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Abstract

We consider online preemptive scheduling of jobs with fixed starting times revealed at those times on
m uniformly related machines, with the goal of maximizing the total weight of completed jobs. Every job
has a size and a weight associated with it. A newly released job must be either assigned to start running
immediately on a machine or otherwise it is dropped. It is also possible to drop an already scheduled
job, but only completed jobs contribute their weights to the profit of the algorithm.

In the most general setting, no algorithm has bounded competitive ratio, and we consider a number of
standard variants. We give a full classification of the variants into cases which admit constant competitive
ratio (weighted and unweighted unit jobs, and C-benevolent instances, which is a wide class of instances
containing proportional-weight jobs), and cases which admit only a linear competitive ratio (unweighted
jobs and D-benevolent instances). In particular, we give a lower bound of m on the competitive ratio for
scheduling unit weight jobs with varying sizes, which is tight. For unit size and weight we show that
a natural greedy algorithm is 4/3-competitive and optimal on m = 2 machines, while for large m, its
competitive ratio is between 1.56 and 2. Furthermore, no algorithm is better than 1.5-competitive.

1 Introduction

Scheduling jobs with fixed start times to maximize (weighted) throughput is a well-studied problem with
many applications, for instance work planning for personnel, call control and bandwidth allocation in com-
munication channels [1, 3]. In this paper, we consider this problem for uniformly related machines. Jobs
with fixed starting times are released online to be scheduled on m machines. Each job needs to start im-
mediately or else be rejected. The completion time of a job is determined by its length and the speed of
a machine. As pointed out by Krumke et al. [13], who were the first to study them for uniformly related
machines, problems like these occur when jobs or material should be processed immediately upon release,
but there are different machines available for processing, for instance in a large factory where machines of
different generations are used side by side. Because on identical machines, the size of the job together with
its fixed start time determine the time interval that one of the machines has to devote to the job in order to
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complete it, this problem is commonly known as interval scheduling [6, 9, 8, 7, 10]. In fact, Krumke et
al. [13] used the name interval scheduling on related machines, but we refrain from it as different speeds
translate into different time intervals for different machines, albeit with a common start time.

We consider the preemptive version of this problem, where jobs can be preempted (and hence lost) at
any time (for example, if more valuable jobs are released later). Without preemption, it is easy to see that
no online algorithm can be competitive for most models. The only exception is the simplest version of this
problem, where all jobs have unit size and weight. For this case, preemption is not needed.

1.1 Our Results

It is known (cf. Section 1.3) that if both the weight and the size of a job are arbitrary, then no (randomized)
algorithm is competitive on identical machines, a special case of related machines. Therefore, we study
several restricted models.

One of them is the case of jobs with unit sizes and unit weights, studied in Section 2. While a trivial
greedy algorithm is 1-competitive in this case on identical machines (cf. Section 1.3), attaining this ratio on
related machines is impossible. We give a lower bound of (3 ·2m−1−2)/(2m−1) on the competitive ratio for
this case, which for large m tends to 3/2 from below. The high level reason why this holds is that the optimal
assignment of jobs to machines may depend on the timing of future arrivals. We also show that a simple
greedy algorithm is 2-competitive and we use a more complicated lower bound construction to show that
it is not better than 1.56-competitive for large m. For m = 2 machines, we show that it is 4/3-competitive,
matching the lower bound.

Next, in Section 3, we consider two extensions of this model: weighted jobs of unit sizes and a model
where the weight of a job is determined by a fixed function of its size, f : R+

0 → R+
0 (where R+

0 denotes the
non-negative reals).

A function is C-benevolent if it is convex, f (0) = 0, and f (p) > 0 for all p > 0. This includes the
important case of proportional weights given by f (x) = ax for some a > 0. The property that a function is
C-benevolent implies in particular that f is continuous in (0,∞), and monotonically non-decreasing. We con-
sider instances, called C-benevolent instances, where the weights of jobs are given by a fixed C-benevolent
function f of their sizes, that is, w( j) = f ((p( j)). We call such an instance f -benevolent.

We give a 4-competitive algorithm, which can be used both for f -benevolent instances and for weighted
unit-sized jobs. This generalizes the results of Woeginger [15] for these models on a single machine; cf. Sec-
tion 1.3.

Finally, in Section 4, we give a lower bound of m for unit-weight variable-sized jobs, which is tight due
to a trivial 1-competitive algorithm for a single machine [4, 6] and the following simple observation.

Fact 1.1. If algorithm ALG is R-competitive on a single machine, then an algorithm that uses only the fastest
machine by simulating ALG on it is (R ·m)-competitive on m related machines.

Proof. Fix an instance and the optimum schedule for it on m related machines. To prove our claim, it
suffices to show that a subset of jobs from that schedule with total weight no smaller than a 1/m fraction
of the whole schedule’s weight can be scheduled on the fastest machine. Clearly, one of the machines is
assigned a subset of sufficient weight in the optimum schedule, and this set can be scheduled on the fastest
machine.

Instances with unit-weight variable-sized jobs are a special case of D-benevolent instances: a function
f is D-benevolent if it is decreasing on (0,∞), f (0) = 0, and f (p)> 0 for all p > 0. (Hence such functions
have a discontinuity at 0.) Hence our lower bound of m applies to D-benevolent instances as well, and
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size, weight 1 machine 2 related machines m related machines
LB UB UBr LB UB LB UB

1,1 1 1 [4, 6] 1 [4, 6] 4/3 4/3 3·2m−1−2
2m−1 2

1,variable 4 [15] 4 [15] 2 [8] 2 [9] 4 1.693 [5, 7] 4
variable,1 1 1 [4, 6] 1 [4, 6] 2 2 m m

variable,D-benevolent 3 [15]1 4 [15] 2 [10] 2 8 m 4m
variable,C-benevolent 4 [15] 4 [15] 2 [10] 1.693 [5, 7] 4 1.693 [5, 7] 4
variable,proportional 4 [15] 4 [15] 2 [10] 1.693 [5, 7] 4 1.693 [5, 7] 4

variable,variable ∞ [15] − − ∞ − ∞ −

Table 1: An overview of old and new results for deterministic algorithms; upper bounds by randomized
algorithms (UBr) are also given for a single machine. The upper bounds of m and 4m follow from Fact 1.1
below.

again we obtain an optimal (up to a constant factor) algorithm by combining a 4-competitive algorithm for
a single machine [15] with Fact 1.1. Note that in contrast, C-benevolent functions are not a generalization
of unit weights and variable sizes, because the constraint f (0) = 0 together with convexity implies that
f (cx)≥ c · f (x) for all c > 0,x > 0, so the weight is at least a linear function of the size.

We give an overview of our results and the known results in Table 1. In this table, a lower bound for
a class of functions means that there exists at least one function in the class for which the lower bound holds.

1.2 Notation

There are m machines, M1,M2 . . . ,Mm, in order of non-increasing speed. Their speeds, all no larger than 1,
are denoted by s1 ≥ s2 ≥ . . . ≥ sm respectively. We say that machine i1 is faster than machine i2 if i1 < i2
(even if si1 = si2). For an instance I and algorithm ALG, ALG(I) and OPT(I) denote the total weight of
jobs completed by ALG and an optimal schedule, respectively. The algorithm is R-competitive if OPT(I)≤
R ·ALG(I) for every instance I.

For a job j, we denote its size by p( j), its release time by r( j), and its weight by w( j)> 0. Any job that
an algorithm runs is executed in a half-open interval [r,d), where r = r( j) and d is the time at which the job
completes or is preempted. We call such intervals job intervals. If a job (or a part of a job) of size p is run
on machine Mi then d = r+ p

si
. A machine is called idle if it is not running any job, otherwise it is busy.

1.3 Previous Work

As mentioned before, if both the weight and the size of a job are arbitrary, then no (randomized) algorithm is
competitive, either on one machine [15, 3] or identical machines [3]. For completeness, we formally extend
this result to any set of related machines and show that for the most general setting, no competitive algorithm
can exist (not even a randomized one).

Proposition 1.2. For any set of m machine speeds, the competitive ratio of every randomized algorithm for
variable lengths and variable weights is unbounded.

1This lower bound holds for all surjective functions.
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Proof. Let ALGm be an arbitrary randomized preemptive algorithm for m machines of speeds s1, . . . ,sm.
Recall that s1 =max1≤i≤m si. Let C be an arbitrary constant, and let C′=mC. Define the following algorithm
ALG for one machine of speed s1: ALG chooses an integer i in {1,2, ...,m} uniformly with probability 1/m
and acts as ALGm acts on machine i. Since the speed of i is at most s1, this is possible. Note that ALG is
randomized even if ALGm is deterministic. For every input J, E(ALG(J)) = 1

m ·E(ALGm(J)).
Let OPTm denote an optimal solution for m machines, and OPT1 on one machine. Clearly OPT1(J) ≤

OPTm(J) for every input J. Let I be an input such that OPT1(I)≥C′ ·E(ALG(I)) (its existence is guaranteed,
since ALG’s competitive ratio is unbounded [3]). Then C ·E(ALGm(I)) = mC ·E(ALG(I)) ≤ OPT1(I) ≤
OPTm(I). Thus the competitive ratio of ALGm is unbounded.

For this general case on one machine, it is possible to give an O(1)-competitive algorithm, and even
a 1-competitive algorithm, using constant resource augmentation on the speed; that is, the machine of the
online algorithm is O(1) times faster than the machine of the offline algorithm that it is compared to [11, 12].

Baruah et al. [2] considered online scheduling with deadlines, including the special case (zero laxity)
of interval scheduling. They focused on the proportional weight case and gave a 4-competitive algorithm
for a single machine and a 2-competitive algorithm for two identical machines. Woeginger [15] considered
interval scheduling on a single machine and gave a 4-competitive algorithm for unit sized jobs with weights,
C-benevolent jobs, and D-benevolent jobs. He also showed that this algorithm is optimal for the first two
settings. Faigle and Nawijn [6] and Carlisle and Lloyd [4] considered the version of jobs with unit weights
on m identical machines. They gave a 1-competitive algorithm for this problem.

For unit sized jobs with weights, Fung et al. [9] gave a 3.59-competitive randomized algorithm for one
and two (identical) machines, as well as a deterministic lower bound of 2 for two identical machines. The
upper bound for one machine was improved to 2 by the same authors [8] and later generalized to the other
nontrivial models [10]2. See [5, 14] for additional earlier randomized algorithms. A randomized lower
bound of 1.693 for one machine was given by Epstein and Levin [5]; Fung et al. [7] pointed out that it
holds for parallel machines as well, and gave an upper bound for that setting (not shown in the table): a
2-competitive algorithm for even m and a (2+2/(2m−1))-competitive algorithm for odd m≥ 3.

2 Unit sizes and weights

In this section we consider the case of equal jobs, i.e., all the weights are equal to 1 and also the size of each
job is 1. We first note that it is easy to design a 2-competitive algorithm, and for 2 machines we find an
upper bound of 4/3 for a natural greedy algorithm.

The main results of this section are the lower bounds. First we prove that no online algorithm on m
machines can be better than (3 · 2m−1− 2)/(2m− 1)-competitive. This matches the upper bound of 4/3
for m = 2 and tends to 1.5 from below for m→ ∞. For GREEDY on m = 3n machines we show a larger
lower bound of (25 · 2n−2− 6)/(2n+2− 3), which tends to 25/16 = 1.5625 from below. Thus, somewhat
surprisingly, GREEDY is not 1.5-competitive.

2.1 Greedy Algorithms and Upper Bounds

As noted in the introduction, in this case preemptions are not necessary. We may furthermore assume that
whenever a job arrives and there is an idle machine, the job is assigned to some idle machine. We call such
an algorithm greedy-like.

2The paper [10] is an extended version of [8].
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Fact 2.1. Every greedy-like algorithm is 2-competitive.

Proof. Let ALG be a greedy-like algorithm. Consider the following charging from the optimum schedule
to ALG’s schedule. Upon arrival of a job j that is in the optimum schedule, charge j to itself in ALG’s
schedule if ALG completes j; otherwise charge j to the job ALG is running on the machine where the
optimum schedule assigns j. As every ALG’s job receives at most one charge of either kind, ALG is 2-
competitive.

We also note that some of these algorithms are indeed no better than 2-competitive: If there is one
machine with speed 1 and the remaining m− 1 have speeds no larger than 1

m , an algorithm that assigns an
incoming job to a slow machine whenever possible has competitive ratio no smaller than 2− 1

m . To see this,
consider an instance in which m− 1 successive jobs are released, the i-th of them at time i− 1, followed
by m jobs all released at time m−1. It is possible to complete them all by assigning the first m−1 jobs to
the fast machine, and then the remaining m jobs each to a dedicated machine. However, the algorithm in
question will not complete any of the first m−1 jobs before the remaining m are released, so it will complete
exactly m jobs.
Algorithm GREEDY: Upon arrival of a new job: If some machine is idle, schedule the job on the fastest idle
machine. Otherwise reject it.

While we cannot show that GREEDY is better than 2-competitive in general, we think it is a good
candidate for such an algorithm. We support this by showing that it is optimal for m = 2.

Theorem 2.2. GREEDY is 4/3-competitive algorithm for interval scheduling of unit size and weight jobs on
2 related machines.

Proof. Consider a schedule of GREEDY and split it into non-overlapping intervals [Ri,Di) as follows. Let
R1 ≥ 0 be the first release time. Given Ri, let Di be the first time after Ri when each one of the machines has
the property that it is either idle, or it has just started a new job (the case that it just completed a job and did
not start a new job is contained in the case that it is idle). Given Di, Ri+1 is defined if there exists at least one
job with a release time in [Di,∞). In this case, let Ri+1 be the first release time that is larger than or equal
to Di. If Ri+1 > Di, then obviously no job is released in the interval [Di,Ri+1), and both machines are idle
during this time interval. If Di = Ri+1, then at least one job is released at time Di, and at least one machine
of GREEDY starts a new job at this time. By the definition of the values Ri and the algorithm, at least one
machine of GREEDY (i.e., machine M1) starts a job at time Ri, for all values of i≥ 1 such that Ri is defined.

We consider an optimal schedule OPT. We will compare the number of jobs started by GREEDY and
by OPT during one time interval [Ri,Di). First, we will show that the number of jobs that OPT starts can
be larger than the number of jobs that GREEDY can start by at most 1. Next, we will show that if GREEDY

started one or two jobs, then the number of jobs that OPT started cannot exceed that of GREEDY. This will
show that during each [Ri,Di), OPT starts at most 4/3 times the number of jobs that GREEDY does, which
will imply the claimed competitive ratio. Thus, in what follows, we discuss a specific time interval [Ri,Di).

Consider a maximal time interval that a machine M` of GREEDY is busy. Since all jobs are unit jobs,
the number of jobs that OPT starts during this time interval on M` does not exceed the number of jobs that
GREEDY runs on M` during this interval. On the other hand, if a machine is idle during a (maximal) time
interval [t1, t2) (where t1 < t2 ≤ Di), then no jobs are released during (t1, t2), so OPT does not start any jobs
during (t1, t2). If t1 = Ri, then [t1, t2) must be an interval of idle time on M2 (since M1 is not idle at time
Ri), and OPT possibly starts a job at time t1. If t1 > Ri, then we claim that no job is released at time t1.
Assume by contradiction that a job j is released at this time. If GREEDY does not run j, then we get a
contradiction, since it has an idle machine at time t1. Thus, it runs j on the other machine, and we find that
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the time t1 is such that one machine is idle, and the other one just started a job. Thus, by the definition of
Ri we get Ri ≤ t1, a contradiction as well. Thus, OPT can start as most as many jobs as GREEDY during the
time intervals that both machines of GREEDY are running jobs, and it can start at most one job during all
intervals that a machine of GREEDY is idle.

If GREEDY starts only one job in [Ri,Di), then exactly one job is released at time Ri, and no jobs are
released during (Ri,Di), so OPT can start at most one job during [Ri,Di). Consider the case that GREEDY

starts two jobs in [Ri,Di). In this case, the first job is started on M1 at time Ri. If no job is started on M2
strictly before the time Ri +

1
s1

, then Di = Ri +
1
s1

, contradicting the assumption that a second job is started
by GREEDY during [Ri,Di). Since M1 is idle during the time [Ri +

1
s1
,Di), no jobs are released during this

time interval (this time interval can be empty if s1 = s2 and both jobs are released at time Di). Since s1 ≥ s2,
OPT cannot start more than one job on each machine during [R,Ri +

1
s1
), and thus it starts at most two jobs

as well. This completes the proof.

2.2 Lower Bounds

We give two lower bounds, for any deterministic algorithm ALG and for GREEDY that, with the number
of machines tending to infinity, tend to 3/2 and 25/16 respectively from below. In this section we see an
offline solution as an adversary. For both constructions, we have m machines with geometrically decreasing
speeds (as a function of the indices). The instance has two sets of jobs. The first part, Im, is the set of jobs
that both the algorithm and the adversary complete. The other part, Em, consists of jobs that are completed
only by the adversary.

Intuitively, the instance (Im,Em) for the general lower bound can be described recursively. The set Im

contains m jobs that are called leading that are released in quick succession, so that no two can be assigned
to the same machine. The adversary schedules these m jobs on different machines, cyclically shifted, so that
one of them finishes later than in ALG but the remaining m− 1 finish earlier. For each one of these m− 1
jobs, upon its completion, the adversary releases and schedules a job from Em; the adversary maintains the
invariant that at the time of release of any of these jobs from Em, all the machines are busy in the schedule
of ALG. To ensure this, the instance Im also contains m− 1 subinstances I1, . . . , Ik−1 (which recursively
contain further subinstances themselves). Each subinstance Ii is released at a time when m− i of the leading
jobs are still running, and its jobs occupy the machines of ALG when the job of Em arrives. The main
technical difficulty lies in ensuring this property no matter how ALG assigns the leading jobs of Im or of
any subinstance. We need to make the offsets of the leading jobs geometrically decreasing in the nested
subinstances, and adjust the timing of the subinstances carefully depending on the actual schedule.

This construction for k = 3 with |I3|= 7 and |E3|= 3 as applied to GREEDY is illustrated in Figure 1; the
constructions for k = 1,2 appear as subinstances of a single job (|I1|= 1, E1 = /0) and of four jobs (|I2|= 3,
|E2|= 1) respectively. For GREEDY, we of course know in advance how any leading job will be scheduled
(on the fastest available machine) and it is straightforward to determine the timing of the subinstances I1 and
I2 to ensure that the machines are busy when e2 and e3 arrive. In fact, as we will see below, for GREEDY we
can slightly improve upon this construction.

Theorem 2.3. Let ALG be an online algorithm for interval scheduling of unit size and unit weight jobs on
m related machines. Then the competitive ratio of ALG is at least (3 ·2m−1−2)/(2m−1).

Proof. Following Section 2.1, we may assume that ALG is greedy-like. Let ADV denote the schedule of the
adversary which we construct along with the instance.

Fix m, the number of machines and the speeds sk = 4−k. Thus a job processed on Mk takes time 1
sk
= 4k.

Let Mk = {M1, . . . ,Mk} denote the set of k fastest machines from M . For k = 1, . . . ,m, let εk = mk−m−1.

6



Greedy

Adv

Greedy

Adv

Greedy

Adv

M1

M2

M3

j1

j2

j3

e2

e3

j1

j2

(I1, E1)

(I2, E2)

R3 R2R1

Figure 1: The instance (I3,E3) as applied to GREEDY. The leading jobs of I3 are gray. Common jobs in
GREEDY and ADV schedule are joined using dotted lines. Jobs that only ADV completes are thicker. In this
figure, for simplicity we have used one common value εi = ε (i = 1,2,3). We will argue later that this is
sufficient for GREEDY.

Note that εk < 1 and kεk < mεk = εk+1 for all k < m, while εm = 1
m . To prove the bound, we are going to

inductively construct a sequence of instances (I1,E1), (I2,E2), . . . , (Im,Em). Each instance Ik is run by both
ALG and ADV on machines Mk.

The precondition for invoking an occurrence of (Ik,Ek) at time Rk is that the machines in M \Mk in the
schedule of ALG are busy with already released jobs throughout the interval [Rk,Rk +

1
sk
+kεk), whereas the

machines in Mk are idle starting from time Rk for both ADV and ALG. All jobs of (Ik,Ek) will be released
in [Rk,Rk +

1
sk
+ kεk).

Now we describe the recursive construction of Ik and Ek together with the schedule of ADV. The con-
struction depends on the actual schedule of ALG before the current time; this is sound, as during the con-
struction the current time only increases. (Note that this also means that different occurrences of (Ik,Ek)
may look slightly different.)

The first k jobs of Ik are called its leading jobs and are denoted by j1, j2, . . . , jk. For i = 1, . . . ,k, the job
ji is released at time Rk + iεk < Rk +1. When the last of these jobs arrives, which is before any of them can
finish since si < 1 for i = 1, . . . ,m, it is known where ALG assigned each of the jobs and exactly when they
will finish. ALG assigns all the leading jobs to machines in Mk in one-to-one correspondence, since ALG

is greedy-like (and we assume the precondition holds). Denote the completion time of the leading job on
machine Mi of ALG by Ci for i = 1, . . . ,k.

For i = 1, . . . ,k−1, ADV schedules ji on the machine where ALG schedules ji+1; ADV schedules jk on
the machine where ALG schedules j1. Hence, at time Ci+kεk, ADV still has at most k− i unfinished leading
jobs of Ik left, which are running on the slowest machines of Mk.
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We have

Ci+1−Ci > 4i+1−4i− kεk > 2 ·4i + iεi (1)

> kεk, (2)

using that iεi < kεk ≤ 1 for 1≤ i < k ≤ m. By (2), there will be exactly k−1 disjoint intervals of length εk
in [Rk,Rk +

1
sk
+ kεk] of the form [Ci− εk,Ci] in which ALG has one more unfinished leading job than ADV.

We call these intervals good intervals.
For each i = 1, . . . ,k−1 in increasing order, we now do the following. If [Ci− εk,Ci] is good, release an

extra job at time Ci−εk. ADV schedules this job on machine Mi. Regardless of whether [Ci−εk,Ci] is good,
let

Ri :=Ci+1−
1
si
− iεi, (3)

and construct recursively an occurrence of the instance (Ii,Ei), including ADV schedule, at time Ri. Note
that the precondition for (Ik,Ek) plus the fact that there are still k− i leading jobs running in the whole
interval [Ri,Ci+1] (due to (1)) implies that the precondition holds for the subinstance (Ii,Ei) as well.

For the rest of the construction and of the proof, let (Ii,Ei) denote this particular occurrence. Denote the
set of the k− 1 extra jobs released in good intervals by E0. Finally, let Ik = { j1, j2, . . . , jk}∪ I1∪ ·· · ∪ Ik−1
and Ek = E0∪E1∪·· ·∪Ek−1. This completes the description of (Ik,Ek).

Claim 2.4. If the precondition holds, both ALG and ADV complete all jobs from Ik on machines Mk no later
than Rk +

1
sk
+ kεk.

Proof. This follows for the leading jobs of Ik since all these jobs are released no later than at time Rk + kεk
(and since the k fastest machines are idle for both ALG and ADV by the precondition), and for the other
jobs from the fact that (Ii,Ei) is released at time Ci+1− 1

si
− iεi, meaning all jobs in Ii complete by time

Ci+1 by induction in both the schedule of ALG and ADV; in particular, all jobs in Ik−1 complete by time
Ck ≤ Rk +

1
sk
+ kεk.

The following claim implies that ALG cannot schedule any extra job. Notice that an extra job of (Ik,Ek)
is released at time Ci− εk for some i≤ k.

Claim 2.5. For any occurrence of (Ik,Ek), if the precondition holds at time Rk, then for any i ≤ k, at time
Ci− εk, all machines from M are busy running jobs in ALG.

Proof. Consider any i ≤ k. Machines Mi, i > k are busy in ALG by the precondition. Machines Mi, . . . ,
Mk are running the leading jobs of (Ik,Ek) by the construction. We now use induction on k to prove that
machines from Mi−1 are busy. If i = 1, this is trivial.

Let i > 1. The leading job of (Ii−1,Ei−1) (i.e., the occurrence of (Ii−1,Ei−1) from the construction
of (Ik,Ek) released at Ri−1 = Ci− 1

si−1
− iεi−1) scheduled by ALG on Mi−1 completes at some time C′ ∈

[Ci− (i−1)εi−1,Ci], by the construction of the leading jobs. By the induction assumption for (Ii−1,Ei−1), at
time C′−εi−1 all machines are busy in ALG. Since the jobs these machines are running are from (Ii−1,Ei−1),
by Claim 2.4 used for (Ii−1,Ei−1) they complete by Ci. Thus they must be running already befor time Ci−εk,
as εk < 1. Since C′−εi−1≥Ci−iεi−1≥Ci−εk, they are running also after Ci−εk and thus also at Ci−εk.

The input for the algorithm is now simply one instance of (Im,Em); we set Rm = 0. For this instance, the
precondition trivially holds. As noted above (below (3)), this implies that the precondition also holds for all
subinstances (Ii,Ei).

8



Finally, by Claim 2.5, ALG does not run any extra job, while ADV runs all of them since they are
released in good intervals. It remains to count the number of jobs in Ik and Ek. We claim that |Ik| = 2k−1
and |Ek|= 2k−1−1. This is clear for k = 1, since |I1|= 1 and E1 = /0. Using the inductive assumption, we
get |Ik|= k+∑

k−1
i=1 |Ii|= k+∑

k−1
i=1 (2

i−1) = 2k−1 and |Ek|= k−1+∑
k−1
i=1 |Ei|= k−1+∑

k−1
i=1 (2

i−1−1) =
2k−1− 1. Hence the competitive ratio of ALG is at least

(
(2m−1)+(2m−1−1)

)
/(2m− 1) = (3 · 2m−1−

2)/(2m−1).

The second lower bound is higher, however it only works for GREEDY. We observe that cyclic shift of
the leading jobs may not be the best permutation for the adversary. Instead, we create triples of machines of
equal speeds (among the three machines of the triple) and shift the jobs cyclically among the triples. That
is, the permutation of the leading jobs has three independent cycles of length m/3. There is one triple where
the speeds are not equal, and this is the set of the three fastest machines for which we use different speeds
and the previous construction as a subinstance.

Consider the previous construction I as applied to GREEDY, as shown for three machines in Figure 1. We
make two changes. The first change is already shown in Figure 1: since GREEDY prefers faster machines,
we now set εi = ε = 1

m at every recursive step of the construction. We denote the modified version of (Ik,Ek)
by (I′k,E

′
k) for all k. For any instance (I′i ,E

′
i ), assuming the precondition (with εi replaced by ε) for time

R′i, GREEDY assigns leading job j′i which arrives at time R′i + iε to machine Mi. Thus in the construction of
(I′k,E

′
k), as in (3) we let R′i = Ci+1− iε− 1

si
and thus ensure that GREEDY completes j′i at exactly the same

time as the leading job on machine Mi+1 in the schedule of GREEDY for (I′k,E
′
k). This defines the input I′.

Using the same cyclically shifted assignment as before, the only machine where ADV completes leading
jobs later than (or at the same time as) GREEDY is M1, on all other machines it completes each leading job
ε time earlier. By induction, it is straightforward to show that when GREEDY completes any leading job on
some machine Mi, it also completes a leading job on machines M1, . . . ,Mi−1 at exactly the same time. It
follows (also by induction) that ε time before the leading job of the top-level subinstance (Ii,Ei) completes
(i = 1, . . . ,k−1), all machines of GREEDY are busy, whereas i machines of ADV are idle, namely machines
M2, . . . ,Mi+1.

We now further modify I′ as follows. Every machine M4, . . . ,Mk is replaced by a cluster of three ma-
chines of identical speed. E.g., machine M4 of speed s4 is replaced by three machines of speed s4. Every
time that one job of I′k which is scheduled by GREEDY on some machine Mi, i > 3 or a job of E ′k arrives
which is only scheduled by ADV on some machine Mi, i > 3, we instead let three jobs arrive simultane-
ously. For GREEDY, as explained above this means that every leading job j′i for i > 3 is replaced by three
simultaneous jobs. Every extra job which ADV puts on some machine Mi, i > 3 is also replaced by three
jobs.

On the other hand, every time that a subinstance (I′1,E
′
1) or (I′2,E

′
2) is invoked within some instance

(I′k,E
′
k) for k > 3 in I′, we omit this invocation and let no jobs arrive. (Thus these two subinstances are only

invoked to create instances (I′3,E
′
3), and (I′1,E

′
1) is only invoked to create (I′2,E

′
2).) This defines the input I′′,

cf. Fig. 2.
Since GREEDY prefers faster machines and no two jobs arrive simultaneously in I or I′ by construction

and by using the precondition, this means that the schedule of GREEDY for I′′ is determined exactly by its
schedule for input I′: the schedule for machines M1,M2,M3 remains the same, apart from omitting jobs that
do not arrive in I′′, whereas for i > 3, the schedule for each machine of speed si is the same as the schedule
for the single machine of speed si in I′.

ADV again uses a cyclically shifted schedule, but now for k > 3, jobs are shifted in groups of three: each
job that GREEDY assigns to a machine of speed si is assigned to a machine of speed si+1 for i = 2, . . . ,k−1;
the leading jobs of Ik on M1,M2,M3 are assigned to machines of speed s4, and the leading jobs of Ik on the
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Figure 2: An instance of (I′′5 ,E
′′
5 ). The figure shows the schedule of GREEDY, using the same conventions as

before. The value of ε is exaggerated in this figure for clarity; in the actual construction, the first (leftmost)
nine jobs all overlap. On the left and in the middle, groups of three leading jobs are marked, which the
adversary schedules on the machines indicated by the arrows. In particular, the last three leading jobs of
(I′′5 ,E

′′
5 ) are scheduled later by ADV than by GREEDY, which is why there is no reason to invoke construc-

tions of (I′′1 ,E
′′
1 ) and (I′′2 ,E

′′
2 ) there. In the two instances of (I′′3 ,E

′′
3 ) that are marked by the dotted lines, the

schedule of the adversary is as in the previous figure.

machines of speed sk are assigned to M1,M2,M3. This in particular means that the leading jobs on the three
slowest machines complete later in the schedule of ADV than in GREEDY, which explains why we do not
create subinstances (I1,E1) and (I2,E2) here: there is no point in occupying the faster machines when the
leading jobs on M2 and M3 complete in the schedule of GREEDY, since ADV is still busy running them.

It follows immediately that GREEDY schedules all the jobs in I′′m and none of the jobs in E ′′m, and it
remains to calculate the numbers of these jobs. We claim that for k > 3, |I′′k | = 16 · 2k−4− 3 and |E ′′k | =
9 · 2k−4 − 3. For k = 4, we indeed have |I′′4 | = 6 + |I′′3 | = 13 (there are six leading jobs, and only one
subinstance, namely I′′3 ) and |E ′′4 | = 6 (three jobs in E ′′3 and three jobs for the leading jobs on the machines
of speed s4). For k > 4, using the inductive assumption,

|I′′k |= 3(k−2)+
k−1

∑
i=3
|I′i |= 3(k−2)+7+16

k−5

∑
i=0

2i−3(k−4) = 16 ·2k−4−3

and

|E ′′k |= 3(k−3)+
k−1

∑
i=3
|E ′i |= 3(k−2)+9

k−5

∑
i=0

2i−3(k−4) = 9 ·2k−4−3.

Theorem 2.6. The competitive ratio of the GREEDY algorithm for interval scheduling of unit size and unit
weight jobs on m = 3(k−2) related machines is at least (25 ·2k−4−6)/(16 ·2k−4−3) for k > 3.

Proof. From the above equalities, the competitive ratio of GREEDY is at least ((16 ·2k−4−3)+ (9 ·2k−4−
3))/(16 ·2k−4−3) = (25 ·2k−4−6)/(16 ·2k−4−3).

3 A constant competitive algorithm for two input classes

In this section we consider two types of instances. The first type are jobs of equal sizes (of 1), whose weights
can be arbitrary. We also consider f -benevolent input instances with a fixed function f .
Algorithm ALG: On arrival of a new job j, do the following.
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1. Use an arbitrary idle machine if such a machine exists.
2. Otherwise, if no idle machines exist, preempt the job of minimum weight among the jobs running at

time r( j) having a weight less than w( j)/2, if at least one such job exists.
3. If j was not scheduled in the previous steps, then reject it.

Note that we do not use the speeds in this algorithm in the sense that there is preference of slower or
faster machines in any of the steps. But clearly, the eventual schedule depends on the speeds, since they
determine whether a job is still running at a given time.

Definition 3.1. A chain is a maximal sequence of jobs j1, . . . , jn that ALG runs on one machine, such that
jk is preempted when jk+1 arrives (k = 1, . . . ,n− 1). Let [rk,dk) be the time interval in which jk is run
(k = 1, . . . ,n), and let wk = w( jk), pk = p( jk).

For a job j′ that ALG runs, we let d( j′) be the maximum time such that the algorithm runs j′ during
[r( j′),d( j′)). If j′ = j` of some chain, then by the definition of chains, d( j′) = d`.

Observation 3.2. For a chain j1, . . . , jn that ALG runs on machine i, j1 starts running on an idle machine,
and jn is completed by ALG. Then it holds that rk = r( jk), dn− rn = pn/si, and for j < n, dk− rk < p(Jk)/si

and dk = rk+1 hold.

The following observation holds due to the preemption rule.

Observation 3.3. For a chain j1, . . . , jn, 2wk < wk+1 for 1≤ k ≤ n−1.

Consider a fixed optimal offline solution OPT, that runs all its selected jobs to completion. We say that
a job j that is executed by OPT is associated with a chain j1, . . . , jn if ALG runs the chain on the machine
where OPT runs j, and j is released while this chain is running, i.e., r( j) ∈ [r1,dn)).

Claim 3.4. Every job j that is executed by OPT, such that j is not the first job of any chain of ALG, is
associated with some chain.

Proof. Assume that j is not associated with any chain. The machine i that is used to execute j in OPT is
therefore idle at the time r( j), as otherwise j would have been associated with the chain running at this time
on machine i. Thus, j is assigned in step 1 (to some idle machine that is not machine i), and it is the first job
of a chain.

Thus, in particular, every job run by OPT but not by ALG is associated with a chain. We assume without
loss of generality that every job in the instance either belongs to a chain or is run by OPT (or both), since
other jobs have no effect on ALG and on OPT.

For the analysis, we assign the weight of every job that OPT runs to jobs and chains of ALG, and analyze
the total weight of jobs assigned to a given chain compared to the weight of its last job (that ALG completes).
The chain can receive weight assignments as an entire chain, but its specific jobs can also receive weight
assignment. The assignment of the weight of a job j is split between j (it will be counted later towards
the weight assigned to the chain that it belongs to in ALG) and the entire chain of ALG that j is associated
with, where one of the two parts can be zero. In particular, if ALG does not run j then the first part must be
zero, and if j is not associated with a chain then the second part must be zero. The assignment is defined as
follows. Consider job j that OPT runs on machine i.

1. If j is not associated with any chain, then assign a weight of w( j) to j.
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2. If j is associated with a chain of ALG (of machine i), then let j′ be the job of the chain such that
r( j) ∈ [r( j′),d( j′)). Assign a min{w( j),2 ·w( j′)} part of the weight of j to this chain, and assign the
remaining weight max{w( j)−2 ·w( j′),0} to j itself.

For unit jobs, given a job j′ that belongs to a chain, there is at most one job j assigned to this chain
such that r( j) ∈ [r( j′),d( j′)), since OPT cannot complete any job on this machine before time d( j′) if it is
released no earlier than time r( j′). For an f -benevolent instance, multiple jobs that are associated with a
chain on a machine i can be released while a given job j′ of that chain is running, but we claim that only
the last one can possibly have weight above w( j′). Consider a job j that OPT runs on i, that is released
during [r( j′),d( j′)), and such that there exists at least one other job with the same properties that is released
later. Job j satisfies r( j)+ p( j)

si
≤ d( j′) and r( j)≥ r( j′), so p( j)≤ p( j′) and therefore w( j)≤ w( j′) by the

C-benevolence of f . The complete weight of j is assigned to the chain. If there exists a job j̃ that OPT runs
on i, that is released during [r( j′),d( j′)), but is completed by OPT after time d( j′), then j̃ may have some
weight assigned to itself, if its weight is above 2w( j′); however, this can happen only if ALG runs this job
on another machine, as we now show. If ALG does not run j̃, then ALG does not preempt any of the jobs it
is running, including the job j′ on the machine that OPT runs j̃ on, then w( j̃)≤ 2w( j′) (and the weight of j̃
is fully assigned to the chain it is associated with ). If ALG runs a job j̃ on the same machine as OPT, then
j̃ = j′ must hold, and the weight of j̃ is completely assigned to the chain (and not assigned to itself).

For any chain, we can compute the total weight assigned to the specific jobs of the chain (excluding the
weight assignment to the entire chain).

Claim 3.5. For a chain j1, . . . , jn that ALG runs on machine i, the weight assigned to j1 is at most w1. The
weight assigned to jk for 2≤ k≤ n is at most wk−2wk−1. The total weight assigned to the jobs of the chain
is at most wn−∑

n−1
k=1 wk.

Proof. The property for j1 follows from the fact that the assigned weight never exceeds the weight of the
job. Consider job jk for k > 1. Then wk > 2wk−1 by Observation 3.3. If there is a positive assignment to jk,
then the machine i′ where OPT runs jk is not i. At the time rk all machines are busy (since the scheduling
rule prefers idle machines, and jk preempts jk−1). Moreover, the job j′ running on machine i′ at time rk
satisfies w( j′) ≥ wk−1. Thus jk is assigned wk− 2 ·w( j′) ≤ wk− 2wk−1. The total weight assigned to the
jobs of the chain is at most w1 +∑

n
k=2 (wk−2wk−1) = w1 +∑

n
k=2 wk− 2∑

n−1
k=1 wk = ∑

n
k=1 wk− 2∑

n−1
k=1 wk =

wn−∑
n−1
k=1 wk.

For a job j that has positive weight assignment to a chain of ALG it is associated with (such that the job
j′ of this chain was running at time r( j)), we define a pseudo-job π( j). The only goal of pseudo-jobs is to
bound the total weight assigned to a chain (excluding the weight that is assigned to specific jobs of the chain).
The pseudo-job π( j) will have a weight w(π( j)) that is equal to the amount of the weight of j that is assigned
to the chain associated with j, and since this weight may be smaller than w( j), its size p(π( j)) may be
smaller than p( j). The pseudo-job π( j) has the same release time as j and its weight is min{w( j),2 ·w( j′)}.
If the input consists of unit jobs, then the size of π( j) is 1. If the instance is f -benevolent, then the size
p(π( j)) of π( j) is such that f (p(π( j))) = w(π( j)). We let p(π( j)) = f−1 (w(π( j))). Note that this is well
defined due to f ’s continuity and monotonicity in (0,∞); in particular p(π( j)) = p( j) if w(π( j)) = w( j) and
otherwise, when w( j)> 2w( j′), p(π( j)) is a unique number in (p( j′), p( j)).

Definition 3.6. For a given chain j1, . . . , jn of ALG running on machine i, an alt-chain is a set of jobs or
pseudo-jobs j′1, . . . , j′n′ such that r( j′k) ≥ r( j′k−1)+

p( j′k−1)

si
for 2 ≤ k ≤ n′, r( j′1) ≥ r1, r( j′n′) < dn, (that is,

all jobs of the alt-chain are released during the time that the chain of ALG is running, and they can all be
assigned to run on machine i in this order). Moreover, it is required that if r( j′k)∈ [r`,d`), then w( j′k)≤ 2 ·w`.
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Lemma 3.7. For unit jobs, a chain j1, . . . , jn of ALG on machine i and any alt-chain j′1, . . . , j′n′ satisfy

n′

∑
k=1

w( j′k)≤
n

∑
`=1

w`+2wn.

Proof. For every job j`, there can be at most one job of the alt-chain that is released in [r`,d`), since
the time to process a job on machine i is 1

si
and thus difference between release times of jobs in the alt-

chain is at least 1
si

, while d` ≤ r`+ 1
si

. However, every job of the alt-chain j′k must have a job of the chain
running at r( j′k). If job j′k of the alt-chain has r( j′k) ∈ [r`,d`) then by definition w( j′k)≤ 2 ·w`, which shows
∑

n′
k=1 w( j′k)≤ 2∑

n
`=1 w`.

Using wk > 2wk−1 for 2≤ k≤ n we find wk <
wn

2n−k for 1≤ k≤ n and ∑
n−1
k=1 wk < wn. Thus ∑

n′
k=1 w( j′k)≤

∑
n
`=1 w`+2wn.

Lemma 3.8. For C-benevolent instances, a chain j1, . . . , jn of ALG on machine i and any alt-chain j′1, . . . , j′n′
satisfy

n′

∑
k=1

w( j′k)≤
n

∑
`=1

w`+2wn.

The proof can be deduced from a claim in the algorithm’s original analysis for a single machine [15].
For completeness, we present a detailed proof (see Appendix A).

Observation 3.9. For a chain j1, . . . , jn of ALG, the list of pseudo-jobs (sorted by release times) assigned
to it is an alt-chain, and thus the total weight of pseudo-jobs assigned to it is at most ∑

n
`=1 w`+2wn.

Proof. By the assignment rule, every job that is assigned to the chain (partially or completely) is released
during the execution of some job of the chain. Consider a pseudo-job j assigned to the chain, and let j′ be
the job of the chain executed at time r( j).

The pseudo-job π( j) has weight at most min{w( j),2 ·w( j′)}. Since the set of pseudo-jobs assigned to
the chain results from a set of jobs that OPT runs of machine i, by possibly decreasing the sizes of some
jobs, the list of pseudo-jobs can still be executed on machine i.

Theorem 3.10. The competitive ratio of ALG is at most 4 for unit length jobs, and for C-benevolent in-
stances.

Proof. The weight allocation partitions the total weight of all jobs between the chains, thus it is sufficient to
compare the total weight a chain was assigned (to the entire chain together with assignment to specific jobs)
to the weight of the last job of the chain (the only one which ALG completes), which is wn.

Consider a chain j1, . . . , jn of ALG. The total weight assigned to it is at most

(wn−
n−1

∑
k=1

wk)+

(
n

∑
`=1

w`+2wn

)
= 4wn ,

where the first summand is an upper bound on the weight assigned to individual jobs of the chain, by
Claim 3.5, and the second one an upper bound on the weight assigned to the chain itself, by Observation 3.9.
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4 Lower bound for unit weights and variable sizes

We give a matching lower bound to the upper bound of m shown in the introduction. Note that Krumke et
al. [13] claimed an upper bound of 2 for this problem, which we show is incorrect.

Fix 0 < ε < 1
2 such that 1

ε
is integer. Our goal is to show that no online algorithm can be better than

(1− ε)m-competitive. We define M = (1
ε
− 1)m and N = m3 +Mm2 +Mm. Consider a specific online

algorithm ALG.

Input One machine is fast and has speed 1. The other m−1 machines have speed 1/N. The input sequence
will consist of at most N jobs, which we identify with their numbers. Job j will have size p( j) = 2N− j and
release time r( j) ≥ j; we let r(1) = 1. The input consists of phases which in turn consist of subphases.
Whenever a (sub)phase ends, no jobs are released for some time in order to allow the adversary to complete
its most recent job(s). ALG will only be able to complete at most one job per full phase (before the next
phase starts). The time during which no jobs are released is called a break. Specifically, if ALG assigns
job j to a slow machine or rejects it, then the adversary assigns it to the fast machine instead, and we will
have r( j + 1) = r( j)+ p( j). We call this a short break (of length p( j)). A short break ends a subphase.
If ALG assigns job j to the fast machine, then in most cases, job j is rejected by the adversary and we set
r( j+ 1) = r( j)+ 1. The only exception occurs when ALG assigns m consecutive jobs to the fast machine
(since at most N jobs will arrive, and p( j) = 2N− j, each of the first m−1 jobs is preempted by ALG when the
next job arrives). In that case, the adversary assigns the first (i.e., largest) of these m jobs to the fast machine
and the others to the slow machines (one job per machine). After the m-th job is released, no further jobs are
released until the adversary completes all these m jobs. The time during which no jobs are released is called
a long break, and it ends a phase. The input ends after there have been M long breaks, or if m2 +bm short
breaks occur in total (in all phases together) before b long breaks have occurred. Thus the input always ends
with a break.

Before giving the details of the analysis, we give a sketch of its structure together with the proofs of
some simple properties. We will show that if there are m2 + bm short breaks in total before the b-th long
break, then ALG can complete at most b−1+m jobs from the input (one per long break plus whatever jobs
it is running when the input ends), whereas OPT earns m2 +bm during the short breaks alone. This implies
a ratio of m and justifies ending the input in this case (after the (m2 +bm)-th short break). If the M-th long
break occurs, then the input stops. In this case, ALG has completed at most M jobs and can complete at
most m− 1 additional ones. OPT completes at least Mm jobs in total (not counting any short breaks). The
ratio is greater than Mm/(M+m) = (1− ε)m for M = (1

ε
−1)m.

For every long break there is a unique critical job that determines its length; this is the second largest of
the m jobs. Precisely, if the last m jobs released before the long break are j, . . . , j+m−1, then the break has
length N p( j+1)− (m−2) = N p( j)/2−m+2 = N2N− j−1−m+2 (and we set r( j+m) to be r( j+m−1)
plus this last value). We show that it is indeed possible to complete all jobs until time r( j+m). The adversary
assigns job j to the fast machine, where it requires time p( j)− (m− 1) starting from the beginning of the
break (the break starts at time r( j+m− 1)). Using p( j)− (m− 1) < N p( j)/2− (m− 2), we see that this
job completes before r( j+m). After this, for k = 1, . . . ,m−1, job j+k is released at time r( j+k), has size
p( j)/2k and after time r( j+m− 1) it requires time N p( j)/2k− (m− 1− k) ≤ N p( j)/2− (m− 2), where
the inequality is easily proved using N > 4m. Note that we have r( j+m) = r( j)+1+N p( j)/2.

We show that at most N jobs will be released as claimed. This holds because between each long break
and the previous break (short or long), m jobs are released, and between any short break and the previous
break (short or long), at most m jobs are released, out of which the last one is assigned to a slow machine
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by ALG, and the previous ones are all assigned to the fast machine. Since there are at most m2 +Mm short
breaks, at most m3 +Mm2 jobs are released before short breaks, for a total of m3 +Mm2 +Mm = N jobs.

Observation 4.1. The length of short breaks and critical jobs are decreasing at least geometrically: after a
short break (critical job) of length x, the next short break (critical job) has length at most x/2 (x/2m).

For a long break b, let tb be the arrival time of the largest job jb that the adversary completes during this
break. The critical job of this break is then job jb +1. If the adversary does not create any long breaks, we
let t1 be the time at which the last short break (i.e., the input) finishes, and j1 be the index of the last job that
arrived plus one.

Lemma 4.2. For b = 1, . . . ,M, the following statements hold.

(i) The input ends before time tb +2N− jb+1(N−1).

(ii) No job that is running on a slow machine in the schedule of ALG can complete before the input ends.

Proof. (i) If there are no long breaks, this holds trivially. Else, the critical job of long break b takes time
2N− jb−1N to process on a slow machine, so the total time used by the adversary to process all the critical
jobs that are released after time tb is at most 2N− jb−1N(1+ 2−m + 2−2m + . . .) = 2N− jb−1N/(1− 2−m) by
Observation 4.1. The total length of all short breaks after time tb is at most 2N− jb−m(1+1/2+1/22+ . . .)<
2N− jb−m+1 by Observation 4.1 and because the first job which is released after long break b has size exactly
2N− jb−m. At most N other jobs are released at 1 time unit intervals. The total time that can pass after time tb
until the input ends is thus at most 2N− jb−1N

1−2−m +2N− jb−m+1 +N. This is less than 2N− jb+1(N−1) if

N
(

2m

2m−1
+2 jb+1−N

)
+22−m < 4N−4

Using jb ≤ N, this holds if N(2− 2m

2m−1)> 22−m +4, which is true for N > 4 · 2m+1
2m · 2m−1

2m−2 = 4 · 22m−1
22m−2m+1 . For

m≥ 2, this last expression is at most 8, and we have N > m3 ≥ 8.
(ii) If tb = 1, there is nothing to show: ALG does not run any job of the first phase on a slow machine. If

b > 1 and there are no jobs between long break b−1 and the jobs that the adversary completes during long
break b, then the claim follows by induction: no new jobs were started by ALG on slow machines after the
previous long break.

In the remaining cases (including the case where there are no long breaks), job jb− 1 was placed on a
slow machine by ALG and caused a short break. Thus it was released at time tb− 2N− jb+1 and ALG can
complete it at the earliest at time tb−2N− jb+1 +2N− jb+1N = tb +2N− jb+1(N−1), by which time the input
has ended by (i).

If b > 1, then by induction, no job that was released before the jobs which led to long break b− 1 can
be completed by ALG on a slow machine before the input ends. We will now lower bound the completion
time of the other (more recent) jobs on the slow machines (if they exist), also for the case b = 1. Each such
job caused a short break.

We first consider a simple case, where all these jobs were released consecutively immediately before
the jobs which led to long break b. In this case, the k-th such job (counting backwards from time tb)
was released at time tb− 2N− jb+1(1+ 2+ · · ·+ 2k−1) ≥ tb− k2N− jb+k and does not complete before time
tb +(N− k)2N− jb+k > tb +(N− 1)2N− jb+1, so we are again done using (i). The inequality holds because
N(2k−2)> k2k−2 which is true for all k ≥ 2,N ≥ k+1.
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Note that this proves that any job which is released during an arbitrarily long sequence of consecutive
short breaks that immediately precedes a long break can only finish (on a slow machine) after the input ends.
There may also be jobs that ALG assigns to the fast machine in between. Consider all such jobs starting
from the last one before time tb. We can insert these jobs one by one into the sequence, starting from the
end. The effect of each insertion is that the release time of all preceding jobs is decreased by 1 compared
to the calculations above, whereas their sizes are doubled. Thus after any such job is inserted, we still have
that no job which ALG is running at time tb on a slow machine can complete before the input ends.

Lemma 4.3. ALG cannot complete any job on the fast machine except during long breaks.

Proof. First, consider any maximal set of consecutive jobs that ALG assigns to the fast machine. By con-
struction, these jobs arrive at consecutive integer times, and all except maybe the very last one of the input
has size more than 1. This shows that ALG could only possibly complete the last job of each such set. If the
set has size m, this happens during the long break that follows. This can be seen as follows. Consider long
break b. The adversary completes job jb + 1 which has size 2N− jb−1 on a slow machine during this break.
The job that ALG assigned to the fast machine when break b started is job jb +m−1, which arrives at time
tb +m−1 and has size 2N− jb−m+1. Since m−1+2N− jb−m+1 < N2N− jb , ALG completes it during the long
break.

For a set of size less than m, at least one short break starts one time unit after the last job in the set arrives.
Say this last job has size 2N− j. Then the short break which follows has size 2N− j−1, and by Observation 4.1,
the total length of all possible later short breaks is at most 2N− j−1(1+1/2+ · · ·+1/2−m2−Mm)< 2N− j. So
the job of size 2N− j cannot complete before either the input ends or another job is assigned by ALG to the
fast machine.

It follows from Lemmas 4.2and 4.3 that after the b-th long break, ALG has completed at most b jobs
(the ones that it was running on the fast machine when each long break started), and none of the jobs that
were released so far and that were assigned to slow machines can complete before the input ends.

Appendix

A Proof of Lemma 3.8

The proof is an induction on n. Since we only consider the execution of jobs on a specific machine i, we use
terms such as “contained”, “completion time”, and “a job is released during the execution of another job”.

Consider a chain j1, j2, . . . , jn. Let ALGn =∑
n
k=1 wk be the total weight of all jobs in this chain. Denoting

by ALT∗n the maximum possible total weight of jobs of an alt-chain of the chain j1, j2, . . . , jn, we are to prove
that

ALT∗n ≤ ALGn +2wn .

We are going to prove a stronger claim. Call an alt-chain proper if it is contained in its corresponding
chain, i.e., if its last job ends before dn, and let ALTn be the maximum possible total weight of jobs of
a proper alt-chain of the chain j1, j2, . . . , jn. Then it suffices to prove

ALTn ≤ ALGn , (4)

since any alt-chain that is not itself proper becomes proper when its last job, of weight at most 2wn by
definition of a chain and an alt-chain, is removed.
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Recall that job interval of j` may be shorter than p`
si

due to a preemption. For a chain with n jobs, every
prefix can be seen as a chain as well, only the last job of the prefix may be preempted in the complete chain.

The base case of n = 0 and an empty chain holds trivially.
Consider a chain of length n > 0. If there is no job released during [rn,dn), the last released job has

weight at most 2wn−1 by definition, and the preceding jobs form a proper alt-chain for the chain j1, . . . , jn−1.
By induction, the total profit of the entire proper alt-chain is then at most ALGn−1 +2wn−1 < ALGn.

Else, we merge all jobs released during [rn,dn) into one job. Merging the two last jobs a and b of a
proper alt-chain is done as follows. The two jobs are replaced by job c with weight w(c) = w(a)+w(b) and
size p(c) = f−1 (w(c)), determined by the C-benevolent function f (corresponding to the instance). The
resulting job is placed so that it ends precisely at dn, the end of the chain. Note that when c is formed by
merging a and b, p(c) ≤ p(a)+ p(b) since f is convex, and therefore the job formed by merging two jobs
starts no earlier than the earliest of those jobs. This extends naturally to merges of more than two jobs.
After merging the suffix contained in [rn,dn), the resulting set of jobs forms a proper alt-chain with smaller
cardinality but the same weight. The last job has weight at most wn.

After merging the jobs contained in [rn,dn), denote the resulting job by b. If the penultimate job a of the
alt-chain ends no later than at dn−1 = rn, the jobs before b form a proper alt-chain for the chain j1, . . . , jn−1.
By induction, the total profit of the entire proper alt-chain is then at most ALGn−1 +wn = ALGn.

Else, a weighs at most 2wn−1 < wn by definition of the alt-chain. Note that both a and b weigh less than
wn, and therefore have size at most pn. If a is larger than b, swap the two jobs while preserving the end time
of the later one, and the start time of the earlier one. Rename them so that again a is followed by b. If a now
finishes before dn−1, we are done as before.

Let L be the total size of a and b, t1 the release time of a, and t2 its completion time, t3 the release time
of b, and t4 its completion time. By possibly extending b, we can assume that t2 = t3 and t4 = dn+1. Now
increase the size of b up to pn, i.e., by pn− p(b), decreasing the size of a and the release date of b by the
same amount. As this increases the size of the larger job, by convexity of f , the total weight of a and b does
not decrease in the process. Afterwards, a and the preceding jobs form an alt-chain properly contained in
the chain j1, . . . , jn−1, while b has weight wn. We are done by induction.
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