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Abstract. We give a simple proof and a generalization of the classical
result which says that the (asymptotic) approximation ratio of BestFit
algorithm is 1.7. We generalize this result to a wide class of algorithms
that are allowed to pack the incoming item to any bin with load larger
than 1/2 (if it fits), instead to the most full bin, and at the same time
this class includes the bounded-space variants of these algorithms.

1 Introduction

An instance of the classical bin packing problem consists of a sequence a1, a2,
. . . , an of items with rational sizes between 0 and 1, and the goal is to pack
these items into the smallest possible number of bins of unit size. Bin packing is
a fundamental problem in combinatorial optimization, and it has been studied
extensively since the early 1970s. Since bin packing is NP-hard, one active branch
of research has concentrated on approximation algorithms that find near-optimal
packings; see for instance [1, 2] for surveys.

In this note we give a simple proof and a generalization of the classical result
which says that the (asymptotic) approximation ratio of BestFit algorithm is
1.7. We generalize this result to a wide class of algorithms that are allowed to
pack the incoming item to any bin with load larger than 1/2 (if it fits), instead
to the most full bin as in BestFit. The analysis covers also the bounded space
variants of all these algorithms, including the bounded-space variant of BestFit
called BBFk analyzed by Csirik and Johnson [3].

The analysis uses a combination of a weight technique, used in the classical
proofs in the area of bin packing, and amortized analysis. The amortization re-
duces the proof to simple local considerations, in place of a relatively complicated
analysis of possible global configurations in the previous proofs.

Intuitively, our amortization can be described as a group management tech-
nique that may resemble some procedures in companies, political parties, or even
our academic departments. Over their lifetime, individuals (the bins) receive cer-
tain credit (the items). The goal of the game is to retire all individuals (close
the bins) with a sufficient credit. In the group, there is always one senior and
possibly many juniors. Juniors retire with the credit they have collected. How-
ever, when a senior retires, he chooses one junior as his successor and acquires
a certain part of his credit. In return, this junior becomes the new senior (and
later may acquire some credit from another junior). Unlike in recently popular
Ponzi or pyramid schemes, each senior collects credit of only one junior. Thus we



end up with only one or two individuals with a low credit (instead of a crowd),
and this is sufficient for the claimed result.

Related results

The asymptotic approximation ratio of 1.7 was given by Johnson et al. [5],
together with examples showing that this bound is asymptotically tight. The
additive constant was later tightened by Garey et al. [4] to d1.7 · OPT (I)e. We
further tighten the constant to 1.7 ·OPT (I) + 0.7.

Csirik and Johnson [3] show that the 2-space-bounded variant Best Fit al-
gorithm BBF2 has the same asymptotic worst case ratio of 1.7. We follow the
general outline of their proof and a general treatment of algorithms that include
both BestFit and BBF2.

For more results on bounded-space algorithms, we mention Lee and Lee [6]
who design a k-bounded-space online bin packing algorithms whose asymptotic
ratio comes arbitrarily close to the magic harmonic number h∞ ≈ 1.69103, as the
space bound k tends to infinity. They also show that every bounded-space bin
packing algorithm A has asymptotic approximation ratio at least h∞. A more
space-efficient algorithm with the same performance was given by Woeginger [7].

2 The class of GoodFit algorithms

We analyze a class of algorithms which we call GoodFit algorithms. This ex-
tends the approach of Csirik and Johnson [3], who formulated a class of algo-
rithms containing BestFit together with its k-bounded-space versions BBFk.

Our main generalization concerns the packing rule. While the BestFit pack-
ing rule requires to pack the item into the fullest bin among those where it fits,
we allow packing into any open bin if the item fits; the only restriction is that
we prefer bins that are more than half-full. This forbids at most one bin, so the
restriction is very mild. The exact formulation of the packing rule is this:

GoodFit packing rule: The new item is packed as follows:
(i) If possible, it is packed into an arbitrary bin of size more than 1

2 where it
fits;
(ii) if there is no such bin, it is packed into a bin of size smaller than 1

2 if such
a bin exists and the item fits;
(iii) else it is packed into a newly opened bin.

Note that the packing rule indeed implies that at each time, there is at most
one bin of size at most 1

2 . Since at most one bin is forbidden for packing, our class
of algorithms includes previously studied heuristics such as AlmostWorstFit
(if there are more possible bins to pack an item, choose the second smallest one)
and the class AlmostAnyFit (if there are more possible bins to pack an item,
choose any bin except the smallest one).

Similarly to Csirik and Johnson [3], we accommodate also the analysis of
bounded space algorithms. For this, following their approach, we separate closing



of the bins from the packing steps. For the purpose of analysis, it is convenient
to perform first the packing step possibly followed by a closing step (which is
then not allowed to close the just open bin). Again, as in [3], our analysis works
for algorithms that close bins at any time, with the only restriction that two
bins remain open at all times after opening the first two bins. I.e., the closing
step is only allowed when three or more bins are open. This includes k-bounded
versions of the algorithms mentioned above for any k ≥ 2. The introduction of
the closing rule is also convenient for the analysis of standard algorithms like
BestFit that never close a bin: We simply let them to close (almost all) bins
at the end.

The BestFit closing rule requires to close the largest open bin, excluding
the bin that was open by the last item (if there is such). Every algorithm can be
modified to use this rule without any loss of performance. However, our analysis
holds for any algorithm that closes bins according to following relaxed rule:

GoodFit closing rule: If there are at least three open bins, the algorithm can
close one of the open bins, excluding the bin just opened by a newly arrived
item (if there is such), and satisfying:
(i) either its size is at least 5

6 ;
(ii) or, if there is no bin satisfying (i), it is the largest bin of size more than 2

3 ;
(iii) or else, if there is no bin satisfying (i) or (ii), it has size more than 1

2 .

Since the packing rule guarantees there is at most one bin of size at most 1
2 ,

at most one bin is the newly opened one, and there are at least three open bins
when closing a bin, a bin may be always chosen and the rule is well-defined. In
particular, the closed bin has always size at least 1

2 .
An algorithm is a GoodFit algorithm if it follows the GoodFit packing

and closing rules. We prove that any GoodFit algorithm has asymptotic ap-
proximation ratio at most 1.7. For the rest of the analysis we fix some GoodFit
algorithm A.

3 Seniors, juniors and their credits

Items are denoted at, in the order of their arrivals; at also denotes the size of
each item. The bins are denoted Bi, indexed in the order in which they have
been opened. For any bin or other set of items B, let s(B) be the sum of the
sizes of the items in B.

We define one of the open bins to be the senior bin, the other bins are
junior. Usually the oldest bin (the one with the lowest index) is the senior one,
sometimes the second oldest one. Initially, after packing the first item, B1 is the
senior bin. When the senior bin is closed, the new senior bin is chosen according
to the following rule: If the oldest open bin has a single item and its size is at
most 1

2 , choose the second oldest open bin to be the senior one. Otherwise choose
the oldest open bin as the senior one. Note that there are always two open bins
remaining, so this is well-defined. Also, if the senior bin is not the oldest one,



then it has load more than 1
2 , as there is at most one bin with load at most 1

2 .
The current senior bin is denoted Bs.

We first prove an important property of junior bins. Similarly to real life, the
smaller the senior bin is, the more stringent are the requirements on the junior
bins.

Lemma 3.1. Any junior bin Bi contains either
(i) an item a > 1

2 (and possibly some other items); or
(ii) two items a, a′ > 1− s(Bs) (and possibly some other items); or
(iii) an item a > 1− s(Bs) and no other items.

Proof. By induction. After packing the first item, the lemma is trivially true, as
there is no junior bin. After closing a bin other than the senior bin, the lemma
clearly continues to hold. Suppose that the senior bin has just been closed and
the new senior bin is chosen to be Bs.

If Bi is older than Bs, it must be the case that Bi is the oldest bin and it
contains a single item a, due to the rules for choosing the senior bin. But then
the first item assigned to Bs is larger than 1− a, thus (iii) applies to Bi.

Otherwise Bs is older than Bi. Thus the first item a in Bi did not fit into Bs

at the time when it was packed, consequently a > 1− s(Bs) also now. If a > 1
2 ,

(i) applies. If a ≤ 1
2 is the single item in Bi, (iii) applies. Otherwise the size of

Bs was more than 1
2 already when a was packed. Consider the second item a′

packed into Bi. As at that moment Bs had size more than 1
2 and Bi at most 1

2 ,
thus a′ can be packed into Bi only if it does not fit into Bs. It follows that (ii)
applies.

It remains to verify that the lemma holds after packing a new item. If it is
packed into Bs, all the conditions continue to hold. If an item a is packed into
Bi, then similarly to the previous paragraph the only non-trivial case is when
it is the second item packed into a bin smaller than 1

2 and then (ii) applies
afterwards. ut

We note that Lemma 3.1 is the only part of the proof that uses the definition
of the GoodFit packing rule.

Finally, we define the weight (credit) function. We define a quantity b(a), a
bonus of an item as follows:

b(a) =


0 if a ≤ 1

6
3
5

(
a− 1

6

)
if a ∈

(
1
6 ,

1
3

]
0.1 if a ∈

(
1
3 ,

1
2

]
0.4 if a > 1

2

Note that b(a) has a jump at 1
2 and is continuous elsewhere. We define a weight

(or a credit) of an item to be

w(a) =
6

5
a+ b(a).



For a set of items or a bin B, let w(B) and b(B) denote the sum of the weights
and bonuses of all the items in B, respectively. The bonus of a junior bin b(B)
represents exactly the part of credit that may be acquired by a senior bin upon
its closing.

The amortized analysis

The easy part is to show that each bin in the optimal schedule has weight at most
1.7; this part is known already from the previous papers [3–5] and we provide a
simplified proof for completeness in Lemma 3.3.

The main ingredient is to show that on average each bin closed by Good-
Fit has weight at least 1, more precisely that the number of bins used by the
algorithm is at most dw(I)e. The crucial part is Lemma 3.2 which shows that
the amortized weight of each closed bin is at least 1, using the amortization
described intuitively above.

Suppose that we are closing a binBi. IfBi = Bs is the senior bin, letBj be the
newly chosen senior bin; otherwise let Bj = Bi. I.e., Bj is always the (currently)
junior bin whose bonus we are using, and Bi is one of the two distinct bins Bs

and Bj . The weight (credit) available upon closing Bi is exactly 6
5s(Bi) + b(Bj);

this is formalized by a potential later in proof of Theorem 3.4. The key lemma
is thus this:

Lemma 3.2. Using the notation defined above, upon closing bin Bi we have
6
5s(Bi) + b(Bj) ≥ 1.

Proof. We distinguish three cases.

Case 1: s(Bi) ≥ 5
6 . Then 6

5s(Bi) ≥ 1 and we are done.

Case 2: b(Bj) ≥ 0.4. Since the closed bin always has size more than 1
2 , we have

6
5s(Bi) + b(Bj) > 0.6 + 0.4 = 1.

Case 3: Otherwise we prove that s(Bi) >
2
3 and at the same time Bj contains

two items with a sufficient bonus. First we apply Lemma 3.1 to the junior bin
Bj and claim that the case (ii) of Lemma 3.1 must hold. The bin Bj does not
contain an item of size larger than 1

2 , as then b(Bj) ≥ 0.4 and this is covered
by Case 2 above. Thus the case (i) of Lemma 3.1 cannot hold for Bj . The case
(iii) of Lemma 3.1 cannot hold for Bj , since either Bj = Bi and then Bj as the
closed bin has size more than 1

2 , or else Bj is the new senior bin and as such
it does not have single item of size at most 1

2 . Thus the case (ii) of the lemma
holds and Bj contains two items a, a′ > 1− s(Bs).

Next we claim that s(Bi) >
2
3 and s(Bi) ≥ s(Bs). If s(Bs) ≤ 2

3 then a, a′ > 1
3

and s(Bj) >
2
3 ; by the GoodFit closing rule it has to be the case that Bj was

closed rather than Bs, thus Bi = Bj , and s(Bj) >
2
3 ≥ s(Bs); the claim follows.

If s(Bs) >
2
3 then by the GoodFit closing rule the largest bin is closed (using

also the fact that there is no bin of size at least 5
6 , as Case 1 does not occur),

thus Bi ≥ Bs >
2
3 and the claim also follows.



Now let α = 5
6 − s(Bi); using s(Bi) > 2

3 we have α < 1
6 . Furthermore,

a, a′ > 1−s(Bs) ≥ 1−s(Bi) = 1
6 +α. Thus b(a), b(a′) > 3

5α and 6
5s(Bi)+b(Bj) >

(1− 6
5α) + 2 · 35α = 1. ut

Lemma 3.3. For any bin B, i.e., any set B with s(B) ≤ 1, we have w(B) ≤ 1.7.

Proof. It is sufficient to prove that b(B) ≤ 0.5, as 6
5s(B) ≤ 1.2. Any item with

non-zero bonus has size larger than 1
6 , thus each bin contains at most 5 of them.

If all items have bonus at most 0.1, we are done. Otherwise there is an item
of size larger than 1

2 and there can be at most two other items with non-zero
bonus. If their sizes are 1

6 + α and 1
6 + β then α+ β < 1

6 , their bonus is at most
3
5 (α+ β) < 0.1 and b(B) < 0.5, including the bonus 0.4 of the large item. ut

Lemma 3.3 is the only place that uses the definition of the GoodFit closing
rule.

Theorem 3.4. Let A be any GoodFit algorithm. For any instance I, we have
A(I) ≤ b1.7 · OPT (I) + 0.7c ≤ d1.7 · OPT (I)e, where A(I) denotes the number
of bins used by A and OPT (I) denotes the optimal (minimal) number of bins.

Proof. We define a potential Φ =
∑

B w(B) − b(Bs), where the sum is over all
currently open bins. Initially Φ = 0. When a new item a is packed, the potential
increases by at most w(a), thus during the whole instance the total increase is
at most w(I). Lemma 3.2 shows that upon closing a bin, Φ decreases by at least
1. If the algorithm never opens the second bin, the result is trivial. Otherwise,
at the end, we close all but two bins using the GoodFit closing rule, if the
algorithm has not done so. At this point, the potential of the algorithm is more
than 1.2, as the sum of the sizes of the two open bins is larger than 1. So the
number of bins used by the algorithm is bounded by A(I) < 2 + (w(I)− 1.2) =
w(I)+0.8. Lemma 3.3 implies that w(I) ≤ 1.7 ·OPT (I); since A(I) and OPT (I)
are integers, this implies A(I) ≤ 1.7 ·OPT (I) + 0.7 and the theorem follows. ut

Acknowledgements

Partially supported by Inst. for Theor. Comp. Sci., Prague (project P202/12/G061
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