
Multiprocessor jobs, preemptive schedules, and
one-competitive online algorithms

Jǐŕı Sgall1 and Gerhard J. Woeginger2

1 Computer Science Institute of Charles University, Praha, Czech Republic,
sgall@iuuk.mff.cuni.cz.

2 Department of Mathematics and Computer Science, TU Eindhoven, Netherlands,
gwoegi@win.tue.nl

Abstract. We study online preemptive makespan minimization on m
parallel machines, where the (multiprocessor) jobs arrive over time and
have widths from some fixed set W ⊆ {1, 2, . . . ,m}. For every number m
of machines we concisely characterize all the sets W for which there is a
1-competitive fully online algorithm and all the sets W for which there
is a 1-competitive nearly online algorithm.

1 Introduction

In a multiprocessor job system, jobs may occupy several machines in parallel. For
instance, concurrent threads of some parallel application may be run simultane-
ously and thereby block several machines. Multiprocessor scheduling problems
have been studied extensively over the last three decades. The papers [4, 5] by
Drozdowski provide an excellent introduction to the area.

The considered scheduling model. We investigate the following problem of
scheduling n multiprocessor jobs J1, . . . , Jn on m identical machines. Every job
Jj (j = 1, . . . , n) has a length p(Jj), a width w(Jj), and a release date r(Jj).
Job Jj enters the system at time r(Jj), and requests simultaneous processing on
exactly w(Jj) machines for a total of p(Jj) time units. Preemption is allowed:
the processing of a job can be interrupted at any moment in time, and can be
resumed at any later moment on the same set of machines or on another set of
machines, however this set always has to contain exactly w(Jj) machines. Every
machine can process at most one job at a time. The goal is to minimize the
largest job completion time, which is called the makespan of the schedule. In the
three-field notation this problem is denoted P |pmtn, sizej , rj |Cmax.

The computational complexity of this problem is well-understood. If the
number m of machines is a fixed constant, then Pm|pmtn, sizej , rj |Cmax can
be formulated as a linear program of polynomial size and hence is solvable in
polynomial time; see Blazewicz, Drabowski & Weglarz [2]. If the number m of
machines is part of the input, then the problem is NP-hard even in the absence of
job release dates; see Drozdowski [3]. The survey paper [4] by Drozdowski sum-
marizes the complexity landscape around scheduling multiprocessor jobs. On the

approximation side, Johannes [8] and independently Naroska & Schwiegelshohn
[11] show that the List Scheduling algorithm yields an approximation ratio of 2.

Online algorithms. In the current paper we are mainly interested in the on-
line version of P |pmtn, sizej , rj |Cmax where jobs arrive over time; see for instance
Sgall [14] or Pruhs, Sgall & Torng [12] for surveys of the standard online schedul-
ing scenarios. The scheduler learns about job Jj at time r(Jj), and immediately
receives full knowledge of the length and the width of the job. At any moment in
time the online scheduler decides which of the available jobs should be processed
on which of the machines. An online algorithm is c-competitive, if for all instances
the online makespan is at most a multiplicative factor c above the optimal offline
makespan. The competitive ratio of an online algorithm is the smallest real c for
which the algorithm is c-competitive.

As jobs may be preempted, there arises a delicate distinction between fully
online and nearly online algorithms. A fully online algorithm makes all its de-
cisions based on the sole knowledge of the jobs that have arrived up to the
current moment. A nearly online algorithm additionally knows the arrival time
of the next job arriving in the future. As a nearly online algorithm has more
information than a fully online algorithm, nearly online algorithms may possibly
reach better competitive ratios than fully online algorithms. However, the actual
difference between these two concepts is very small. If one allows some form of
time-sharing, for example an infinite number of preemptions and infinitesimally
small preempted job pieces, then fully online and nearly online algorithms are es-
sentially equivalent: The best possible fully online competitive ratio then equals
the best possible nearly online competitive ratio. If on the other hand one only
allows a finite number of preemptions, then fully online algorithms in general
are slightly weaker than nearly online algorithms. Nevertheless, whenever there
exists a c-competitive nearly online algorithm, then for every ε > 0 there also
exists a (c+ ε)-competitive fully online algorithm.

Hong & Leung [7] construct a 1-competitive fully online algorithm for
P |pmtn, rj |Cmax, that is, for the variant where all widths are 1 and where every
job requests processing on a single machine. (The online algorithm in [7] also
knows the optimal offline makespan from the very beginning, but it only uses
this knowledge to stop in an early stage if it detects an infeasibility.) Labetoulle,
Lawler, Lenstra & Rinnooy Kan [9] give a 1-competitive nearly online algorithm
for problem Q|pmtn, rj |Cmax, where the machines are uniformly related. Vestjens
[15] strengthens this result: he provides a concise analysis of Q|pmtn, rj |Cmax

and characterizes all combinations of the machine speeds for which there ex-
ists a 1-competitive fully online algorithm. Very recently, Guo & Kang [6] con-
structed a 1-competitive fully online algorithm for the two-machine problem
P2|pmtn, sizej , rj |Cmax. On the negative side, Johannes [8] proves that no (fully
or nearly) online algorithm for the general problem P |pmtn, sizej , rj |Cmax can
have a competitive ratio below 6/5.

Contribution of this paper. We analyze the problem of P |pmtn, sizej , rj |Cmax

where all job widths belong to some fixed subset W ⊆ {1, 2, . . . ,m} a priori
known to the scheduler. For every number m of machines we characterize all the

sets W for which there is a 1-competitive fully online algorithm and all the sets
W for which there is a 1-competitive nearly online algorithm.

This generalizes the two 1-competitive fully online algorithms mentioned
above: the algorithm of Hong & Leung [7] which covers the cases with W = {1}
and the algorithm of Guo & Kang [6] which covers the case W = {1, 2} and
m = 2.

Statement of main result. For a number m of machines and a width w,
we define the rank of w relative to m as R(w,m) = bm/wc. In other words,
R(w,m) denotes the maximum number of jobs of width w that can be processed
simultaneously on m machines.

A width w is called fat for m machines if w > m/2 (so that w has rank
1), and it is called skinny if w ≤ m/2 (so that w has rank at least 2). For
a set W ⊆ {1, 2, . . . ,m}, we denote by W− ⊆ W its skinny elements and by
W+ ⊆ W its fat elements. Jobs are called fat respectively skinny if their width
is fat respectively skinny.

Theorem 1.1. Let m ≥ 1 be the number of machines and let W ⊆ {1, 2, . . . ,m}
be the set of possible job widths. There exists a 1-competitive nearly online
scheduling algorithm on m identical parallel machines with job widths in W ,
if and only if the following two conditions are both fulfilled:
(c1) All a, b ∈W− satisfy R(a,m) = R(b,m); in other words, all skinny widths

in W have the same rank relative to m.
(c2) All a, b ∈ W− and all c ∈ W+ satisfy R(a,m− c) = R(b,m− c); in

other words, whenever a fat job blocks some of the machines, then all the
skinny widths in W have the same rank relative to the number of remaining
machines.

Furthermore there exists a 1-competitive fully online scheduling algorithm on m
identical parallel machines with job widths in W , if and only if conditions (c1)
and (c2) together with the following condition (c3) are fulfilled:
(c3) All c ∈W+ and all a ∈W− satisfy R(a,m− c) = 0 or R(a,m) = 2.

Note that conditions (c1) and (c2) guarantee that all the ranks are independent
of a. Then condition (c3) gives only two possibilities: Either every fat job blocks
execution of any other job, or no three jobs can be executed together (and then
some fat jobs may block all other jobs, while other fat jobs may be scheduled
together with any single skinny width job).

The rest of the paper is dedicated to the proof of Theorem 1.1. After providing
some technical preliminaries, the four Sections 2–5 contain the proofs of the if-
parts and the only-if-parts for the characterization of the nearly and the fully
online case.

Technical preliminaries. This section collects some tools and observations
that will be useful in the rest of the paper. Preemptive makespan minimization
of jobs with unit-widths on parallel machines (that is, problem P |pmtn|Cmax)
can be solved by the wrap-around rule of McNaughton [10]. We will apply Mc-
Naughton’s classical result in the following equivalent formulation for multipro-
cessor jobs.

Proposition 1.2. Consider a system with m machines and n multiprocessor
jobs J1, . . . , Jn, where all jobs are available at time 0 and where all job widths
have the same rank R relative to m. There is a preemptive schedule that completes
all jobs by time t, if and only if

(i) The length of every job satisfies p(Jj) ≤ t.
(ii) The total length of all jobs satisfies

∑n
j=1 p(Jj) ≤ Rt.

Hong & Leung [7] gave a 1-competitive fully online algorithm for the spe-
cial case of P |pmtn, sizej , rj |Cmax where all jobs have width 1. We will use the
following equivalent formulation of their result for multiprocessor jobs.

Proposition 1.3. The online problem of preemptively scheduling multiprocessor
jobs on m machines allows a fully online 1-competitive algorithm, if all job widths
have the same rank R relative to m.

Finally, we state some observations on job widths and job ranks. If two widths
a and b have the same rank r relative to m, then any combination of r jobs of
width a or b can be run in parallel on m machines. We will use the following
observation many times implicitly in our arguments.

Observation 1.4. For a, b ∈ {1, 2, . . . ,m} with R(a,m) = R(b,m) it holds that
(i) b < 2a and a < 2b;
(ii) R(b,m− ka) = R(b,m)− k for k = 1, . . . , R(a,m).

2 The negative result for nearly online algorithms

In this section we prove that whenever a set W of job widths violates one of the
conditions (c1) and (c2) in the statement of Theorem 1.1, then no 1-competitive
nearly online scheduling algorithm can exist on m machines.

All our arguments are centered around the utilization of machines in an
adversarially constructed instance: At any moment in time, the total width of
the jobs run in an optimal schedule will be at least the total width of the jobs run
in the online schedule, and on some non-trivial time interval the optimal total
width will be strictly larger. Consequently the online makespan will be strictly
worse than the optimal makespan, and the nearly online scheduler cannot be
1-competitive.

Due to the space limit we present only the case when the condition (c1) is
violated. The proof when (c2) is violated, i.e., when R(a,m− c) > R(b,m− c)
works similarly, as we can simply block c machines by a fat job. An exception is
the case when R(b,m− c) ∈ {0, 1}, which needs a separate construction.

Throughout this section we assume that condition (c1) is violated, and we
consider a, b ∈ W− with R(a,m) > R(b,m) > 1; note that this implies b > a.
For simplicity of presentation we introduce r = R(b,m). The proof of the next
lemma is omitted.

Lemma 2.1. Let x0 and y0 be integers that maximize the value of ax+by subject
to the constraints ax+by ≤ m and x, y ≥ 0. Furthermore let x1 and y1 be integers
that maximize the value of ax + by subject to the constraints ax + by ≤ m and
x ≥ 1 and y ≥ 0. Then x0 ≥ 1 or x1 ≥ 2.

We present an adversarial argument against an arbitrary nearly online sched-
uler, which is built around x0, y0, x1, y1 from Lemma 2.1. The first adversarial
phase is as follows: at time 0 we confront the scheduler with R(a,m− rb) + 1
jobs of width a and length r, and with (r−1)r jobs of width b and length 1. The
second adversarial phase starts at time r − 1, when a group of long jobs arrives
that all have the same length L = r +R(a,m− rb). If x0 ≥ 1 (see Lemma 2.1),
then this group consists of x0 − 1 jobs of width a and of y0 jobs of width b. If
x0 = 0, then this group consists of x1 − 1 ≥ 1 jobs of width a and of y1 jobs of
width b.

The optimal schedule S1 for the first phase continuously processes all the
R(a,m− rb) + 1 jobs of width a together with some r− 1 of the jobs of width b.
The makespan of this schedule S1 equals r. The optimal schedule S2 for all the
jobs from both phases is as follows:
– During the time interval [0, r − 1], schedule S2 continuously processes
R(a,m− rb) jobs of width a (from the first phase) together with some r
of the jobs of width b (from the first phase). Then at time r−1 all jobs from
the first phase are completed, with the sole exception of r + R(a,m− rb)
unprocessed time units of the jobs of width a.

– From time r − 1 to time r − 1 + L, schedule S2 continuously processes x0
jobs of width a and y0 jobs of width b (in the case where x0 ≥ 1) or it
continuously processes x1 jobs of width a and y1 jobs of width b (in the case
where x0 = 0). In either case the makespan of S2 equals r − 1 + L.

During [0, r − 1], schedule S2 utilizes a · R(a,m− rb) + br machines. During
the remaining time, schedule S2 either utilizes ax0 + by0 machines (in the case
x0 ≥ 1) or ax1 + by1 machines (in the case x0 = 0). According to Lemma 2.1,
this is either the globally best possible utilization (if x0 ≥ 1), or the best possible
utilization subject to the constraint that at least one job of width a is running
(if x0 = 0).

How would a 1-competitive nearly online algorithm behave on this instance?
As it has no knowledge on the jobs from the second phase, the online algorithm
would have to follow the structure of the optimal schedule S1 during the time
interval [0, r − 1]. Then it utilizes a · (R(a,m− rb) + 1) + b · (r − 1) machines,
which is strictly smaller than the utilization of schedule S2 during [0, r − 1]. If
x0 ≥ 1, then during the remaining time the online scheduler cannot beat the
(globally optimal) utilization of schedule S2. If x0 = 0, then the online scheduler
must process one of the x1 − 1 ≥ 1 jobs of width a (from the second phase)
from time r − 1 to time r − 1 + L; by Lemma 2.1 there is no way of beating
the utilization of schedule S2 in this case. All in all, the utilization of the online
schedule is sometimes weaker but never better than that of the optimal schedule.

3 The positive result for nearly online algorithms

In this section we design and analyze the 1-competitive nearly online scheduling
algorithm FatMcN for all cases where the job widths in W satisfy conditions
(c1) and (c2) in Theorem 1.1. Our approach applies and extends the machinery

from the area, as introduced for instance in Schmidt [13], Hong & Leung [7], and
Albers & Schmidt [1]. From the technical point of view our arguments are more
subtle, and our results seem to reach the very limits of what can be derived for
this type of online problem.

Description of the algorithm. The main idea of our nearly online algorithm
FatMcN is (i) to handle the fat jobs (Fat) with highest preference, and (ii) to fit
the skinny jobs into the remaining space by using McNaughton’s result (Mc) in
Proposition 1.2.

Whenever there are fat jobs available, FatMcN selects a fat job of maximum
width and runs it. The resulting completion times of the fat jobs together with
the arrival times of all (fat or skinny) jobs constitute the so-called critical time
points 0 = t0 < t1 < · · · < ts = Cmax. (For technical reasons, we will assume
that at the very end of the instance a final trivial job of length 0 is released, so
that the last critical time point coincides with the optimal makespan.) For every
time slot [tk, tk+1] we define mk as the maximum number of skinny jobs that
can be processed simultaneously during the slot. Note that by conditions (c1)
and (c2) the numbers mk are well-defined, and that in fact any collection of mk

skinny jobs can be processed simultaneously at any time point during the slot.
As a nearly online algorithm, FatMcN is always aware of the next critical time
point.

The schedule for the skinny jobs during time slot [tk, tk+1] is determined at
time tk. Let p1 ≥ p2 ≥ · · · ≥ ps denote the processing times of the skinny job
pieces that are available and still need processing at time tk. Intuitively it is
clear that long job pieces should receive more processing than short job pieces.
To make this intuition precise, we introduce a threshold τ whose exact value will
be fixed later.
– Short job pieces with pj ≤ τ are not processed during the time slot.
– Long job pieces with pj > τ are processed for min{pj − τ, tk+1 − tk} time

units.
(The value tk+1−tk in the minimum expression is the length of the time slot and
hence imposes a hard upper bound on the processing of any job piece during the
slot.) It remains to fix the value of threshold τ . As the length of the processed
job pieces min{pj− τ, tk+1− tk} decreases monotonically with τ and as we want
to process the jobs as much as possible, we choose τ as the smallest non-negative
real number which satisfies∑

j:pj>τ

min{pj − τ, tk+1 − tk} ≤ mk · (tk+1 − tk). (1)

The left-hand side of (1) denotes the total job length packed into the slot, and
the right-hand side of (1) imposes the upper bound from Proposition 1.2.(ii). By
Proposition 1.2 all selected job pieces can indeed be scheduled during the time
slot [tk, tk+1]. This completes the description of algorithm FatMcN.

We conclude this section with some observations on the schedule produced
by algorithm FatMcN that will be crucial in the analysis. First, we note that
FatMcN maximizes the total length of skinny job pieces processed during slot

[tk, tk+1]. Secondly, the processing of jobs during slot [tk, tk+1] maintains their
relative ordering with respect to their lengths:

Lemma 3.1. Let pi and pj be the remaining processing times of two jobs at
time tk, and let xoni and xonj be the amounts of processing that these jobs receive
from algorithm FatMcN during slot [tk, tk+1]. If pi ≤ pj, then xoni ≤ xonj and
pi − xoni ≤ pj − xonj .

Correctness of the algorithm. We will now prove that algorithm FatMcN
always minimizes the makespan and hence indeed is 1-competitive. To this end
we fix an arbitrary instance and consider an optimal offline schedule S∗ and
the corresponding online schedule Son for it. The following lemma follows by a
switching argument which we omit.

Lemma 3.2. W.l.o.g. we may assume that the optimal schedule S∗ processes
the fat jobs during the same time slots as schedule Son.

By Lemma 3.2 we will assume from now on that the two schedules S∗ and
Son only differ in their handling of some skinny jobs and hence are governed by
the same sequence of critical time points t0 < t1 < · · · < ts. Let [tk, tk+1] be
the earliest time slot during which schedules S∗ and Son disagree in processing
the skinny jobs, so that at least one skinny job receives different amounts of
processing in S∗ and Son. If schedule Son processes xon time units of some job
during the slot while S∗ processes x∗ time units of the job, then we say that
the two schedules have an overlap of min{xon, x∗} with respect to this job. As
a measure of progress we will use the sum of the overlaps taken over all jobs.
We will show how to increase this total overlap by restructuring the optimal
schedule S∗, without worsening its makespan.

First we observe that the total length of skinny jobs processed during slot
[tk, tk+1] in schedule Son is at least as larger as in S∗: If τ > 0 in the algorithm,
then Son has no idle time and S∗ cannot fit more. If τ = 0 then Son schedules
the maximal possible part of each skinny job and thus S∗ cannot complete more,
either.

First we claim that we can assume that the total length of skinny jobs pro-
cessed during slot [tk, tk+1] is the same in schedules Son and S∗.

Next suppose that schedule Son processes larger total length of skinny jobs
than S∗, let the difference be z. It follows that we can move one or more skinny
job pieces of a job with x∗ < xon from some later time slot into [tk, tk+1]; we
choose the total length of the pieces to be min{xon − x∗, z}. This increases the
overlap and does not violate the conditions of Proposition 1.2, thus Son may be
rearranged in [tk, tk+1] into a valid schedule. After a finitely many steps we have
z = 0, as we are moving pieces of each job only once.

Now, in the remaining cases, schedules S∗ and Son both process exactly the
same total length of skinny jobs during the slot. As the schedules differ, there
exists a job Ji that during the slot receives more processing in S∗ than in Son

and there exists another job Jj that receives more processing in Son than in S∗.

If we denote the corresponding four job pieces by xoni and x∗i (for job Ji) and by
xonj and x∗j (for job Jj), then this means

xoni < x∗i and xonj > x∗j (2)

We denote the remaining processing time of jobs Ji and Jj at time point tk by
pi and pj . As the schedules S∗ and Son fully agree up to time tk, these values
are the same in both schedules. The following lemma follows from the properties
of FatMcN.

Lemma 3.3. The jobs Ji and Jj satisfy pj − x∗j > pi − x∗i .

By Lemma 3.3 schedule S∗ must contain a non-trivial time slot [u, v] with
u ≥ tk+1, during which job Jj is processed continuously while job Ji is not
processed at all. We choose such an interval where u and v are preemption times
of some jobs and let ε = min{x∗i −xoni , v−u}. We switch an ε-piece of job Ji from
slot [tk, tk+1] with an ε-piece of job Jj in slot [u, v]. While this keeps schedule
S∗ feasible and optimal, it also improves the total overlap.

We repeatedly perform such switches until eventually the overlap covers all
the processing time in the slot, so that schedule S∗ agrees with schedule Son on
time slot [tk, tk+1]. To see that the process is finite, note that by the choice of u
and v there is only a fixed number of intervals [u, v] we can use (the number is
given by the number of preemptions in the schedule), thus after a fixed number of
switches the schedules Son and S∗ must agree on an additional job and eventually
on all jobs in the time slot. Then we handle the remaining time slots in the
same fashion, and eventually transform the optimal schedule S∗ into the online
schedule Son without ever worsening the makespan. Consequently the schedule
Son produced by algorithm FatMcN has the optimal makespan, which means
that FatMcN is 1-competitive.

4 The negative result for fully online algorithms

In this section we show that if W violates one of the conditions (c1), (c2), (c3),
then there is no 1-competitive fully online algorithm on m machines under the
width set W . Throughout we may assume that W actually satisfies conditions
(c1) and (c2), as otherwise the arguments in Section 2 apply and exclude the
existence of a nearly and thus also of a fully online algorithm. Hence condition
(c3) is violated, so that there exist a ∈ W− and c ∈ W+ with R(a,m− c) ≥ 1
and R(a,m) ≥ 3. This condition implies that a job of width c may be replaced by
two jobs of width a, or more precisely R(a,m) ≥ R(a,m− c)+2. If R(a,m− c) =
1 then this follows from R(a,m) ≥ 3. If R(a,m− c) ≥ 2 then c > m/2 implies
R(a, c) ≥ R(a,m− c) ≥ 2, which yields R(a,m) ≥ R(a, c) + R(a,m− c) ≥
R(a,m− c) + 2, and the condition holds as well.

Once again we use an adversarial argument. In all possible cases, the optimal
makespan of the resulting job set will be 4. The first adversarial phase confronts
the scheduler at time 0 with one fat job of width c and length 2, with two skinny

crucial jobs of width a and length 1, and with R(a,m− c) − 1 skinny dummy
jobs of width a and length 4. We stress that if R(a,m− c) = 1 then there are
no dummy jobs. It is easily verified that the optimal offline makespan for this
job set is at most 4.

Next the adversary spends some time waiting and observing the actions of the
1-competitive fully online scheduler. Let t > 0 be the first moment in time where
the online algorithm changes the collection of running jobs (by preempting a job,
or by completing a job, or by starting a new job on a previously idle machine).
– During the time interval [0, t], the online scheduler must continuously process

all the R(a,m− c) − 1 dummy jobs. If R(a,m− c) = 1, this statement is
trivial. If R(a,m− c) ≥ 2 and no further jobs arrive, this is the only way to
prevent the online makespan from exceeding the optimal makespan of 4.

– During [0, t] the online scheduler must continuously process the fat job of
length 2. Otherwise another fat job of width c and length 2 arrives at time 2.
The optimal schedule has makespan 4, whereas the online schedule cannot
complete both fat jobs by time 4.

As c+a ·(R(a,m− c)−1)+2a > m, the online scheduler does not have sufficient
space to process both crucial skinny jobs during the time interval [0, t].

The second adversarial phase starts at time t, when a skinny job of width a
and length 4−t arrives together with a fat job of width c and length 1+t/2. The
optimal offline schedule still has makespan 4. Indeed, the optimal schedule uses
a · (R(a,m− c) − 1) machines to continuously process the dummy jobs during
[0, 4]. It uses a further machines to first process a piece of length t/2 of one crucial
job, then a piece of length t/2 of the other crucial job, and finally the skinny job
of length 4−t that arrives at time t. It uses c machines to first process the two fat
jobs during [0, 3+ t/2] and then during [3+ t/2, 4] the remaining pieces of length
1− t/2 of the two crucial jobs; this is feasible as R(a,m) ≥ R(a,m− c) + 2.

The online scheduler, however, must block a·R(a,m− c) machines from time
t onwards just in order to complete the dummy jobs and the job of length 4− t
that arrives at time t. This leaves a fat job of length 2, a fat job of length 1+t/2,
and a crucial job of length 1 that has not been processed at all before time t.
These three jobs cannot be completed on the remaining machines by time 4.
Hence the makespan produced by the fully online scheduler will be above 4, and
a fully online scheduler cannot be 1-competitive.

5 The positive result for fully online algorithms

In this section we construct 1-competitive fully online scheduling algorithms for
all the cases where the job widths in W satisfy conditions (c1), (c2), and (c3)
in Theorem 1.1. We will separately discuss two scenarios. The first scenario has
R(a,m− c) = 0 for all a ∈ W− and c ∈ W+ in condition (c3). The second
scenario has R(a,m) = 2 for some a ∈W− in condition (c3).

The first scenario. If R(a,m− c) = 0 holds for all a ∈W− and c ∈W+, then
no fat job can be processed simultaneously with a skinny job. Furthermore any
set of R = R(a,m) skinny jobs can be processed on the machines in parallel.

We sketch an online algorithm for this scenario. Whenever there are fat jobs
available, we run an arbitrary fat job. Similarly as in Lemma 3.2 it can be
seen that there is an optimal schedule that handles the fat jobs in exactly the
same way as our fully online algorithm. However, this time we are in a simpler
situation as the processing of fat jobs and the processing of skinny jobs must
occur in disjoint time slots, and thus cannot interfere with each other. Hence we
may use the 1-competitive fully online algorithm of Hong & Leung [7] as stated
in Proposition 1.3 to schedule the skinny jobs. All in all, this yields a fully online
algorithm for the first scenario.

The second scenario. If R(a,m) = 2 holds for some a ∈W−, then conditions
(c1) and (c2) imply that R(a,m) = 2 for all a ∈W− and that the fat jobs can be
divided into two types: very fat jobs which cannot be processed simultaneously
with any skinny job and the remaining fat jobs which can be processed with one
arbitrary skinny job.

The main idea of our fully online algorithm TwoFatMcN is first to handle the
very fat and fat jobs with high preference and then to fit the skinny jobs into
the remaining space. This is easier than for FatMcN as we combine at most two
jobs and then the only obstacle against balancing them exactly is if one job is
longer than the total processing time of the remaining jobs.

Let at any time p1 ≥ p2 ≥ · · · ≥ ps denote the processing times of the skinny
job pieces that are available and still need processing. Let P denote their total
remaining time, P =

∑s
i=1 ps and let R denote the total processing time of the

fat (but not very fat) job pieces that are available and still need processing.

The algorithm TwoFatMcN at each decision time determines the schedule
for some future interval. However, whenever a new job arrives, the schedule is
stopped immediately and a new decision is made. Thus the next decision time
is either the next arrival time or the time when the prespecified schedule ends.

(1) If a very fat job is available, run one such job until its completion.
(2) If a fat job is available, run the first such job f (chosen by some canonical

ordering). Run also one skinny job (if available) chosen as follows:
(a) If no skinny job is available, run only f until its completion.
(b) If p1 > p2, run the job with remaining time p1 for time p1 − p2 or until

the completion of f , whatever happens first. Also, if there is a single
skinny job, run it for time p1 or until the completion of f , whatever
happens first.

(c) If p1 = p2, run the job with remaining time p2 for time min{p2, R/2} or
until the completion of f , whatever happens first.

(3) If no fat and no very fat job is available:
(a) If there is a single skinny job run it until its completion.
(b) Otherwise, if p1 > P/2, run the job with remaining time p1 together

with one other arbitrary job until the completion of the second job.
(c) Otherwise, create a schedule of length P/2 for the skinny jobs using

McNaughton’s rule and follow it.

It is not immediately clear that the algorithm is finite, as in steps (2b) and
(2c) no job may complete or arrive. However, note that while running a single

fat job f , each step (2b) is followed by step (2c). Furthermore, a job j can be run
in step (2c) only once: The step (2c) takes time R/2 and after that, the other
job with remaining time p1 would need to run for R/2 before p2 ties the longest
remaining time again. However, this together would take time R which means
that f is completed.

Correctness of the algorithm. We will now prove that algorithm TwoFatMcN
always minimizes the makespan and hence indeed is 1-competitive. To this end
we fix an arbitrary instance and consider an optimal offline schedule S∗ and the
corresponding online schedule Son for it. The next lemma is proven by the same
exchange argument as Lemma 3.2 We omit the proof.

Lemma 5.1. W.l.o.g. we may assume that the optimal schedule S∗ processes
the fat and very fat jobs during the same time slots as schedule Son.

Let at any time Z = max{R, p1, (P + R)/2}, taking p1 = 0 if no skinny job
is available. Note that Z is the length of the optimal schedule for the remaining
pieces of skinny and fat jobs if no further jobs arrive. Lemma 5.1 implies that at
any time, the remaining pieces of fat jobs in S∗ have total length R. Let P ∗, p∗1,
and Z∗ denote the values P , p1, and Z with respect to the optimal schedule S∗.
The following invariant follows inductively from the definition of the algorithm,
details are omitted.

Lemma 5.2. At any time during the execution of TwoFatMcN we have

P ≤ P ∗ and Z ≤ Z∗. (3)

Lemma 5.1 and Lemma 5.2 together imply that as long as Son has some
unfinished job, also S∗ has an unfinished job. Thus the makespan of Son is equal
to the makespan of Son and TwoFatMcN is a fully online 1-competitive algorithm.

6 Conclusions

Now that we understand the 1-competitive cases of problem
P |pmtn, sizej , rj |Cmax, the next goal should be to get a better understanding
of the competitive ratios in the remaining cases. Determining the best possible
competitive ratio for every possible width set W and every possible number
m of machines might be a messy and hopeless enterprise. A realistic first step
could be to determine the best possible competitive ratio c∗ for the general
online problem P |pmtn, sizej , rj |Cmax. Currently, we only know 6/5 ≤ c∗ ≤ 2
from the work of Johannes [8] and Naroska & Schwiegelshohn [11].

Our main Theorem 1.1 implies that form = 2 and m = 3 machines there exist
1-competitive online algorithms. The smallest open problems arise on m = 4
machines. What is the optimal competitive ratio for m = 4 and W = {1, 2}?
What is the optimal competitive ratio for m = 4 and W = {1, 2, 3}?

And what if we a priori know the optimal makespan? We have observed that
the algorithm of Hong & Leung uses this knowledge but not in any significant

way. We know that knowing the optimal makespan cannot help us to design
a 1-competitive algorithm: in all our constructions, we may as well announce
the optimal makespan to be a fixed large value at the beginning and instead of
ending the instance, we could release another batch of jobs that fully utilizes the
machines till the announced optimal makespan. However, knowing the optimal
makespan (intuitively speaking) should improve the competitive ratio.

Acknowledgements. We are grateful to Martin Böhm for the observation on
the known optimum. Jǐŕı Sgall acknowledges support by the project 14-10003S
of GA ČR. Gerhard Woeginger acknowledges support by the Alexander von
Humboldt Foundation, Bonn, Germany.

References

1. S. Albers and G. Schmidt (2001). Scheduling with unexpected machine break-
downs. Discrete Applied Mathematics 110, 85–99.

2. J. Blazewicz, M. Drabowski, and J. Weglarz (1986). Scheduling multipro-
cessor tasks to minimize schedule length. IEEE Transactions on Computers 35,
389–393.

3. M. Drozdowski (1992). Problems and algorithms of multiprocessor tasks schedul-
ing. PhD thesis, Technical University of Poznan, Department of Computer Science.

4. M. Drozdowski (1995). On complexity of multiprocessor task scheduling. Bulletin
of the Polish Academy of Sciences, Technical Sciences, 43, 381–393.

5. M. Drozdowski (1996). Scheduling multiprocessor tasks — an overview. European
Journal of Operational Research 94, 215–230.

6. S. Guo and L. Kang (2013). Online scheduling of parallel jobs with preemption
on two identical machines. Operations Research Letters 41, 207–209.

7. K.S. Hong and J.Y.-T. Leung (1992). On-line scheduling of real-time tasks.
IEEE Transactions on Computers 41, 1326–1331.

8. B. Johannes (2006). Scheduling parallel jobs to minimize the makespan. Journal
of Scheduling 9, 433–452.

9. J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan
(1984). Preemptive scheduling of uniform machines subject to release dates. In:
Progress in Combinatorial Optimization, W.R. Pulleyblank (Ed.), Academic Press,
245–261.

10. R. McNaughton (1959). Scheduling with deadlines and loss functions. Manage-
ment Science 6, 1–12.

11. E. Naroska and U. Schwiegelshohn (2002). On an on-line scheduling problem
for parallel jobs. Information Processing Letters 81, 297–304.

12. K. Pruhs, J. Sgall, and E. Torng (2004). Online scheduling. In: Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, J.Y.T. Leung (Ed.),
Chapman & Hall/CRC, chapter 15, 1–41.

13. G. Schmidt (1984). Scheduling on semi-identical processors. Zeitschrift für Oper-
ations Research, 153–162.

14. J. Sgall (1998). On-line scheduling. In: Online Algorithms: The State of the Art,
A. Fiat and G.J. Woeginger (Eds.), Lecture Notes in Computer Science 1442,
Springer, 196–231.

15. A.P.A. Vestjens (1998). Scheduling uniform machines on-line requires nonde-
creasing speed ratios. Mathematical Programming 82, 225–234.

A Proof of Lemma 2.1

Consider the auxiliary function f(k) = R(a,m− kb), for k = 0, . . . , r, intuitively
the number of jobs of width a that can be scheduled together with k jobs of width
b. Also f(k + 1) < f(k) for all k = 1, . . . , r − 1, as a < b and thus if f(k + 1)
items of width a fit with k + 1 items of with b, then f(k) + 1 items of width a
fit with k items of with b.

Now, for the sake of contradiction, assume that x0 = 0 and x1 = 1. Since
x0 = 0, the maximal utilization configuration contains only items of width b and
thus y0 = r and f(r) = 0. Similarly, x1 = 1 implies y1 = r− 1 and f(r− 1) = 1.
This implies that the number of utilized machines is (r− 1)b+ a = rb+ a− b ≤
m+ a− b, as rb ≤ m.

Furthermore, since (r − 1)b+ a maximizes the utilization for confiburations
containing a, we have for all k = 0, . . . , r − 2 that kb + f(k)a ≤ (r − 1)b + a ≤
m + a − b. This implies that in this configuration we can replace one job of
width a by a job of width b without exceeding the bound of m. Thus f(k+ 1) ≥
f(k)− 1. Together with f(k + 1) < f(k) we have f(k + 1) = f(k) + 1 and thus
from f(r − 1) = 1 we get f(0) = r. However obviously f(0) = r(a) and thus
r(a) = r = r(b), contradicting the assumption of the lemma.

B Remaining cases from Section 2

B.1 Analysis of the second case

In this section we assume that condition (c2) is violated for a, b ∈ W− and
c ∈W+ with R(a,m− c) > R(b,m− c) ≥ 2. We also assume that condition (c1)
holds with R(a,m) = R(b,m), as otherwise we could proceed as in Section ??.

The argument for this case is a small modification of the argument in Section
??. We essentially recycle our old adversarial instance for m′ = m− c machines
and widths a and b with R(a,m′) > R(b,m′) ≥ 2. Additionally to the jobs in the
old instance, at the beginning of the first phase there arrives a fat job of width
c and length r, and at the beginning of the second phase there arrives another
fat job of width c and length r − 1 + L; here r and L are defined as in Section
?? (for widths a and b and for m′ machines). These two fat jobs continuously
block c of the m machines from time 0 to time r − 1 + L, both in the optimal
schedule and in the schedule of any 1-competitive nearly online algorithm. Hence
the real battlefield are the remaining m′ = m− c machines, on which the online
algorithm is beaten in exactly the same fashion as in Section ??.

B.2 Analysis of the third case

Throughout this section we assume that condition (c2) is violated for a, b ∈W−
and c ∈ W+ with R(a,m− c) > R(b,m− c) and R(b,m− c) ∈ {0, 1}. We also
assume that condition (c1) holds with R(a,m) = R(b,m); note that this implies
a < b < 2a by Observation 1.4.

Lemma B.1. Let x2 and y2 be integers that maximize the value of ax + by
subject to the constraints ax+ by + c ≤ m and x, y ≥ 0. Then x2 ≥ 1.

Proof. We distinguish three cases. First if R(b,m− c) = 0, then x2 =
R(a,m− c) ≥ 1 and y2 = 0. Secondly if R(b,m− c) = 1 and a + b + c ≤ m,
then either y2 = 1 and x2 ≥ 1, or y2 = 0 and x2 = R(a,m− c) ≥ 2. In the third
case R(b,m− c) = 1 and a+ b+ c > m. Then R(a,m− c) ≥ 2 and b < 2a imply
y2 = 0 and x2 = R(a,m− c) ≥ 2. ut

The adversarial argument uses the values x2 ≥ 1 and y2 ≥ 0 introduced in
Lemma B.1. We define r = R(b,m− ax2 − by2). We observe that ax2+by2+c ≤
m and b < c imply R(b,m) > r ≥ 1. The first adversarial phase starts at time 0,
and confronts the online scheduler with x2 jobs of width a and length R(b,m),
with y2 jobs of width b and length R(b,m), and with r ·R(b,m) jobs of width b
and length 1. The second adversarial phase starts at time r, when a single fat
job of width c and length R(b,m) arrives.

The optimal schedule S1 for the first phase continuously processes the x2+y2
jobs of length R(b,m) together with some r of the unit length jobs, and thus
has makespan R(b,m). The optimal schedule S2 for the full instance processes
all the unit length jobs of width b during the interval [0, r], and then processes
all the jobs of length R(b,m) during the interval [r, r + R(b,m)]. This schedule
utilizes b · R(b,m) machines during [0, r] and ax2 + by2 + c machines during
[r, r +R(b,m)].

Any 1-competitive online algorithm must follow the structure of the optimal
schedule S1 up to time r, and thus utilizes only ax2 + b ·R(b,m− ax2) machines
during [0, r]. As x2 ≥ 1 by Lemma B.1 and as R(b,m) = R(b,m− ax2) + x2 by
Observation 1.4, this utilization is weaker than the one in the optimal schedule
S2. During the interval [r, r + R(b,m)], the online algorithm must continuously
run the job of width c. By the choice of x2 and y2 in Lemma B.1, the resulting
utilization cannot beat the utilization in schedule S2 during this interval. Sum-
marizing, the utilization in the optimal schedule beats the online utilization and
the optimal makespan beats the online makespan.

C Proof of Lemma 3.2

Let t be the earliest moment in time where S∗ and Son disagree in processing
the fat jobs. Then during some non-trivial time interval [t, t + ε], schedule Son

runs a fat job J ′ while the optimal schedule S∗ either runs another fat job J ′′

with w(J ′′) ≤ w(J ′) or does not run any fat job at all. Let u > t be the earliest
moment in time where S∗ runs the job J ′. By choosing ε appropriately, we may
assume that S∗ runs J ′ all through [u, u+ ε].

Let us switch the two slices [t, t + ε] and [u, u + ε] of the optimal schedule
S∗. This switch might cause some skinny job to be processed before its release
date, but this infeasibility is easily repaired by appropriately switching skinny
job pieces between the two slices; note that the slice [t, t+ε] has at least as much
space for skinny jobs as slice [u, u + ε]. By repeatedly switching such slices, we
eventually establish the statement of the lemma. ut

D Proof of Lemma 3.3

Suppose for the sake of contradition that pj − x∗j ≤ pi − x∗i . By combining this
with the inequalities in (2), we get

pj − xonj < pj − x∗j ≤ pi − x∗i < pi − xoni . (4)

Now (4) and (the contrapositive of) Lemma 3.1 imply pj < pi. Using pj < pi
and again Lemma 3.1 with j and i exchanged, we obtain xonj ≤ xoni . Now the
trivial bounds x∗j ≥ 0 and x∗i ≤ tk+1 − tk yield the chain of inequalities

0 ≤ x∗j < xonj ≤ xoni < x∗i ≤ tk+1 − tk. (5)

By the behavior of algorithm FatMcN this means xonj = pj − τ and xoni = pi− τ ,
where τ is the threshold value for slot [tk, tk+1]. But then pj−xonj = pi−xoni = τ ,
which blatantly contradicts (4). This contradiction establishes the lemma. ut

E Proof of Lemma 5.2

Proof. If some job arrives, both P and P ∗ increase by the same amount, thus
P ≤ P ∗ is maintained. This also implies that Z ≤ Z∗ is maintained unless
Z = p1 and p1 increases. If p1 increases then p1 is the processing time of the
newly arrived job; then p1 ≤ Z∗ and (3) is maintained as well.

To analyze the invariant during the steps of the algorithm, suppose the step
takes time t between two decision points. During that time if no fat job is running,
P ∗ can decrease by at most 2t, and if a fat job is running then both R and P ∗

decrease by at most t. Thus in each case (P ∗ + R)/2 decreases at most by t.
Also p∗1 trivially decreases by at most t. Thus also Z∗ decreases by at most t. To
prove that (3) is maintained, it is sufficient to show that P and Z decrease (at
least) by the same amount.
– If in step (1) none of P , p1, R and Z change, Lemma 5.1 implies that the

same holds for S∗, and (3) is maintained.
– During the entire step (2a), P = 0 and Z = R, thus Z decreases by t and

(3) is maintained.
– In step (2b), all values P , p1, R decrease by t, so that also Z decreases by t.

Since S∗ is also running a fat job, (3) is maintained.
– In step (2c), P and R again decrease by t. Let now Z, P and R refer to

the values at the beginning of the step. We claim that Z − t ≥ p1 and
thus Z decreases by t even though p1 does not change. The claim follows
since t ≤ R/2 and P ≥ 2p1 by the definition of the step, so that Z − t ≥
(P + R)/2 − t ≥ P/2 ≥ p1. Thus P and Z decrease at least as much as P ∗

and Z∗, and (3) is maintained.
– During the entire step (3a), R = 0 and P = p1 = Z. Thus P and Z decrease

by t. Since Z∗ cannot decrease faster, Z ≤ Z∗ is maintained. For P ≤ P ∗,
it is sufficient to notice that at the end of the step, since R = 0, we have
Z∗ = max{p∗1, P ∗/2} ≤ P ∗ and thus P = Z ≤ Z∗ ≤ P ∗.

– In step (3b), R = 0, P decreases by 2t, and p1 decreases by t, so that Z
decreases by t and (3) is maintained.

– In step (3c), R = 0, P decreases by 2t and from the properties of the Mc-
Naughton’s optimal schedule it follows that at all times Z = P/2. Thus Z
decreases by t, and (3) is maintained.

Summarizing, we have shown that invariant (3) indeed holds at any time. ut

