation of our schedul-
ing problem can be obtained by the following observation: Consider a job (i, j)
whose processing is started at time step t1. It receives a share Ri(t1) ∈ [0, 1]
of the resource. By the previous model definition, exactly min(Ri(t1)/rij, 1)
units of its processing volume are processed. Similarly, in the next time
step min(Ri(t1 + 1)/rij, 1) units of its processing volume are processed. Con-
sequently, the job is finished at the minimal time step t2 ≥ t1 such that∑t2
t=t1

min(Ri(t)/rij, 1) ≥ pij or, equivalently if rij > 0, at the minimal time
step t2 ≥ t1 with

t2∑
t=t1

min(Ri(t), rij) ≥ rijpij =: p̃ij . (1)

This observation allows us to get rid of the resource aspect by considering
variable speed processors instead of fixed speed processors. The speed of such
variable speed processors can be changed at runtime1. For our reinterpretation,
think of a job (i, j) to have size p̃ij and of a processor i to be of variable speed.
The value Ri(t) denotes the speed processor i is set to during time step t. The
scheduler is in control of these processor speeds, but it must ensure that the
aggregated speed of all processors does never exceed one. Moreover, in addition
to the system’s speed limit, each job (i, j) is annotated with the maximum
speed rij it can utilize. In this light, our CRSharing problem becomes a speed
scaling problem to minimize the makespan in which the scheduler is limited by
both the system’s maximum aggregated speed and a per-job speed limit. The

1 This is also known as speed scaling (cf. [18]).

Scheduling Shared Continuous Resources on Many-Cores 7

unit size restriction for the CRSharing problem translates into the restriction
that job sizes p̃ij equal the corresponding resource requirements rij . In other
words, all jobs must be processable in one time step if run at maximum speed.

During the analysis, it will sometimes be more convenient to think of our
problem in the way described above. For example, note that the total size (in
the alternative model description) of all jobs in the system is

∑m
i=1

∑ni

j=1 p̃ij .
This load is processed at a maximal aggregated speed of 1. Thus, all processors
together cannot process more than one unit of this total load per time step.
This yields the following simple but useful observation:

Observation 1 Any feasible schedule needs at least
∑m
i=1

∑ni

j=1 rijpij time
steps to finish a given set of jobs with resource requirements rij and sizes pij.

At times, we will use the notion remaining resource requirement to denote the
remnants of a job’s initial workload p̃ij .

Additional Notation & Notions. The following additional notions and notation
will turn out to be helpful in the analysis and discussion. For a processor i
with ni jobs, we define ni(t) as the number of unfinished jobs at the start of
time step t. In particular, we have ni(1) = ni. The value ji(t) := ni − ni(t)
denotes the number of jobs completed on machine i at the start of step t. A
processor i is said to be active at time step t if ni(t) > 0. Similarly, we say
that job (i, j) is active at time step t if ji(t) = ni − ni(t) = j − 1 (i.e., if
processor i has finished exactly j − 1 jobs at the start of time step t). We use
Mj := { i | ni ≥ j } to denote the set of all processors having at least j jobs to
process. Finally, we define n := maxi ni as the maximum number of jobs any
processor has to process.

3.2 Graphical Representation

The remainder of this section introduces a hypergraph notation for CRSharing
schedules and unit size jobs.

Given a problem instance of CRSharing with unit size jobs and a cor-
responding schedule S, we can define a weighted hypergraph HS = (V,E) as
follows: The nodes of HS and their weights correspond to the jobs and their
resource requirements, respectively. That is, the node set is given by V =
{ (i, j) | i = 1, 2, . . . ,m ∧ j = 1, 2, . . . , ni }, and the weight of a node (i, j) ∈ V
is rij . The edges of HS correspond to the schedule’s time steps and contain
the currently active jobs. More formally, the edge et ⊆ V for time step t is
defined as et := { (i, j) | ni(t) > 0 ∧ j = ni − ni(t) + 1 }. Thus, if we abuse S
to also denote the makespan of schedule S, the edge set of HS can be written
as E = { e1, e2, . . . , eS }. We call HS the scheduling (hyper)graph of S. See
Figure 1a for an illustration.

8 Ernst Althaus et al.

2020 1010 1010 1010

5050 5555 9090 5555 1010

5050 4040 9595

e1 e2
e3 e4

e5
e6

(a) Scheduling graph HS trying to greedily fin-
ish as many jobs as possible.

C1 C2

C3

2020 1010 1010 1010

5050 5555 9090 5555 1010

5050 4040 9595

(b) Connected components of the scheduling
graph, ordered from left to right.

Fig. 1: Hypergraph representation of a schedule for three processors. Resource requirements
are given as node labels (in percent). Nodes are laid out such that each row corresponds to
the job sequence of one processor (from left to right). Edges correspond to the schedule that
prioritizes jobs in order of increasing remaining resource requirement.

Connected Components. In Section 4.1 and during the analysis in Section 8,
we will see that the connected components formed by the edges of a scheduling
graph HS carry a lot of structural information about the schedule. To make use
of this information, let us introduce some notation that allows us to directly
argue via such components. We start with an observation that follows from
the construction of HS .

Observation 2 Consider a connected component C ⊆ V of HS and two time
steps t1 ≤ t2 with et1 ∪ et2 ⊆ C. Then, for all t ∈ { t1, t1 + 1, . . . , t2 } we have
et ⊆ C.

Let N denote the total number of connected components and let Ck denote
the k-th connected component (for k ∈ { 1, 2, . . . , N }). Moreover, we use
#k to denote the number of edges of the k-th component. That is, we have
#k = |{ et ∈ E | et ⊆ Ck }|. Observation 2 implies that a component Ck consists
of #k consecutive time steps. This allows us to order the components such
that, for any two components k, k′ and edges et ⊆ Ck, et′ ⊆ Ck′ with t ≤ t′, we
have k ≤ k′. That is, we can think of the components being processed by the
processors from left to right. See Figure 1b for an illustration.

The maximal size of an edge in the k-th component, which equals the size of
its first edge, gives us a rough estimate for the amount of potential parallelism
available during the corresponding time steps. Note that while the size of edges
et is monotonously decreasing in t, a schedule that tries to balance the number
of remaining jobs on each processor will decrease the edge size only at the
end of a component (for all components but the last one). We will make use
of this fact in the proof of Lemma 6. For now, let us honor its foreshadowed
importance by the following definition:

Definition 1 (Component Class) Given a component Ck, we define its class
qk as the size of its first edge. That is, qk := |et| with t = min { t′ | et′ ⊆ Ck }.

Besides being an upper bound on the size of a component’s edges, the class qk
is also decreasing in k. Moreover, Lemma 2 will show that a component’s class

Scheduling Shared Continuous Resources on Many-Cores 9

allows us to formulate an important relation between its size and the total
number of its edges.

4 Preliminaries

This section is intended to make the reader more comfortable with the intro-
duced terms and notions and to equip her with the tools needed for the analysis
in later sections. We start by discussing and proving some basic structural
properties. Afterward, we analyze a simple round robin algorithm. Note that
in this and all following sections, we only consider problem instances in which
all jobs are of unit size.

4.1 Structural Properties

Let us use the introduced notions and notation to point out some structural
properties of schedules for the CRSharing problem with unit size jobs. We
start by defining three properties of schedules and show in Lemma 1 that we
can restrict our analysis to schedules which have them.

Definition 2 (Non-wasting) We call a schedule non-wasting if it finishes
all active jobs during every time step t with

∑m
i=1Ri(t) < 1.

Definition 3 (Progressive) A schedule is progressive if, among all jobs that
are assigned resources, at most one job is only partially processed during any
time step t. More formally, we require that

|{ i | ni(t) = ni(t+ 1) ∧Ri(t) > 0 }| ≤ 1 (2)

holds for all t ∈ N.

Definition 4 (Nested) Let S(i, j) and C(i, j) denote the starting step and
the completion step of job (i, j), respectively. A schedule is nested if, at no time
t, there are two jobs (i, j) and (i′, j′) such that S(i, j) < S(i′, j′) ≤ t < C(i′, j′),
S(i′, j′) < C(i, j) and (i, j) is running during step t.

This last property intuitively means that among the partially processed
jobs, we always prefer to run and complete the job that started at the latest
step. Note that the condition of a nested schedule in particular implies that,
for no jobs (i, j) and (i′, j′), S(i, j) < S(i′, j′) < C(i, j) < C(i′, j′). Otherwise
we could choose t = C(i, j) and job (i, j) would run in step t = C(i, j). An
example for a nested and an unnested schedule is given in Figure 2.

Lemma 1 Every schedule S can be transformed into a schedule S′ which is
non-wasting, progressive and nested without increasing its makespan.

10 Ernst Althaus et al.

t0 t1 t2 t3

p0 50 50 50 50

p1 100

p2 100

(a) Input

t0 t1 t2 t3

p0 50 50 50 50

p1 50 50

p2 50 50

(b) Nested schedule

t0 t1 t2 t3

p0 50 50 50 50

p1 50 50

p2 50 50

(c) Unnested schedule

Fig. 2: The schedules in Figure 2b and 2c are based on the input in Figure 2a and observe a
resource limit of 100. Both schedules are non-wasting and progressive, but only the schedule
in Figure 2b is nested. In the other schedule, p1’s job is already running when p2’s job is
started, and completed before p2’s job is completed.

Proof Making a given schedule non-wasting is trivial because, given a time step

t with

m∑
i=1

Ri(t) < 1 and an active job (i′, j′), we can increase Ri′(t) until either

the job is finished or

m∑
i=1

Ri(t) = 1 (and decrease the resource consumption

of this job by the same amount in later steps). In both cases, the schedule’s
makespan does not increase. By doing this for each step t in ascending order,
we will get a non-wasting schedule.

In the following we assume that we start with a non-wasting schedule. For
each of the following modifications, it is easy to check that the schedule remains
non-wasting.

First we guarantee by an exchange argument that for no two jobs (i, j) and
(i′, j′) it holds that S(i, j) < S(i′, j′) < C(i, j) < C(i′, j′). Suppose we have a
pair of jobs (i, j) and (i′, j′) violating the condition. Consider all the resource
the two jobs are using in steps S(i′, j′), . . . , C(i, j) and redistribute it in each
of these steps so that (i, j) is completed before or when (i′, j′) is started. This
is done by first giving all resource assigned to (i′, j′) to (i, j) until (i, j) is
finished and then giving all resource assigned to (i, j) to (i′, j′). It follows that
C(i, j) ≤ S(i′, j′) and that the condition is not longer violated for this pair of
jobs. Furthermore, C(i, j) is not increased, S(i′, j′) is not decreased and all
other start and completion times remain unchanged, so that no new violating
pair is created. In this way we can eliminate the violating pairs one by one.

Scheduling Shared Continuous Resources on Many-Cores 11

Now we modify the schedule for each time step t = 1, 2, . . . so that for this
t the resulting schedule is nested and progressive. More precisely, we alter it
in such a way that there is at most one job running in step t and active after
step t; furthermore such a job has the smallest completion time among the
jobs active after step t. This guarantees both properties.

Let (i, j) and (i′′, j′′) be two jobs that are running in step t and active after
step t. Further let (i, j) have the smallest completion time among these jobs.
Then at step t, give the maximal amount of resource assigned to job (i′′, j′′) to
job (i, j), and balance this exchange by giving the same amount of resource
from (i, j) to (i′′, j′′) at later time steps. Note that this exchange does not
change C(i′′, j′′). As a result of the exchange, either C(i, j) = t or (i′′, j′′) does
not run at time t. In both cases we have decreased the number of jobs that are
partially processed at time t.

Decreasing C(i, j) may create a new pair with S(i, j) < S(i′, j′) < C(i, j) <
C(i′, j′), however only for S(i′, j′) > t. We treat any such pair as in the previous
paragraph, which changes the schedule only after time t. Now we repeat the
process for the next pair of (i, j) and (i′′, j′′) as needed. ut

Lemma 1 allows us to narrow our study to the subclass of non-wasting,
progressive and nested schedules, and from now on we will assume any schedule
to have these properties (if not stated otherwise).

Balanced Schedules. Intuitively, good schedules should try to balance the
number of remaining jobs on each processor. This may provide the scheduler
with more choices to prevent the underutilization of the resource later on (e.g.,
when only one processor with many jobs of low resource requirements remains).
The better part of Section 8 serves the purpose of confirming this intuition. In
the following, we formalize this balance property and, subsequently, work out
further formal and concise properties of balanced schedules.

Definition 5 (Balanced) We say a schedule is balanced if, whenever a pro-
cessor i finishes a job at a time step t, any processor i′ with ni′(t) > ni(t) does
also finish a job.

Proposition 1 Every balanced schedule features the following properties:

(a) For all i1, i2 with ni1 ≥ ni2 and for all t ∈ N, we have ni1(t) ≥ ni2(t)− 1.
(b) For all i1, i2 with ni1 > ni2 and for all t ∈ N, we have ni1(t) ≤ ni2(t) +

ni1 − ni2 .

Proof Both statements follow easily from the definition of balanced schedules.
To see this, first note that both properties hold for t = 1, since ni(1) = ni for
all processors i. Moreover, at any time step t, the number ni(t) of remaining
jobs cannot increase, and decreases by at most one during the current time
step. Thus, it is sufficient to show that if one of the statements holds at some
time step t with equality, it still holds at time step t+ 1. For statement (a),
ni1(t) = ni2(t)− 1 and the balance property imply that if i1 finishes its job,
then so must i2. Thus, we have ni1(t + 1) ≥ ni2(t + 1) − 1. The very same
argument works for statement (b). ut

12 Ernst Althaus et al.

Proposition 2 Consider a balanced schedule and the set Mj of processors
having at least j jobs. Let (i, j) be a job that is active at time step t and assume
ni(t) > 1 (i.e., it is not the last job on processor i). Then all processors i′ ∈Mj

are active at time step t.

Proof Let i′ ∈ Mj be a processor with at least j jobs and consider the case
ni′ ≥ ni. By Proposition 1(a), we have ni′(t) ≥ ni(t)− 1 > 0, so processor i is
active at time t. If ni′ < ni, we can apply Proposition 1(b) and get

ni′(t) ≥ ni′ − (ni − ni(t)) = ni′ − (j − 1) ≥ 1. (3)

The equality uses the fact that job (i, j) is active at time step t, implying
that the number ni − ni(t) of jobs finished by processor i before time step t is
exactly j − 1. The last inequality comes from i′ ∈Mj . ut

The final structural property of balanced schedules addresses, as indicated
earlier, how a component’s class allows us to relate its size (number of nodes)
to the total number of its edges.

Lemma 2 Consider a non-wasting, progressive, and balanced schedule. The
number of nodes and edges in a component are related via the following proper-
ties:

(a) The inequality |Ck| ≥ #k + qk − 1 holds for all k ∈ { 1, 2, . . . , N − 1 }.
(b) The last component satisfies |CN | ≥ #N .

Proof The second statement follows immediately from Lemma 1, which states
that in each time step (i.e., for each edge) at least one job is finished.

For the first statement, fix a k ∈ { 1, 2, . . . , N − 1 } and consider the first
edge et of the component Ck. By definition, this edge consists of qk different
nodes. We now show that each of the remaining #k − 1 edges adds at least one
new node to the component. So fix an edge et′ ⊆ Ck with t′ > t and consider
the time step t′−1. Since we know that at least one job is finished in every time
step (Lemma 1) and that S is balanced, at least one of the processors having
the maximal number of remaining jobs finishes its current job. More formally,
there is some processor i′ = arg max

i
ni(t

′ − 1) that finishes its currently active

job at time step t′ − 1. Because of k 6= N , we also know that ni′(t
′ − 1) > 1,

such that there is a new active job for processor i′ at time step t′. This yields
the lemma’s first statement. ut

4.2 Warm-up: Round Robin Approximation

Consider the following simple round robin algorithm for the CRSharing
problem (with unit size jobs): Given a problem instance where the maximal
number of jobs on a processor is n, the algorithm operates in n phases. During
phase j, it processes the j-th job on each processor, assigning the resource
in an arbitrary way to any processors that have not yet finished their j-th

Scheduling Shared Continuous Resources on Many-Cores 13

job. Note that this algorithm may waste resources (although only between two
phases) and is possibly non-progressive. Still, the following theorem shows that
it results in schedules that are not too bad.

Theorem 3 The RoundRobin algorithm for the CRSharing problem with
unit job sizes has a worst-case approximation ratio of exactly 2.

Proof We start with the upper bound on the approximation ratio. RoundRobin

algorithm needs exactly
⌈∑
i∈Mj

rij
⌉

time steps to finish the j-th phase (cf. “Al-

ternative Model Interpretation” in Section 3). Thus, the makespan of a
RoundRobin schedule can be bounded by

n∑
j=1

∑
i∈Mj

rij

 ≤ n+

n∑
j=1

∑
i∈Mj

rij . (4)

Since any processor can finish at most one job per time step, even an optimal
schedule has a makespan of at least n. Observation 1 yields another lower

bound on the optimal makespan, namely

n∑
j=1

∑
i∈Mj

rij . Together, we get that

RoundRobin computes a 2-approximation.
For the lower bound on the approximation ratio, consider the following

CRSharing problem instance with unit size jobs on two processors: Let
n ∈ N, ε := 1/n > 0 and define the resource requirements for the first processor
as r1j := j · ε for j ∈ { 1, 2, . . . , n }. For the second processor, we define
r2j := (1 + ε)− r1j . Note that each processor has to process n jobs. Figure 3
illustrates the instance as well as the resulting optimal and RoundRobin
schedules for n = 100. An optimal schedule, shown in Figure 3a, will waste
no resource at all. In contrast, the RoundRobin schedule, as indicated in
Figure 3b, wastes a share of 1− ε of the resource in every second time step.
As a result, the RoundRobin schedule needs 2n time steps, while an optimal
schedule can finish the same workload in n+ 1 time steps. Thus, for n→∞
we get an approximation ratio of 2. ut

5 Problem Complexity

One of our first major results is the following theorem, showing that the
CRSharing problem is (even in the case of unit size jobs) NP-hard in the
number of processors.

Theorem 4 CRSharing with unit size jobs is NP -hard if the number of
processors is part of the input.

Proof In the following, we prove the NP-hardness of the CRSharing problem
with unit size jobs via a reduction from the Partition problem. Our reduction

14 Ernst Althaus et al.

0101 0202 0303 9999 100100

100100 9999 9898 0202 0101

(a) OPT schedule, wastes no resources and needs n+ 1 time steps.

Phase 1 Phase 2 Phase 3 . . . Phase
99

Phase
100

0101 0202 0303 9999 100100

100100 9999 9898 0202 0101

(b) RoundRobin, uses two time steps per phase and wastes 99% of the resource at the end of each
phase.

Fig. 3: Worst-case example for RoundRobin schedule. Node labels give the jobs’ resource
requirements in percent.

transforms a Partition instance of n elements into a CRSharing instance
on n processors, each having three jobs to process.

Let a1, a2, . . . , an ∈ N and A ∈ N with

n∑
i=1

ai = 2A be the input of the

Partition instance (w.l.o.g., A ≥ 2). For our transformation, let ε ∈ (0, 1/n)
and set δ := nε < 1. We define the first and last job on any processor i to

have resource requirements ri1 = ri3 = ãi :=
ai

A+ δ
. The second job on any

processor i has a resource requirement of ri2 = ε̃ :=
ε

A+ δ
. Note that no

schedule can finish the first job of all tasks in only one time step as we have
n∑
i=1

ri1 =
2A

A+ δ
> 1 by construction. Now, with each task containing three

jobs, any schedule needs at least four time steps to finish all jobs. To finish
our reduction, we show that there is an optimal schedule with makespan 4 if
and only if the given Partition instance is a YES-instance (i.e., if it can be
partitioned into two sets that sum up to exactly A).

Assume we are given a YES-instance of Partition and let, w.l.o.g., the
first k elements form one partition. The schedule shown in Figure 4a is feasible
and has makespan 4. Now, assume we are given a NO-instance and an optimal
schedule for the corresponding CRSharing instance. W.l.o.g., exactly the first

k processors finish their jobs in the first time step. This implies

k∑
i=1

ãi ≤ 1,

yielding the inequality

k∑
i=1

ai ≤ A + δ < A + 1. Since the given Partition

Scheduling Shared Continuous Resources on Many-Cores 15

ã1ã1 ε̃̃ε ã1ã1

...

...
...
...

...

...

ãkãk ε̃̃ε ãkãk

ãk+1ãk+1 ε̃̃ε ãk+1ãk+1

...

...
...
...

...

...

ãnãn ε̃̃ε ãnãn

(a) Optimum for YES-instances.

ã1ã1 ε̃̃ε ã1ã1

...

...
...
...

...

...

ãkãk ε̃̃ε ãkãk

ãk+1ãk+1 ε̃̃ε ãk+1ãk+1

...

...
...
...

...

...

ãnãn ε̃̃ε ãnãn

(b) Optimum for NO-instances.

Fig. 4: Problem instance and schedules used for the reduction from Partition to CRSharing
with unit size jobs.

instance is a NO-instance, we also have

k∑
i=1

ai 6= A. Together this implies

k∑
i=1

ai ≤ A− 1, which, in turn, yields

n∑
i=k+1

ai ≥ A+ 1. Since we have not yet

finished the jobs (k+ 1, 1), (k+ 2, 1), . . . , (n, 1), we need at least two more time
steps until we can start working on (k + 1, 3), (k + 2, 3), . . . , (n, 3). Their total
resource requirement is at least

n∑
i=k+1

ãi

∑n
i=k+1 ai

A+ δ
≥ A+ 1

A+ δ
> 1. (5)

Thus, after the first three time steps, we need at least two more time steps to
finish the remaining jobs, yielding a makespan of at least 5. ut

Note that we also get the following lower bound from the proof of Theorem 4:

Corollary 1 It is NP-hard to approximate CRSharing with a factor better
than 5/4.

While Theorem 4 proves NP-hardness of our problem, it leaves the question
concerning the problem’s complexity for constant m. In the next two sections
we will show that in this case the problem is polynomial-time solvable.

16 Ernst Althaus et al.

6 Algorithm for Two Processors

While the previous section proves NP-hardness in the number of processors,
there are exact polynomial-time algorithms for a fixed number of processors.
Before we state and analyze the algorithm for arbitrary m ≥ 2 in Section 7, we
introduce a faster algorithm for two processors. Algorithm OptResAssign-
ment traces out all reasonable scheduling decisions. To keep this approach
feasible, we use Lemma 1 (implying the existence of an optimal schedule that
finishes at least one job in each time step) and another structural property
(see Lemma 3). These allow us to discard bad scheduling decisions early on.

Algorithm Description. The OptResAssignment algorithm uses a dynamic
programming approach. To this end, it maintains a two-dimensional array B of
size n1 × n2. Each entry holds a tuple B[i1, i2] = (r, t), which states that there
is a schedule that, at time step t, has finished all jobs (1, j1) with j1 < i1 and
(2, j2) with j2 < i2, and for which the remaining resource requirements of (1, i1)
and (2, i2) sum up to r. OptResAssignment fills B in n1 + n2 − 1 phases,
one phase for each diagonal of B. It maintains the invariant that, from the
start of phase ` on, all entries on the (`− 1)-th diagonal (i.e., all B[i1, i2] with
i1 + i2 = `) are optimal. More precisely, such entries correspond to subschedules
with minimal t (and, for this t, minimal r) reaching the jobs (1, i1) and (2, i2).
See Algorithm 1 for the pseudocode. Note that, in our algorithm description, we
compute only the makespan (and not a corresponding schedule) of an optimal
solution. However, given the array B, one can easily trace back the final entry
and derive an explicit schedule in linear time.

Correctness & Runtime. We start with a simple lemma, which will be used
later on to show that the diagonal-wise processing of B is correct.

Lemma 3 Consider two non-wasting and progressive schedules S and S′ as
well as a time step t such that ni(t) ≤ n′i(t) for i ∈ { 1, 2 }. Let vi(t) and v′i(t)
be the remaining resource requirement of the job that is active at time t on
processor i ∈ { 1, 2 } in schedule S and S′, respectively. If

(a) n1(t) < n′1(t) or n2(t) < n′2(t), or
(b) n1(t) = n′1(t) and n2(t) = n′2(t) and, w.l.o.g., v1(t) + v2(t) ≤ v′1(t) + v′2(t),

then we can transform S without changing the first t− 1 time steps such that
S ≤ S′.

Proof First observe that we already have S ≤ S′ if one of the properties applies
at the end of S. Thus, it suffices to show that the properties can be maintained
from t to t+ 1.

(a) Without loss of generality, assume n1(t) < n′1(t). If S′ finishes only
one job, S can complete a job on the same processor and hence maintains
the inequalities. If S′ finishes both jobs, this yields n′i(t + 1) = n′i(t) − 1 for
i ∈ { 1, 2 }. Thus, if S finishes a job on processor 2 and assigns the remaining

Scheduling Shared Continuous Resources on Many-Cores 17

Algorithm 1 OptResAssignment
1: // resource requirements are stored in A1 and A2

2: // subschedules are stored in two-dimensional array B
3: // extend A1 as well as A2 by an extra 0-entry
4: n1 = length(A1); n2 = length(A2);
5: initialize array B[1 . . . n1, 1 . . . n2] with null entries
6: B[1, 1] =

(
A1[1] +A2[1], 0

)
7: for ` = 2 . . . n1 + n2 − 1 do
8: for i1 = max { 1, `− n2 } . . .min { `− 1, n1 } do
9: i2 = `− i1

10: (r, t) = B[i1, i2]
11: if i1 = n1 then
12: add

(
i1, i2 + 1, 0, A2[i2 + 1], t+ 1

)
13: else if i2 = n2 then
14: add

(
i1 + 1, i2, A1[i1 + 1], 0, t+ 1

)
15: else if r ≤ 1 then
16: add

(
i1 + 1, i2 + 1, A1[i1 + 1], A2[i2 + 1], t+ 1

)
17: add

(
i1, i2 + 1, 0, A2[i2 + 1], t+ 1

)
18: add

(
i1 + 1, i2, A1[i1 + 1], 0, t+ 1

)
19: else
20: add

(
i1, i2 + 1, A1[i1] +A2[i2]− 1, A2[i2 + 1], t+ 1

)
21: add

(
i1 + 1, i2, A1[i1 + 1], A1[i1] +A2[i2]− 1, t+ 1

)
22: min = B[n1, n2]
23:
24: function add(i1, i2, v1, v2, t)
25: r = v1 + v2
26: (rold, told) = B[i1, i2]
27: if (rold, told) = null ∨ t < told ∨ (t = told ∧ r < rold) then
28: B[i1, i2] = (r, t)

bandwidth to the job on processor 1, this results in n1(t+1) = n1(t) ≤ n′1(t+1)
and n2(t+ 1) = n2(t)− 1 ≤ n′2(t+ 1). If equality applies (otherwise (a) holds),
then the same jobs are active at time t+ 1 in S′ and S, say j1 and j2. This
yields v1(t+ 1) + v2(t+ 1) ≤ r1j1 + r2j2 = v′1(t+ 1) + v′2(t+ 1), therefore (b)
applies.

(b) Now, suppose v1(t) + v2(t) ≤ v′1(t) + v′2(t). If S′ finishes both jobs, S
can do the same and (b) holds with equality. If S′ only finishes one job (w.l.o.g.,
job j − 1 on processor 1), S can also finish that job. If v1(t) + v2(t) ≤ 1, it
also completes a second job and therefore (a) applies. On the other hand, if
v1(t)+v2(t) > 1, this results in v1(t+1)+v2(t+1) = r1j +(v1(t)+v2(t)−1) ≤
r1j + (v′1(t) + v′2(t)− 1) = v′1(t+ 1) + v′2(t+ 1), thus case (b) applies.

ut

Theorem 5 Consider a CRSharing instance with unit size jobs and two
processors. The following statements hold:

(a) OptResAssignment computes an optimal solution.
(b) OptResAssignment has running time O

(
n2
)
.

Proof The correctness of statement (b) is immediate, as OptResAssign-
ment runs in O(n) phases and each phase considers the O(n) entries on the
corresponding diagonal. It remains to prove the correctness of statement (a).

18 Ernst Althaus et al.

Remember the invariant from the algorithm description: At the beginning
of phase `, for each entry B[i1, i2] = (r, t) on the `− 1-th diagonal the following
holds: t is the earliest time at which all jobs preceding (1, i1) and (2, i2) can be
finished and r is, for this t, the smallest possible sum of the remaining resource
requirements of (1, i1) and (2, i2). If this invariant holds for phase n1 + n2, the
correctness follows immediately (we use dummy jobs, so the last diagonal entry
corresponds to all non-dummy jobs being fully processed). For the first phase,
the invariant’s correctness is obvious from the initialization, as there are no
jobs preceding (1, 1) and (2, 1). Now assume the invariant holds for the first
` phases and consider an entry B[i1, i2] processed in the `+ 1-th phase. This
entry corresponds to a subschedule that has processed all jobs preceding (1, i1)
and (2, i2). Since each processor can finish at most one job in one time step, this
subschedule must originate from one of the subschedules S1, S2, or S3 that have
finished all jobs preceding (i) (1, i1 − 1) and (2, i2), (ii) (1, i1) and (2, i2 − 1),
and (iii) (1, i1−1) and (2, i2−1), respectively. By our induction hypothesis, the
entries in B[i1− 1, i2], B[i1, i2− 1], and B[i1− 1, i2− 1] correspond to the best
possible such schedules. Since the algorithm uses these to compute B[i1, i2]
(lines 9-21) and the best of them is chosen as predecessor (line 27, correct by
Lemma 3), the invariant is established for entry B[i1, i2] (and, similarly, for all
remaining entries on the same diagonal). ut

An alternative implementation of the algorithm replaces the 2-dimensional
array by a priority queue that orders intermediate schedules by their index
sum i1 + i2. Although adding/retrieving such an entry has amortized costs
O(log(n)), this implementation runs faster for most of the instances, as it only
considers index pairs that actually point to a schedule and many index pairs
are usually not used. Consider, for instance, pair (1, 1). If A1[1] + A2[1] ≤ 1,
the algorithm will proceed with (2, 2) and all entries (1, i2) and (i1, 1) with
i1, i2 > 1 will never be used.

7 Algorithm for m Processors

While in the previous section we discussed OptResAssignment, an exact
algorithm for m = 2 having a worst case running time of O

(
n2
)
, this section

shows that there is even a polynomial-time algorithm for any fixed m; we call
it OptResAssignment2. In the proof we will restrict the schedules to nested
ones (see Definition 4) and use the new notion of an (extended) configuration
representing the current state of a schedule. We argue that only a polynomial
number of extended configurations has to be considered and show that this
implies a polynomial running time.

Additional Notation. The configuration of a schedule S in round t can be
described by the sequence (j1(t), . . . , jm(t)) of jobs completed and the amounts
(v1(t), . . . , vm(t)) of resource spent for the active jobs before round t. In partic-
ular vi(t) = 0 if the active job has not started yet.

Scheduling Shared Continuous Resources on Many-Cores 19

Definition 6 ((Extended) configuration; core; support) A configuration
γ is a vector (t, j1(t), . . . , jm(t), v1(t), . . . , vm(t)) where ji(t) ∈ { 0, . . . , ni }
and vi(t) ∈ [0, 1]. The core of γ is defined as core(γ) = (j1(t), . . . , jm(t))
and its support as supp(γ) = { i | vi(t) > 0 }. Further we define the extended
configuration of γ as the tuple E(γ) := (γ, (i, γi)i∈supp(γ)), where γi is the
configuration after the round in which processor i received resource for the last
time.

We say, two configurations are step-equal if they are in the same time
step and if their corresponding cores are equal. Two extended configurations
E(γ) = (γ, (i, γi)i∈supp(γ)) and E(γ′) = (γ′, (i, γ′i)i∈supp(γ′)) are step-equal if
(a) γ and γ′ are step-equal, (b) they have the same support and (c) γi and γ′i
are step-equal for all i ∈ supp(γ).

In order to obtain a polynomial-time algorithm, we reduce the num-
ber of relevant configurations to a polynomial number. Obviously, if both
(t, j1(t), . . . , jm(t), v1(t), . . . , vm(t)) and (t′, j′1(t′), . . . , j′m(t′), v′1(t′), . . . , v′m(t′))
are feasible configurations with t ≤ t′, j`(t) ≥ j′`(t

′) and v`(t) ≥ v′`(t
′) for all

1 ≤ ` ≤ m, we do not need the second configuration, as the first one is always
to be preferred. We say that the first configuration dominates the second one.
The following lemma proves a natural connection between this property of
domination and step-equal configurations.

Lemma 4 If two extended configurations are step-equal, then one dominates
the other.

Proof We proof the lemma by induction on | supp(γ)|.
First we discuss the cases | supp(γ)| = 0 and | supp(γ)| = 1. If | supp(γ)| = 0,

then all vi(t) = 0 and, hence, there cannot be another configuration with the
same core. In the second case, any two configurations γ and γ′ differ only in
one value vi(t) so that either γ dominates γ′ or vice versa.

Now consider two non-dominated and step-equal extended configurations
(γ, (i, γi)i∈supp(γ)) and (γ′, (i, γ′i)i∈supp(γ′)) with | supp(γ)| = | supp(γ′)| ≥ 2.
For all i ∈ supp(γ), denote by ti the round of γi (and γ′i), and let k such that
tk = max { ti | i ∈ supp(γ) }. (Note that the ti are pairwise distinct because
there is at most one partly processed job in each round.)

As the extended configurations are step-equal, the extended configurations
after round tk, from which γ and γ′ are derived, namely (γk, (i, γi)i∈supp(γ)\{ k })
and (γ′k, (i, γ

′
i)i∈supp(γ′)\{ k }), are also step-equal. They must be the same

because, due to the induction hypothesis, there are no two different non-
dominated and step-equal extended configurations with a support smaller than
| supp(γ)|.

After tk, none of the tasks in supp(γ) received resource in γ or γ′ so that
vi(t) = v′i(t) for all i ∈ supp(γ) \ { k }. Furthermore, all of the resource was
used in these rounds because there were unfinished jobs in each of them. And
since the same set of jobs was completed in these rounds, it must hold that∑
i∈supp(γ)

vi(t) =
∑

i∈supp(γ)

v′i(t) and, thus, vk(t) = v′k(t). Hence, E(γ) and E(γ′)

are the same. ut

20 Ernst Althaus et al.

Algorithm. In order to find an optimal schedule, our algorithm OptRe-
sAssignment2 (Algortihm 2) enumerates all configurations that are not
dominated by another configuration. Starting from the initial configuration
(1, 0, . . . , 0, 0, . . . , 0), it computes the configurations of the next round based
on the configurations of the current round. While doing this, it makes sure
that the respective schedules remain non-wasting, progressive, and nested. In
each round, it additionally removes all dominated configurations by a pair-
wise comparison of the new configurations. When the algorithm hits an end
configuration, it outputs the path to it and stops.

Algorithm 2 OptResAssignment2
1: C1 = { (1, 0, . . . , 0, 0, . . . , 0) }
2: for t = 2, . . . do
3: Ct = ∅
4: for all γ ∈ Ct−1 do
5: succ(γ) = successors of γ
6: store link between γ and each γ′ ∈ succ(γ)
7: Ct = Ct ∪ succ(γ)
8: if (t, n1 + 1, . . . , nm + 1, 0, . . . , 0) ∈ Ct then
9: output path to this configuration

10: break
11: for all γ ∈ Ct do
12: for all γ′ ∈ Ct \ { γ } do
13: if γ dominates γ′ then
14: remove γ′ from Ct

Theorem 6 OptResAssignment2 computes an optimal schedule in time
polynomial in n.

Proof In each pass of the outer for loop, Algorithm 2 creates all subschedules
of t steps which are non-wasting, progressive and nested and whose current
configuration is not dominated by another one. As soon as a final configuration is
reached, the algorithm outputs the results and stops. Therefore, the correctness
of the algorithm follows from Lemma 1 which states that there is at least one
optimal schedule among all non-wasting, progressive and nested schedules.

In order to show the running time, we will roughly bound the number of
configurations that are computed by the algorithm: the non-dominated ones as
well as the dominated ones (that are discarded right away). From Lemma 4 we
know that there is exactly one configuration that dominates all the others.

Let νext be the number of all possible non-dominated extended configu-
rations which are pairwise not step-equal. Since the number of time steps is

bounded by

m∑
i=1

ni ≤ m · n and the number of cores by

m∏
i=1

ni ≤ nm, we can

bound the number of configurations which are not step-equal by m · n · nm. An
extended configuration consists of up to m+ 1 such configurations so that we
obtain

νext ≤ (m · n · nm)m+1 = mm+1 · n(m+1)2 .

Scheduling Shared Continuous Resources on Many-Cores 21

The number of (non-dominated and dominated) configurations that imme-
diately succeed a given configuration is bounded by m · 2m because there are at
most 2m possibilities to choose a subset of processors and at most m possibili-
ties to choose the partly processed job. Since each non-dominated configuration
is used only once as a base configuration (from which successive configurations
are derived), we can bound the total number of computed configurations by
νext ·m · 2m.

The time for each round is determined by the time for separating the domi-
nated configurations which is quadratic in the number Ct of step-t configurations.
Hence, very roughly, we can bound the total running time by

O

((
mm+1 · n(m+1)2 ·m · 2m

)2
)

= O
(
m2·m+4 · n2·(m+1)2 · 22·m

)
.

ut

8 Balanced Schedules

This section builds up to our last result, an approximation algorithm with
a tight approximation ratio of 2 − 1/m, in Theorem 7. While the quality of
the result is obviously worse compared to OptResAssignment2, it can be
achieved by running a simple linear-time algorithm called GreedyBalance.
We start by providing two lower bounds for optimal schedules in terms of a
given non-wasting and balanced schedule, respectively.

8.1 Lower Bounds for Optimal Schedules

The following lemma derives the first lower bound by exploiting the fact that,
within a component, any non-wasting schedule always makes full use of the
resource.

Lemma 5 Let OPT denote the minimal makespan of a given problem instance
and consider the scheduling graph HS of a non-wasting schedule S. Then OPT
can be bounded by

OPT ≥
N∑
k=1

(#k − 1). (6)

Proof From Observation 1, we immediately get that OPT ≥
m∑
i=1

ni∑
j=1

rij .

Consider a connected component Ck of our schedule containing the edges

t1, t1 + 1, . . . , t2. Since S is non-wasting,

m∑
i=1

Ri(t) = 1 holds for all time steps

t ∈ { t1, t1 + 1, . . . , t2 − 1 }. If there were such a t with

m∑
i=1

Ri(t) < 1, the non-

wasting property would imply that all active jobs are finished. But then the edge

22 Ernst Althaus et al.

et+1 would not be part of Ck, yielding a contradiction. For the last time step

t2 of Ck we have

m∑
i=1

Ri(t2) ≥ 0. Since S is feasible and, w.l.o.g., does not use

more of the resource than necessary, it follows that

S∑
t=1

m∑
i=1

Ri(t) =

m∑
i=1

ni∑
j=1

rij .

Let e(k) denote the last edge of Ck. Then we get:

OPT ≥
m∑
i=1

ni∑
j=1

rij =

S∑
t=1

m∑
i=1

Ri(t) =

N∑
k=1

∑
et⊆Ck

∑
(i,j)∈et

Ri(t)

≥
N∑
k=1

∑
et⊆Ck

et 6=e(k)

1 =

N∑
k=1

(#k − 1).

ut

The second lower bound centers around utilizing parallelism. In a problem
instance where each processor has exactly n jobs, the maximum exploitable
parallelism is m. On the other hand, in a schedule with components Ck of class
qk, the maximum parallelism that can be exploited in Ck is qk. In a sense, the
following lemma shows that, in the case of balanced schedules, this is not much
worse than m.

Lemma 6 Let OPT denote the minimal makespan of a given problem instance
and remember that n denotes the maximum number of jobs any processor has
to process. Given a balanced schedule S and its scheduling graph, OPT and n
can be bounded by the inequalities

OPT ≥ n ≥
N−1∑
k=1

|Ck|
qk

+
|CN |
m

. (7)

Proof Remember that Mj is the set of processors having at least j jobs to
process. Since any schedule can process at most one job per processor in every
time step, even an optimal schedule needs at least n time steps to finish all

jobs. We can write n as
∑

(i,j)∈V

1/|Mj|, yielding

OPT ≥ n =
∑

(i,j)∈V

1

|Mj |
=

N∑
k=1

∑
(i,j)∈Ck

1

|Mj |

≥
N−1∑
k=1

∑
(i,j)∈Ck

1

|Mj |
+

∑
(i,j)∈CN

1

m

=

N−1∑
k=1

∑
(i,j)∈Ck

1

|Mj |
+
|CN |
m

.

Scheduling Shared Continuous Resources on Many-Cores 23

It remains to show that we have∑
(i,j)∈Ck

1

|Mj |
≥ |Ck|

qk
(8)

for all but the last component. So fix k ∈ { 1, 2, . . . N − 1 } and let (i0, j0) ∈ Ck
be a job of the k-th component with minimal j0. Let t0 be the first time step
when (i0, j0) is active. The minimality of j0 implies that et0 is the first edge of
Ck and, thus, qk = |et0 |. We distinguish two cases:

Case 1: ni0(t0) > 1
By applying Proposition 2, we get that all processors i ∈ Mj0 are active at
time step t0. This yields |Mj0 | ≤ |et0 | = qk. Moreover, for a job (i, j) ∈ Ck, the
minimality of j0 gives us |Mj0 | ≥ |Mj |. Combining both inequalities implies
|Mj | ≤ qk. Applying this to the first part of Equation (8) eventually yields the
desired inequality.

Case 2: ni0(t0) = 1
In this case, (i0, j0) is the last job on processor i0 at time step t0. However,
for any job (i, j) ∈ Ck \ et0 we have ni(t0) > 1. Given such a job, let (i, j′) be
the job processed on i at time step t0. Note that we have j′ < j and, thus,
Mj ⊆ Mj′ . By applying Proposition 2, we get that all i′ ∈ Mj′ are active at
time step t0. Together with Mj ⊆Mj′ , this yields |Mj | ≤ qk. Thus, to prove

Equation (8), it only remains to show
∑

(i,j)∈et0

1/|Mj| ≥
∑

(i,j)∈et0

1/qk(= 1).

To this end, note that, since Ck is not the last component, there exists
at least one job (i1, j1) ∈ et0 with ni1(t0) > 1. Let this job be such that j1 is
minimal. Once more, by applying Proposition 2 we get that all i ∈ Mj1 are
active at time step t0. Consider a job (i, j) ∈ et0 with i ∈Mj1 . If it is the last
job on i (i.e., if ni(t0) = 1), we have j = ni. Together with the definition of
Mj1 we get j = ni ≥ j1, yielding |Mj | ≤ |Mj1 |. Similarly, if it is not the last
job on i (i.e., if ni(t0) > 1), the minimality of j1 gives us |Mj | ≤ |Mj1 |. This
yields the desired inequality as follows:∑

(i,j)∈et0

1

|Mj |
≥

∑
(i,j)∈et0
i∈Mj1

1

|Mj |
≥

∑
(i,j)∈et0
i∈Mj1

1

|Mj1 |
= 1.

ut

8.2 Deriving a (2− 1/m)-Approximation

Finally, we have all the ingredients to prove our main result:

Theorem 7 Consider a CRSharing instance with unit size jobs and a feasible
schedule S for it that is non-wasting, progressive, and balanced. Then S is a
(2− 1/m)-approximation with respect to the optimal makespan.

24 Ernst Althaus et al.

Proof In the following, let #∅ := N∑
k=1

#k

/N denote the average number of edges

in a component. Our proof uses two bounds on the approximation ratio. The
first one follows easily from Lemma 5 and leads to a better approximation for
instances with large #∅. The second bound is much more involved and mainly
based on Lemma 6. It yields a better approximation for instances with small
#∅. To get the first bound, we simply apply Lemma 5 and get

S

OPT
≤

∑N
k=1 #k∑N

k=1(#k − 1)
=

#∅

#∅ − 1
. (9)

Let us now consider the second bound, based on Lemma 6. Our goal is to
show that the inequality

S

OPT
≤ m ·#∅

#∅ +m− 1
(10)

holds. Once this is proven, we can combine both bounds by realizing that the
bound from Equation (9) is monotonously decreasing in #∅ and the bound
from Equation (10) is monotonously increasing in #∅. Equalizing yields that

their minimum’s maximum is obtained at #∅ =
2m− 1

m− 1
, which results in an

approximation ratio of 2− 1/m.
The rest of this proof is geared towards proving Equation (10). We dis-

tinguish two cases. The first case covers the easier part, where we have
OPT ≥ n+ 1. That is, even an optimal solution cannot finish the jobs in n
time steps. The second case, where we have OPT = n, turns out to be more
difficult to prove. While we can apply a similar analysis, we have to take more
care when bounding our algorithm’s progress in the first two time steps.

Case 1: OPT ≥ n+ 1
Applying Lemma 6 to this case yields

S

OPT
≤

∑N
k=1 #k∑N−1

k=1
|Ck|
qk

+ |CN |
m + 1

≤ N ·#∅∑N−1
k=1

#k+qk−1
qk

+ #N+m−1
m

≤ N ·#∅∑N
k=1

#k+m−1
m

≤ m ·#∅

#∅ +m− 1

(11)

Case 2: OPT = n
If we apply the same analysis as in the first case, we will fall short of our desired
approximation ratio. Surprisingly, it turns out to be sufficient to bound only
the first two time steps more carefully. The idea of the following analysis is to
consider the first two time steps of S and the remaining part of S separately.
To this end, first note that we can assume, w.l.o.g., that #1 > 1 (i.e., the
first two time steps belong to the same component). If this is not the case,

Scheduling Shared Continuous Resources on Many-Cores 25

our algorithm finishes all active jobs in the first time step and, thus, behaves
optimally2. Consider the remaining jobs/workloads after the first two time
steps. We can regard this as a subinstance of our original problem instance.
Let S′ denote the subschedule that results from restricting S to time steps
t ≥ 3. We use N ′, #′k, q′k, and n′ to refer to the corresponding properties
of its scheduling graph HS′ . Note that we have N ′ ≥ N − 1 (because of our
assumption #1 > 1) as well as N ′ ·#′∅ = N ·#∅ − 2 (since exactly two time
steps are missing in the subschedule). Moreover, we also have n′ = n− 2. The
inequality n′ ≥ n−2 is obvious. For n′ ≤ n−2, note that OPT must finish the
jobs in the set { (i, 1) | ni(1) ≥ n− 1 } ∪ { (i, 2) | ni(1) ≥ n } during the first
two time steps. Thus, the total resource requirement of these jobs is at most
two. Since S is balanced, it will prioritize and, thus, finish these jobs in the
first two time steps. Finally, we can bound our approximation ratio as follows
(the first inequality applies Lemma 6 to S′):

S

OPT
=
N ·#∅

2 + n′
≤ N ·#∅

2 +
∑N ′−1
k=1

|C′
k|
q′k

+
|C′

N′ |
m

≤ N ·#∅

1 + 1
m +

∑N ′−1
k=1

#′
k+q′k−1

q′k
+

#′
N′
m + m−1

m

≤ N ·#∅

1 + 1
m +

∑N ′

k=1
#′

k+m−1

m

=
N ·m ·#∅

m+ 1 +N ′ ·#′∅ +N ′(m− 1)

≤ N ·m ·#∅

2 + (N ·#∅ − 2) +N(m− 1)
=

m ·#∅

#∅ +m− 1
.

This proves that Equation (10) also holds in this case.
ut

8.3 Tight Approximation Algorithm

So far, we analyzed the quality of balanced schedules in general, but did not
yet provide a concrete example of a corresponding algorithm. One of the most
natural greedy algorithms schedules jobs by prioritizing processors with a
higher number of remaining jobs and, in the case of a tie, by prioritizing
jobs with larger remaining resource requirements. We name this algorithm
GreedyBalance. In Section 8.2, we saw that balanced schedules and, as a
consequence, the algorithm GreedyBalance yield a (2− 1/m)-approximation
for the CRSharing problem. Now, we show that this approximation ratio is
tight for GreedyBalance.

Theorem 8 The GreedyBalance algorithm for the CRSharing problem
with jobs of unit size has a worst-case approximation ratio of exactly 2− 1/m.

2 This reduces our analysis to a smaller problem instance.

26 Ernst Althaus et al.

Proof Since GreedyBalance computes only balanced schedules, the upper
bound follows immediately from Theorem 7. For the lower bound, consider
a family of problem instances defined as follows: We define blocks of m×m
jobs with resource requirements as described below. For the first block, let

ri1 := 1 − i · ε for i ∈ { 1, 2, . . . ,m }, r12 := 1 −
m∑
i=1

(1 − ri1) + ε, and ri2 := ε

for i ∈ { 2, 3, . . . ,m }. Moreover, define rij := ε for all i ∈ { 1, 2, . . . ,m }
and j ∈ { 3, 4, . . . ,m }. This finishes the first m × m-block of jobs. Having
constructed the l-th block, we construct the next block, starting with its first
column j := l ·m+1. We define rij := 1−(m−1)ε for i ∈ { 1, 2, . . . ,m− 1 } and

rmj := 1−
m−1∑
i′=1

rm−i′,j−i′ . For the second column of this block we set r1,j+1 :=

1−
m∑
i=1

(1− rij) + ε, and ri,j+1 := ε for i ∈ { 2, 3, . . . ,m }. To finish the block,

we set rij′ := ε for all i ∈ { 1, 2, . . . ,m } and j′ ∈ { j + 2, j + 3, . . . , j +m− 1 }.
We finish the construction once the next block would contain jobs with negative
resource requirements. Note that by choosing ε small enough, we can make this
construction arbitrarily long. See Figure 5 for an illustration of this construction
and the schedules produced by GreedyBalance and an optimal algorithm.
Our construction is such that GreedyBalance needs exactly 2m− 1 time
steps per block: By balancing the number of remaining jobs, it is forced to
work m time steps on a block’s first column (which contains a total resource
requirement of roughly m) before it can finish the remaining m− 1 columns of
a block. In contrast, the optimal algorithm ignores any balancing issues, which
allows it to exploit that all diagonals have a total resource requirement of 1.

ut

9 Conclusion & Outlook

We introduced a new resource-constrained scheduling problem where job pro-
cessing speeds depend on the share of the resource a job is assigned. Even
for unit size jobs, this problem turned out to be NP-hard in the number of
processors. However, we were able to derive an algorithm that computes an
optimal solution in polynomial time. This algorithm merely proves that such
solutions exist, but is by no means practical. While for m = 2 processors
we presented an exact quadratic-time algorithm, it remains an open question
whether there are efficient polynomial-time algorithms for m ≥ 3. For these
cases we provided a linear-time approximation algorithm with a worst-case
approximation ratio of 2− 1/m.

Restricting the analysis to unit size jobs, we did not give analytical results
for jobs of arbitrary sizes3, but we conjecture that almost all results should be

3 One could also consider resource requirements > 1. However, the most natural extension
of our model can easily be shown to reduce to non-unit size jobs with resource requirements

Scheduling Shared Continuous Resources on Many-Cores 27

Block 1 Block 2 Block 3 . . .

9999 77 11 9898 1313 11 9898 1919 11 9898

9898 11 11 9898 11 11 9898 11 11 9898

9797 11 11 9292 11 11 8686 11 11 8080

(a) An optimal schedule.

Block 1 Block 2 Block 3 . . .

9999 77 11 9898 1313 11 9898 1919 11 9898

9898 11 11 9898 11 11 9898 11 11 9898

9797 11 11 9292 11 11 8686 11 11 8080

(b) Schedule computed by GreedyBalance.

Fig. 5: Construction and schedules used in the proof of Theorem 8 for m = 3 and ε = 0.01.
Node labels show the corresponding job’s resource requirement in percent (e.g., r12 = 0.07).
Note that the optimal schedule needs (essentially) m time steps to finish a block, while S
needs 2m− 1 time steps per block.

transferable. However, extending our analysis turns out to be non-trivial. In
particular our scheduling (hyper-) graphs cannot, with their current definition,
capture such problem instances. And yet, intuition suggests that one should
be able to extend our definitions and find similar structural properties for
arbitrary job sizes.

Besides extending our results to jobs of arbitrary sizes, it seems worthwhile
to extend the model to other, possibly more realistic scenarios. What analytical
results are possible if we re-introduce the classical scheduling aspect, where
jobs of a task are not a priori fixed to a specific processor? It may also be
possible to use our insights to get analytical results in special cases of discrete-
continuous models as proposed by Józefowska and Weglarz [11]. Another
interesting direction are models that consider energy as a continuously divisible
resource. One might imagine a multiprocessor model in the spirit of the original
speed scaling model by Yao et al. [18], but with a shared energy source (cf. [14,
15]). Finally, we opted for a discrete time model, both because it facilitates
the analysis and because it fits well in typical implementations of real-world
schedulers (which are usually called at regular time intervals [2]). Nevertheless,

≤ 1 (rescale jobs with resource requirement r > 1 and workload p such that it has resource
requirement 1/r · r = 1 and workload r · p).

28 Ernst Althaus et al.

it seems an intriguing question to consider this problem in a more sophisticated,
continuous setting where the scheduler can act at arbitrary times.

References

1. B lażewicz, J., Ecker, K.H., Pesch, E.: Handbook on Scheduling: From Theory to Appli-
cations. Springer (2007)

2. B lażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Scheduling
- From Theory to Applications. International Handbooks on Information Systems.
Springer-Verlag Berlin Heidelberg (2007)

3. Chung, F., Graham, R., Mao, J., Varghese, G.: Parallelism versus memory allocation
in pipelined router forwarding engines. Theory of Computing Systems 39(6), 829–849
(2006)

4. Epstein, L., Levin, A., van Stee, R.: Approximation schemes for packing splittable
items with cardinality constraints. Algorithmica 62(1-2), 102–129 (2012). DOI 10.1007/
s00453-010-9445-6. URL http://dx.doi.org/10.1007/s00453-010-9445-6

5. Epstein, L., van Stee, R.: Improved results for a memory allocation problem. Theory
Comput. Syst. 48(1), 79–92 (2011). DOI 10.1007/s00224-009-9226-2. URL http:

//dx.doi.org/10.1007/s00224-009-9226-2
6. Janiak, A., Janiak, W., Lichtenstein, M.: Resource management in machine scheduling

problems: A survey. Decision Making in Manufacturing and Services 1(12), 59–89 (2007)
7. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Weglarz, J.: Discrete-continuous

scheduling to minimize the makespan for power processing rates of jobs. Discrete Applied
Mathematics 94(1), 263–285 (1999)

8. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Weglarz, J.: Solving the discrete-
continuous project scheduling problem via its discretization. Mathematical Methods of
Operations Research 52(3), 489–499 (2000)

9. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Weglarz, J.: A heuristic approach
to allocating the continuous resource in discrete-continuous scheduling problems to
minimize the makespan. Journal of Scheduling 5(6), 487–499 (2002)

10. Józefowska, J., Weglarz, J.: Discrete-continuous scheduling problems – mean completion
time results. European Journal of Operational Research 94(2), 302–309 (1996)

11. Józefowska, J., Weglarz, J.: On a methodology for discrete-continuous scheduling. Euro-
pean Journal of Operational Research 107(2), 338–353 (1998)

12. Kis, T.: A branch-and-cut algorithm for scheduling of projects with variable-intensity
activities. Mathematical Programming 103(3), 515–539 (2005)

13. Leung, J.Y.T.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
Chapman & Hall/CRC (2004)

14. Różycki, R., Weglarz, J.: Power-aware acheduling of preemptable jobs on identical
parallel processors to minimize makespan. Annals of Operations Research pp. 1–18
(2011). DOI 10.1007/s10479-011-0957-5

15. Różycki, R., Weglarz, J.: Power-aware scheduling of preemptable jobs on identical parallel
processors to meet deadlines. European Journal of Operational Research 218(1), 68–75
(2012). DOI 10.1016/j.ejor.2011.10.017

16. Waligóra, G.: Heuristic approaches to discrete-continuous project scheduling problems to
minimize the makespan. Computational Optimization and Applications 48(2), 399–421
(2011)

17. Weglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or
infinite number of activity processing modes – a survey. European Journal of Operational
Research 208(3), 177–205 (2011)

18. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 374–382 (1995)

19. Zhuravlev, S., Saez, J.C., Blagodurov, S., Fedorova, A., Prieto, M.: Survey of scheduling
techniques for addressing shared resources in multicore processors. ACM Computing
Surveys (CSUR) 45(1), 4:1–4:28 (2012). DOI 10.1145/2379776.2379780. URL http:

//doi.acm.org/10.1145/2379776.2379780

http://dx.doi.org/10.1007/s00453-010-9445-6
http://dx.doi.org/10.1007/s00224-009-9226-2
http://dx.doi.org/10.1007/s00224-009-9226-2
http://doi.acm.org/10.1145/2379776.2379780
http://doi.acm.org/10.1145/2379776.2379780

	Introduction
	Related Work & Contribution
	Model & Notation
	Preliminaries
	Problem Complexity
	Algorithm for Two Processors
	Algorithm for m Processors
	Balanced Schedules
	Conclusion & Outlook

