
Two-bounded-space bin packing revisited

Marek Chrobak ∗ Jǐŕı Sgall † Gerhard J. Woeginger ‡

Abstract

We analyze approximation algorithms for bounded-space bin packing by comparing them
against the optimal bounded-space packing (instead of comparing them against the globally op-
timal packing that does not necessarily satisfy the bounded-space constraint). For 2-bounded-
space bin packing we construct a polynomial time offline approximation algorithm with asymp-
totic worst case ratio 3/2, and we show a lower bound of 5/4 for this scenario. We show that
no 2-bounded-space online algorithm can have an asymptotic worst case ratio better than 4/3.

1 Introduction

An instance of the classical bin packing problem consists of an ordered list a1, a2, . . . , an of items
with rational sizes 0 ≤ s(ai) ≤ 1, and the goal is to pack these items into the smallest possible
number of bins of unit size. Bin packing is a fundamental problem in combinatorial optimization,
and it has been studied extensively since the early 1970s. Since bin packing is NP-hard, one
particularly active branch of research has concentrated on approximation algorithms that find
near-optimal packings; see for instance [1].

A bin packing algorithm works offline if it packs the items with full knowledge of the entire item
list, and it works online if it packs every item ai solely on the basis of the preceding items aj with
1 ≤ j ≤ i, and without any information on subsequent items in the list. A bin packing algorithm
uses k-bounded space, if for each item ai the choice of bins in which it can be packed is restricted
to a set of k or fewer so-called active bins. Once an active bin is closed, it can never become active
again. Bounded-space packings arise in many applications, as for instance in packing trucks at a
loading dock or in communicating via channels with bounded buffer sizes.

Customarily, the performance of an approximation algorithm A for bin packing is measured by
comparing it against the optimal offline packing. Let Opt(I) denote the number of bins used in
an optimal (unconstrained) packing for instance I, and let A(I) denote the number of bins used by
algorithm A. Then the absolute worst case ratio of A is defined as

R(A) := sup
I

A(I)/Opt(I),

and its asymptotic worst case ratio is defined as

R∞(A) := lim
Opt(I)→∞

sup
I

A(I)/Opt(I).

∗Department of Computer Science, University of California, Riverside, USA
†Department of Applied Mathematics, Charles University, Prague, Czech Republic
‡Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, The Netherlands

1

The bin packing literature contains many articles that investigate and evaluate the (absolute and
asymptotic) worst case ratios of bounded-space bin packing algorithms; see for instance [2, 3, 6, 7, 8].
Csirik & Johnson [3] show that the 2-space-bounded Best Fit algorithm BBF2 has the asymptotic
worst case ratio R∞(BBF2) = 1.7. Among all 2-space-bounded algorithms (online and offline) in
the bin packing literature, this online algorithm is the champion with respect to worst case ratios.
A central result of Lee & Lee [6] designs k-bounded-space online bin packing algorithms whose
asymptotic ratios come arbitrarily close to the magic harmonic number h∞ ≈ 1.69103, as the space
bound k tends to infinity. They also show that every bounded-space online bin packing algorithm
A satisfies R∞(A) ≥ h∞.

The trouble with the old worst case ratio. The lower bound constructions in [6] use item
lists on which all bounded-space algorithms must fail, no matter whether they are online or offline
and no matter whether they run in polynomial time or in exponential time: In these constructions
decent packings can only be reached by using unbounded space, and every bounded-space algorithm
has asymptotic worst case ratio at least h∞.

A cleaner — and more realistic — way of measuring the performance of bounded-space bin
packing algorithms is to compare them against optimal offline solutions that also are subject to the
bounded-space constraint. Hence we let Optk(I) denote the smallest possible number of bins used
in a packing produced by a k-bounded-space offline bin packing algorithm for instance I, and define
the asymptotic k-bounded-space ratio of algorithm A as

R∞k (A) := lim
Optk(I)→∞

sup
I

A(I)/Optk(I). (1)

Note that the optimal k-bounded-space offline algorithm has a k-bounded-space ratio of 1. Fur-
thermore Optk(I) ≥ Opt(I) implies R∞k (A) ≤ R∞(A) for any algorithm.

Our contributions. Throughout the paper, we will mainly concentrate on 2-bounded-space
scenarios. Our main goal is to beat the 2-bounded-space champion with respect to the classical
asymptotic worst case ratio, the Best Fit algorithm BBF2 of [3] with R∞(BBF2) = 1.7. Indeed
in Section 3 we construct an offline approximation algorithm A for 2-bounded-space bin packing
with R∞2 (A) ≤ 3/2 + ε. The analysis goes deeply into the structure of 2-bounded-space packings.
Some of the techniques involve exhaustive search of instances of size 1/ε, thus the running time
exponential in ε, but it is linear in n.

In Section 4 we show that resource augmentation makes k-bounded-space bin packing easy. If
an approximation algorithm for k-bounded-space bin packing is allowed to use bins of size 1 + ε,
then in polynomial time it can pack an entire list I into Optk(I) many bins. And if it is allowed to
use (k+ 1)-bounded space, then in polynomial time it can pack an entire list I into (1 +ε)Optk(I)
many bins.

Section 5 demonstrates that the k-bounded-space ratio asymptotic worst case ratio in (1) does
not allow polynomial time approximation schemes; in fact every polynomial time algorithm A must
satisfy R∞2 (A) ≥ 5/4.

In Section 6 we discuss 2-bounded-space bin packing for small instances I with Opt2(I) ≤ 4,
and we provide a complete analysis for the absolute performance of polynomial time approximation
algorithms for these cases. The problem of finding good packings is closely connected to our offline
algorithm.

Finally Section 7 shows that every 2-bounded-space online algorithm must satisfy R∞2 (A) ≥ 4/3.
Subsequent to our work, Epstein and Levin improved this lower bound to 3/2. The 2-bounded-space

2

ratio of 2-space-bounded Best Fit is known to be in [1.5, 1.7]. Improving its analysis or designing
a new online algorithm matching the lower bound of 1.5 remains an interesting open problem.

2 Technical preliminaries

Throughout the paper, bins usually have size β = 1, and items usually have rational sizes in [0, 1]. In
our lower bound constructions (in Sections 5, 6, and 7) we will work with bins of integer size β and
item sizes in [0, β]. Since bin and item sizes can be scaled by β, both models are computationally
equivalent. For a set B of of items (or for the set of items packed into some bin B), we denote by
s(B) the sum of the sizes of all the items in B.

For an instance I of k-bounded-space bin packing, we define a well-ordered packing B to be a
partition of the items into bins Bij (for i = 1, . . . , k and j = 1, . . . ,mi), such that for any i and for
any j < j′, every item in bin Bij precedes every item in bin Bij′ . We denote by |B| = m1 + · · ·+mk

the number of bins in a packing B. A well-ordered packing B forms a feasible k-bounded-space
packing, if every bin Bij satisfies s(Bij) ≤ 1.

For a given well-ordered packing B, the sequence of bins Bij with j = 1, . . . ,mi is called track i.
We will sometimes define a packing B by specifying an assignment of items to tracks 1, ..., k only,
rather than to specific bins. The actual bin assignment can be uniquely determined by greedily
assigning items to bins, for each track separately.

For the purpose of the design of the offline algorithm, it is convenient to specify when exactly
the bins are closed, so that at each time exactly k bins are open. We say that a bin Bij is open from
(and including) the moment when the first item in Bij arrives until (not including) the moment
when the first item in Bi,j+1 arrives or until the instance ends. As an exception, the first bin Bi1

in the track is considered to be open from the beginning of the instance.

3 An offline approximation algorithm

In this section we construct for every ε > 0 an offline approximation algorithm A for 2-bounded-
space bin packing whose asymptotic ratio is at most 3/2 + ε. The crucial part, which is to convert
certain approximate packings in the first 2 or 3 bins into exact packings with one additional bin,
is postponed to Section 3.3. This is closely connected to Section 6 where we study packing of
instances with small optimum. To achieve a better approximation using our approach, we would
need to handle longer initial segments and thus to extend the positive results from Section 6.

The high-level strategy of our algorithm is as follows. We fix a suitable integer V ≥ 3/ε
(a constant independent of the input). We cut the given instance I greedily into m sub-lists
I1, I2, . . . , Im with s(Ij) ≤ 2V for all j and V ≤ s(Ij) for j < m. Thus Opt2(Ij) ≤ 4V and
m ≤ 1 + Opt2(I)/V . Since any 2-bounded-space packing of I can be split into 2-bounded-space
packings of the sublists Ij (1 ≤ j ≤ m) with a loss of at most two bins between adjacent sublists,
we have

m∑
j=1

Opt2(Ij) ≤ Opt2(I) + 2(m− 1) ≤
(

1 +
2

V

)
Opt2(I).

Hence, for getting a good approximation for I it is enough to get a good approximation for every
sublist Ij separately.

3

In Sections 3.1, 3.2 and 3.3, we will show that in polynomial time we can find 2-bounded-space
packings of each Ij with at most 3

2Opt2(Ij) + 1 bins. By concatenating these packings, we get the
desired approximate 2-bounded-space packing for I with at most

m∑
j=1

(
3

2
Opt2(Ij) + 1

)
≤ 3

2

(
1 +

2

V

)
Opt2(I) +m ≤

(
3

2
+ ε

)
Opt2(I) + 1.

This yields the following theorem (and the main result of the paper).

Theorem 3.1 For every ε > 0 there exists a polynomial time approximationalgorithm A for 2-
bounded-space bin packing with asymptotic ratio R∞2 (A) ≤ 3/2 + ε.

3.1 Relaxed packings

We are left with the following problem: given an instance I with Opt2(I) ≤ 4V , find an approximate
2-bounded-space packing into at most 3

2Opt2(I) + 1 bins. This problem is solved in two steps:
first we find a relaxed packing of I that may slightly overpack some bins (Lemma 3.3), and then
we transform this relaxed packing into an exact packing that obeys the bin sizes (Lemma 3.4).

Definition 3.2 A δ-relaxed (2-bounded-space) packing of an instance I is a well-ordered partition
such that for each bin Bij (with 1 ≤ i ≤ 2) either
• s(Bij) ≤ 1, in which case we set Dij = ∅ and B̄ij = Bij, or
• there exists d ∈ Bij such that d ≤ δ and s(Bij \ {d}) ≤ 1, in which case we fix one such d,

call it the special item, and set Dij = {d} and B̄ij = Bij \Dij.

In other words, each bin Bij is split into a set B̄ij of size at most 1 and the set Dij with at most
1 item of size at most δ. For the rest of Section 3 we set δ = 1/20 = 0.05.

Lemma 3.3 For any instance I with Opt2(I) ≤ 4V , we can find in polynomial time a δ-relaxed
packing B into at most Opt2(I) bins.

Proof. We search exhaustively the value Opt2(I) and the assignment of all items that are larger
than δ. Since the optimal number of bins is at most 4V and the number of large items is at most
4V/δ, i.e., they are both bounded by a constant, there is a constant number of assignments to try.
For each assignment, we pack the items smaller than δ by adding them greedily from the beginning
of the instance: Assign each item into the open bin that closes first, until and including the first
item that overfills the bin; if the bin is already full then into the other bin. It can be seen that for
the optimal assignment of the large items, the number of bins used is at most Opt(Ij): Inductively
we can verify that if a bin is full at the time of our assignment of an item, then the total size of
this and all the previous bins is larger than or equal to the size of these bins in the optimum, thus
the other bin cannot be full and we can assign the item there. tu

Lemma 3.4 (Transformation lemma) Given a δ-relaxed packing B of instance I, we can construct
in polynomial time an exact packing of I with at most 3

2 |B|+ 1 bins.

To prove the transformation lemma, we split the instance again. In each round, we process the
r initial bins of B for a suitable r and find an exact packing of them into at most 3

2r bins. Then
we glue this packing together with a packing of a slightly modified remaining instance. Some care
needs to be taken to ensure that the overlapping parts of the packings use only one track each.
The exact formulation of the needed building block follows.

4

Lemma 3.5 (Initial segment lemma) Given a δ-relaxed packing B of instance I with at least 2
bins, we can find in polynomial time r, an instance I ′ which is a subsequence of I and an exact
packing of B′ of I ′ such that

(i) I ′ contains all the items from the first r closed bins of B and possibly some additional items
that arrive before the rth bin of B is closed;

(ii) B′ uses at most 3
2r bins;

(iii) in B′, all the items that arrive after some item in I \ I ′ are packed into bins in the same
track and each of these bins has size at most 1− δ.

3.2 Proof of the transformation lemmafrom the initial segment lemma

We proceed by induction on the number of bins m in the relaxed packing B. If I is empty, the
statement is trivial. If B uses a single bin B11, then there is an exact packing with bins B̄11 and
D11.

If B uses m ≥ 2 bins, then use Lemma 3.5 to find r, I ′, and B′.
Let C be the set of all items in I \ I ′ that arrive before the last item of I ′. Lemma 3.5 (i)

implies that all these items belong to a single bin of B, namely to the bin that remains open when
the rth bin is closed. If C contains a special item d of that bin, we let C ′ = C \ {d}; otherwise we
let C ′ = C.

Now create the instance I ′′ as follows. It starts by an item a of size s(C ′) followed by the items
in (I \ I ′) \C in the same order as in I. We claim that we can construct a δ-relaxed packing of I ′′

with m− r bins: Take B, remove the first r bins, remove the items C and put the item a in their
bin. If C = C ′ the size of the bin does not change. If C = C ′ ∪ {d}, the size of d is not included in
a, thus the size of the bin drops below 1. In each of these cases, this bin and whole packing satisfy
the condition of δ-relaxed packing.

By the induction assumption there exists an exact packing B′′ for I ′′ with 3
2(m− r) + 1 bins.

Now we construct the exact packing B̄ for I. The packing starts by the bins of B′ put in the
same tracks as in B′; Lemma 3.5 (i) implies that there are at most 3

2r bins. If the special item d
exists and is in C, Lemma 3.5 (ii) guarantees that the bin in B′ that is open when d arrives has
size at most 1 − δ; we add d in this bin without violating the size constraint. Next we consider
the bin B′′i1 from B′′ that contains a, modified so that we replace a by items C ′, preserving its size.
Lemma 3.5 (ii) guarantees that all the bins in B′ that are open when the items of C ′ arrive are in
a single track, thus we can use the other track for B′′i1 in B̄. Finally, B̄ contains all the remaining
bins from B′′. By the definition of C, all the items in these bins arrive after the last item from
I ′. Thus the only constraint for placing them in tracks is the placement of B′′i1: If B′′i1 is in track
i in B̄, all the remaining bins from B′′ are in B̄ in the same track as in B′′, otherwise they are in
the opposite track. Thus B̄ is indeed 2-bounded packing for I. The total number of bins in B̄ is
3
2r + 3

2(m− r) + 1 = 3
2m+ 1. This completes the proof of the Transformation Lemma 3.4.

3.3 Proof of the initial segment lemma

Without loss of generality, assume that B11 is closed no later than B21. Let B1t be the last bin
closed before or at the same time when B21 is closed.

We proceed in several cases. The overall idea for finding the packing is always the same. We
identify up to two large items and pack them in bins by themselves. These bins are placed in track
1 together with bins B̄1j that are not in an ordering conflict with the large items. The set G of

5

the remaining items is packed greedily in track 2. Since there are no large items among them, this
packing is efficient, which is quantified in Claim 3.6. To guarantee Lemma 3.5 (iii), we make sure
that the bins containing G have each size at most 1 − δ and that G contains all the items that
arrive after the first item in I \ I ′.

In most of the cases the instance I ′ consists exactly of all items in the first r closed bins, in
which case Lemma 3.5 (i) follows immediately. Only in Case 3.1 we use a more complicated I ′.

The value of various constants in the proof is somewhat arbitrary. For understanding the idea
of the proof, one can assume that δ is set arbitrarily small. Also, the hard case is when t = 1, 2 as
we can use only one additional bin. With increasing t, there is increasing slack in the construction.

Claim 3.6 Suppose that b ≤ 1− δ is the largest item in an instance G and s(G) > 1. Then there
exists a 1-bounded packing of G with at most d(s(G)− 1− δ)/(1− δ − b)e+ 1 bins, each of size at
most 1− δ. In particular for r ≥ 2, δ = 0.05, and b ≤ 0.75:

(i) If s(G) ≤ (1.75− b) + rδ then b1 + r/2c bins of size 1− δ suffice for G.
(ii) If s(G) ≤ 0.8 + rδ then br/2c bins of size 1− δ are sufficient for G.

Proof. Pack the items greedily from the beginning of the sequence. When it is necessary to close
a bin, its size is more than 1 − δ − b. Iterating this, and observing that once the volume is below
1 − δ, a single bin is sufficient, the general bound follows. To prove that the special cases (i) and
(ii) follow, note that they are tight for r = 3 and check that this is the tightest case, as for r = 2
there is additional slack and whenever r increases by 2, we have 1 additional bin but the additional
size is only 2δ < 1− δ − b. tu

Case 1: All items in B21 have size at most 0.75. We set I ′ = B21∪B11∪· · ·∪B1t, thus r = t+1
and Lemma 3.5 (i) holds. The packing B′ uses track 1 for t bins B̄1i, i = 1, . . . , t. The remaining
items G = B21 ∪ D11 ∪ · · · ∪ D1t are packed greedily using track 2. No item in G is larger than
0.75 and s(G) ≤ 1 + rδ. Claim 3.6 (i) implies that 1 + r/2 bins are sufficient for G. All items from
the last open bin, i.e. B21, are included in G, thus Lemma 3.5 (iii) is satisfied. Overall, we have at
most 3

2r bins as required in Lemma 3.5 (ii).
Case 2: The largest item a in B21 has size at least 0.75 and arrives while the bin B1j is open

for some j ≤ t. We set I ′ = B21 ∪ B11 ∪ · · · ∪ B1t, thus r = t + 1 and Lemma 3.5 (i) holds. The
packing B′ uses track 1 for one bin containing just a and t− 1 bins B̄1i, i = 1, . . . , t, i 6= j, in the
appropriate order; it also uses at most 1 + r/2 additional bins in both tracks depending on the two
subcases. Altogether we use at most 3

2r bins as required.
To satisfy Lemma 3.5 (iii), we will make sure that all items from B21 are packed greedily in

track 2, with the exception of a. However, a arrives while B1j is open, i.e., before any item in I \ I ′
arrives, thus it does not violate the condition.

Subcase 2.1: The largest item ā in B1j has size at least 0.5. The packing B′ uses one additional
bin containing just ā in track 1. The remaining items G = (B21 ∪ B1j \ {a, ā}) ∪D11 ∪ · · · ∪D1t

are packed greedily using track 2. No item in G has size more than 0.5 and s(G) ≤ 0.75 + rδ.
Claim 3.6 (ii) implies that r/2 bins are sufficient for G.

Subcase 2.2: No item in B1j has size 0.5 or more. All the remaining items G = (B21 \ {a}) ∪
B1j ∪D11 ∪ · · · ∪D1t are packed greedily using track 2. No item in G has size more than 0.5 and
s(G) ≤ 1.25 + rδ. Claim 3.6 (i) implies that 1 + r/2 bins are sufficient for G.

Case 3: The largest item a in B21 has size at least 0.75 and arrives while the bin B1,t+1 is
open. Let C be the set of items in B1,t+1 that arrive before the large item a arrives into B21. Since
at the time of arrival of a we need to use both tracks (one for a and one for the greedy assignment),

6

we have to include in I ′ also items in C to guarantee Lemma 3.5 (iii). We distinguish subcases
according to s(C).

Subcase 3.1: s(C) ≤ 0.5. We set I ′ = B21∪B11∪· · ·∪B1t∪C, thus r = t+1 and Lemma 3.5 (i)
holds because all items in C arrive while B21 is open. The packing B′ uses track 1 for t bins B̄1i,
i = 1, . . . , t and one bin containing just a. The remaining items G = (B21 \{a})∪D11∪· · ·∪D1t∪C
are packed greedily using track 2. No item in G has size more than 0.5 (the largest item may be in
C) and s(G) ≤ 0.75 + rδ. Claim 3.6 (ii) implies that we use at most r/2 bins for G, a total of 3

2r
bins.

Subcase 3.2: s(C) ≥ 0.5. Here we want to include in I ′ the whole bin B1,t+1, so that an
additional bin is available to be used for C. This brings more problems, as many bins may close in
track 2 before B1,t+1 closes, and we have to include them as well to satisfy Lemma 3.5 (i).

Let t′ be such that B2t′ is the last bin closed while B1,t+1 is open. We set I ′ = B21∪ · · · ∪B2t′ ∪
B11 ∪ · · · ∪ B1t ∪ B1,t+1, r = t + t′ + 1, and Lemma 3.5 (i) is satisfied now. The packing B′ uses
track 1 for t bins B̄1i, i = 1, . . . , t, one bin containing C \ D1,t+1, one bin containing just a, and
t′−1 bins B̄2i, i = 2, . . . , t′, in this order; this is t+ 2 + (t′−1) = r bins total. The remaining items
G = D11 ∪ · · · ∪D1t ∪ (B1,t+1 \C)∪ (B21 \ {a})∪D22 ∪ · · · ∪D2t′ are packed greedily using track 2.
No item in G has size more than 0.5+δ (the largest item may be in B1,t+1 \C) and s(G) ≤ 0.8+rδ.
Claim 3.6 (ii) implies that we use at most r/2 bins for G, altogether at most 3

2r bins.

4 Complexity and resource augmentation

The complexity of k-bounded-space bin packing is as follows. If k is part of the input, then finding
an optimal packing is strongly NP-hard (since 3-PARTITION [5] is a special case). For k = 1,
the optimal 1-bounded-space packing can be found in polynomial time (by using the NEXT-FIT
algorithm). For fixed k ≥ 2, the problem is NP-hard in the ordinary sense (since PARTITION is a
special case) and solvable in pseudo-polynomial time:

Theorem 4.1 For every fixed integer k, the optimal k-bounded-space packing of an item list can
be computed in pseudo-polynomial time.

Proof. We scale the instance such that the bin size and all item sizes become integers, and then
apply a straightforward dynamic program that works through the scaled list item by item. For
every new item, the dynamic program first decides whether the fullest active bin should be closed,
and then decides into which of the active bins the item should go. A state in the dynamic program
stores the number of bins closed so far, and the filling level of all currently active bins. tu

Csirik & Woeginger [4] discuss bounded-space bin packing (with the classical worst case ratio)
in the resource augmentation model of competitive analysis, where the approximation algorithm
can use bigger bins than the offline algorithm. By rounding the state space of this dynamic program
and by applying some routine methods (as for instance discussed in [9]), we can turn the dynamic
program from Theorem 4.1 into an FPTAS for this type of resource augmentation:

Corollary 4.2 For every fixed integer k, there exists an algorithm that computes an k-bounded-
space packing of any instance I into at most Optk(I) bins of size 1 + ε. The time complexity of
this algorithm is polynomially bounded in the size of I and 1/ε. tu

Another natural type of resource augmentation allows the approximation algorithm to use space
k and compares it against the optimal offline packing with space k − 1.

7

Theorem 4.3 For every ε > 0, there exists a polynomial time algorithm that computes an k-
bounded-space packing of an instance I into at most (1 + ε)Optk−1(I) bins of unit size. tu

Proof. We split instance I into sub-lists that can be packed into a constant number of, say, 1/ε
bins, similarly as we did in Section 3. Each sub-list contains a constant number of big items of size
ε and larger, which are assigned by exhaustive search. The small items of size below ε are then
added greedily as long as they fit into the bins. The leftover small items are collected into one
extra bin for the whole sub-list – this uses the extra space, and also adds one bin per sub-list. tu

5 An asymptotic lower bound for offline algorithms

We now prove a lower bound of 1.25 on the asymptotic worst case ratio of any 2-space-bounded
bin packing algorithm. We reduce from the NP-hard PARTITION problem; see [5]. We consider an
instance of PARTITION which is a set P = {q1, . . . , qn} of n ≥ 2 positive integers that add up to
2Q. The question is whether P has an equitable partition, namely a partition into two sets each
adding up to Q. Without loss of generality, we assume that each qi is a multiple of 3 and is at most
Q, and that Q is large enough, say Q ≥ 100. Then P has an equitable partition if and only if it
has a partition into two sets each adding up to between Q− 2 and Q+ 2.

We construct the following bin packing instance. The bins have size β = 2Q+ 3. The instance
I consists of m copies of the following sub-list J with n+ 6 items:

q1, . . . , qn, Q+ 3, Q+ 3, Q+ 2, Q+ 2, Q+ 1, Q+ 1.

If P has an equitable partition, we claim that there exists a 2-bounded-space packing of I into
4m bins. It is sufficient to pack J into 4 bins. Partition q1, . . . , qn into two subsets, each adding
up to Q, and assign them to different tracks. In addition, each track has one copy of items Q+ 3,
Q+ 2, Q+ 1 and needs only two bins.

In the rest of Section 5 we show that if P does not have an equitable partition, then any
2-bounded-space packing of I uses at least 5m bins of size β = 2Q+ 3.

We introduce first some terminology. For a given list L, we say that a packing B dominates a
packing B′ on L if, for any list L′ with all items of size at least 3, B can be extended to a packing
of LL′ that uses no more bins that any extension of B′ to LL′. A set of packings is called dominant
on L if any other packing is dominated by some packing in this set.

By a state we mean a pair of integers {u, v} representing the content of the two open bins. We
consider 2-bounded-space packings with arbitrary initial states, not necessarily {0, 0}. The concept
of dominance extends naturally to such packings. Note that to determine whether B dominates
B′ we only need to know for each of B and B′ the final state and the number of bins closed by it.
In particular, the following easy observation will be useful in showing that one packing dominates
another.

Claim 5.1 Consider two packings B, B′, where B closes b bins and ends in state {u, v}, and B′
closes b′ bins and ends in state {u′, v′}, for u ≤ v and u′ ≤ v′. Suppose that either (i) b ≤ b′ − 2,
or (ii) b = b′ − 1 and u ≤ v′, or (iii) b = b′ and u ≤ u′ and v ≤ v′. Then B dominates B′.

We split J into three parts:

J1 = q1, . . . , qn, Q+ 3, Q+ 3, J2 = Q+ 2, Q+ 2, J3 = Q+ 1, Q+ 1.

8

Figure 1 shows a state diagram, where transitions correspond to packings of sub-lists J1, J2, J3
from certain states. A transition from {u, u′} to {v, v′} labeled by Ji / b represents a packing that,
starting from state {u, u′}, packs Ji closing b bins and ending in state {v, v′}.

0,0 Q+3,Q+3

Q+2,Q+2

J1 / 1

J2 / 2J3/ 2

Q+1,Q+2

J3/ 1

J1 / 2

Figure 1: The state diagram representing dominant packings.

We claim that the packings represented in Figure 1 are dominant for the given initial states and
lists Ji. Note that for the proof it is not necessary that these packings actually exist, since we only
use them to lower-bound the actual packings. Another way to think about these transitions is as
“sub-packings”, where each item may take less space in the bin than its actual size.

Before proving this claim, we show that it implies the lemma. Indeed, since the packings in
Figure 1 are dominant, an optimal packing of I = (J1J2J3)

m cannot do better than follow some
path in that diagram, closing the numbers of bins indicated on the transitions, and ending either
at state {0, 0} or {Q+ 1, Q+ 2}. By a straightforward inspection of the cycles in the diagram, if
this path ends at {0, 0}, the optimal packing will close 5m bins. If it ends at {Q+ 1, Q+ 2}, it will
close 5m − 1 bins, with two open non-empty bins. Thus the total number of used bins is at least
5m, and the lemma follows.

To prove our claim, we consider transitions from each state. Since qi ≥ 3 for all i, we can assume
that all bins with load at least 2Q+ 1 are immediately closed. We also assume that the bins open
after packing each Ji that have loads at most 2Q remain open until the next item arrives.

Consider a packing of J1 starting from {0, 0}. If we put Q+3, Q+3 in different tracks, then we
must close a bin that contains only items from P (because P does not have an equitable partition),
so we can as well put them all in one bin, and we reach state {Q+ 3, Q+ 3}. If Q+ 3, Q+ 3 are
in the same track, then we need to close one bin with the first item Q + 3, and the other track
will contain items from P that do not fit into that bin, so it will have load x ≥ Q + 3, by our
assumption. Thus the final state is {Q+ 3, x}. In both cases, the packings are dominated by the
packing represented by the one in Figure 1.

Consider a packing of J2 from {Q+ 3, Q+ 3}. The items Q+ 2, Q+ 2 cannot share a bin and
do not fit in the open bins, so any packing must close two bins. The dominant packing will end up
in state with minimum load bins, that is {Q+ 2, Q+ 2}, same as the one in Figure 1.

Next, consider a packing from {Q+ 2, Q+ 2} on J3. If Q + 1, Q + 1 are assigned to different
tracks then we close two bins and go to {0, 0}, otherwise we close one bin and go to {Q+ 1, Q+ 2}.
These two packings are exactly those from Figure 1.

Finally, consider a packing of J1 from {Q+ 1, Q+ 2}. Items Q + 3, Q + 3 cannot share a bin
and cannot be assigned to already open bins, so we need to close two bins. If Q + 3, Q + 3 are
assigned to different tracks, the two open bins will close and we will reach a state {Q+ x,Q+ x′}
for some x, x′ ≥ 3. If Q + 3, Q + 3 are on one track, the other track needs to be assigned some
items from P , because P does not have an equitable partition. Therefore the new state will be
{Q+ 3, Q+ x}, for x ≥ 3. This packing is dominated by the one in Figure 1.

Our reduction yields the main result of this section:

Theorem 5.2 Any polynomial time algorithm A for 2-bounded-space bin packing has asymptotic
ratio R∞2 (A) ≥ 1.25 (unless P=NP). tu

9

6 Absolute bounds for offline algorithms

In this section we discuss 2-bounded-space bin packing for instances that can be packed into a small
number b of bins. For b ≥ 1 we define Ib as set of all instances I with Opt2(I) = b. Furthermore,
we define f2(b) as the smallest integer such that for every instance I ∈ Ib we can find in polynomial
time a 2-bounded-space packing into f2(b) bins; note that in this definition we assume P 6= NP.
Theorem 5.2 implies f2(b) ≥ 5b/4 for large values of b.

It is not hard to see that f2(1) = 1, f2(2) = 3, and f2(3) = 4. As deciding containment in Ib
with b ≥ 2 is NP-hard, we get f2(b) ≥ b+ 1 for b ≥ 2. The upper bounds f2(2) ≤ 3 and f2(3) ≤ 4
follow by ad hoc arguments that are similar to the arguments in the proof of Theorem 6.2 below.
Theorems 6.2 and 6.3 imply f2(4) = 6.

Lemma 6.1 For every fixed real ε > 0, there is a polynomial time algorithm that finds a 2-bounded-
space packing

(i) with two bins for any instance of I2 with total item size at most 2− ε,
(ii) with three bins for any instance of I3 with total item size at most 3− ε.

Proof. For statement (i), we apply any of the standard polynomial time approximation schemes for
the SUBSET SUM problem. For statement (ii), we try all O(n) possibilities for the opening point
p of the third bin. By using a PTAS for SUBSET SUM, we pack as much volume as possible from
items a1, . . . , ap−1 into the first bin and as much volume as possible from items ap, . . . , an into the
third bin, and put the rest into the second bin. tu

Theorem 6.2 There is a polynomial time algorithm that finds a 2-bounded-space packing with six
bins for any given instance of I4.

Proof. For an instance I ∈ I4, the optimal 2-bounded-space packing is of one of the following two
types: (i) one track consists of three bins and the other track of a single bin; (ii) the tracks consist
of two bins each. For either type we can guess (that is, exhaustively try all possibilities for) the
intervals during which the four bins are active.

Packings of type (i) are handled as follows. In the track with three bins, we use a PTAS for
SUBSET SUM to pack as much volume as possible into each of the bins (picking ε = 1/3 will do).
This leaves a volume of at most 1 + 3ε for the track with the single bin, which is easily packed into
three bins.

Packings of type (ii) are handled as follows. We try all O(n2) possibilities for the opening points
p and q (with p ≤ q) of the third and fourth bin. Fix ε = 1/5. First assume that the total size of
items a1, . . . , ap−1 is at most 2 − ε. Then we pack these items into two bins with Lemma 6.1.(i).
The items ap, . . . , an form an instance of I3, and hence can be packed into four bins as f2(3) = 4.
The case where the total size of items aq, . . . , an is at most 2−ε is settled by a symmetric argument.
In the remaining cases, the total size of a1, . . . , ap−1 and aq, . . . , an is at most 2, respectively, and
the total size of ap, . . . , aq−1 is at most 2ε. Then a1, . . . , aq−1 lies in I3 with total size at most
2 + ε, and hence can be packed into three bins with Lemma 6.1.(ii). Furthermore aq, . . . , an form
an instance of I2, and hence can be packed into three bins as f2(2) = 3. tu

Theorem 6.3 It is NP-hard to distinguish instances in I4 from those in I6.

10

Proof. We consider an instance P of the NP-hard PARTITION problem (see Section 5) that consists
of n ≥ 2 positive integers q1, . . . , qn that add up to 2Q. We construct a bin packing instance I with
bin size β = 2Q+ 1 and the 2n+ 4 items with the following sizes:

q1, . . . , qn, Q+ 1, Q+ 1, Q+ 1, Q+ 1, q1, . . . , qn.

We claim that (i) if P has an equitable partition then Opt2(I) = 4, and (ii) if I has a 2-bounded-
space packing of I into five bins then P has an equitable partition.

Indeed, claim (i) is straightforward to verify. For claim (ii), consider some 2-bounded-space
packing of I into five bins. Clearly the four big items of size Q+ 1 must go into four separate bins.
Below we refer to the remaining bin as the fifth bin. We distinguish two cases.

Case 1: The fifth bin contains items from both copies of P . Then two big items must be alone
in their bins (as the packing uses 2-bounded space), and the remaining bins with a big item must
each take only elements from one copy of P . Thus each copy of P is spread over two bins: one bin
with a big item, and the fifth bin. Since the bin size is β = 2Q+ 1, one of the copies of P has items
of total size at most Q in the fifth bin and items of total size at most Q in the other bin with the
big item, producing an equitable partition of P .

Case 2: The fifth bin contains items from only one copy of P . Then the other copy of P is
spread over two bins with big items (as the packing uses 2-bounded space), producing an equitable
partition of P .

Hence any optimal packing of the constructed instances uses either four or at least six bins. tu

7 An asymptotic lower bound for online algorithms

Throughout this section we will consider an arbitrary online bin packing algorithm ON that uses
2-bounded space. Our goal is to establish a lower bound of 4/3 on the performance ratio R∞2 (ON).
We will make excessive use of the following two straightforward observations. First: if a new item
does not fit into any active bin, then it is never wrong to close the fullest active bin. Second: if an
active bin cannot accommodate any of the future items, then it can be closed right away.

The proof is done in terms of a standard adversary argument. The adversary works in p phases,
where p is a huge integer that can be chosen arbitrarily large. All item sizes in the kth phase
(1 ≤ k ≤ p) depend on a small rational number εk = 2k−p/100. Note that these values εk form
a strictly increasing sequence satisfying ε` ≥ 2εk for all ` > k. Note furthermore that the εk are
bounded from above by 1/100. During the kth phase, the adversary may issue items of the following
three types: so-called 1-items of size 1 + εk; so-called 2-items of size 2− 2εk; and so-called 3-items
of size 3− εk.

The bins have size β = 4. When referring to the load or contents of a bin, we will usually
ignore the dependence on the epsilons. Hence the active bins will be bins of load 1 (which contain
a single 1-item), bins of load 2 (which contain a single 2-item, or two 1-items), or bins of load 3
(which contain a single 3-item, or three 1-items, or a 1-item together with a 2-item). Bins of load 4
can always be closed right away.

Proposition 7.1 Consider a partially packed bin that only contains items issued during the first
k phases.
(i) If the bin has load 1, then any 3-item from phase k or later will fit into it.
(ii) If the bin has load 2, then any 2-item from phase k or later will fit into it.
(iii) If the bin has load 3, then no item from phase k + 1 or later will fit into it.

11

Proof. Statements (i) and (ii) are straightforward. For statement (iii) we distinguish three cases: if
the bin contains a single 3-item, the free space is at most 1 + εk. If the bin contains three 1-items,
the free space is at most 1 − 3εk. If the bin contains a 1-item and a 2-item, the free space is at
most 1 + 2εk − εk. All items arriving in phase k + 1 or later are of size at least 1 + 2εk, and hence
will not fit into the free space. tu

Here is a central ingredient to the adversary’s strategy: Whenever ON produces an active bin of
load 3, the adversary starts a new phase and increases the value of ε. Then by Proposition 7.1.(iii)
ON will never be able to use this bin again, and we may assume without loss of generality that
whenever ON produces an active bin of load 3, this bin is closed right away.

The adversary will only close bins of load 4, either by adding a 2-item to an active bin of load 2,
or by adding a 3-item to an active bin of load 1. By Proposition 7.1 these items will always fit into
their respective bins.

The adversary will always issue one or two elements and make sure it ends in one of the following
three states:

Adv[0, 0]: Both active bins are empty.
Adv[0, 1]: One empty bin; the other bin contains a single 1-item.
Adv{1, 1}: Two 1-items in the active bins. The adversary may decide later whether these items

are in the same bin or in different bins.
Before a new item arrives, the active bins of ON will always have loads X,Y ∈ {0, 1, 2}, we

may assume X ≤ Y ; these six states are denoted by ON[X,Y].
The adversary’s strategy is designed to guarantee that the combination of states Adv{1, 1} and

ON[X,Y] never appears; all other combinations are possible. The following paragraphs provide
a full description of the adversary’s behavior, in dependence on its current state and the current
state of ON.

Adv[0, 0] and any ON[X,Y]: The adversary issues a 1-item and moves to Adv[0, 1]. Depending
on its state, ON perhaps closes a bin of load 3. Since all ON states are legal with Adv[0, 1], we
end up in a legal combination.

Adv[0, 1] or Adv{1, 1} and ON[X,Y] with X,Y ∈ {0, 2}: The adversary issues a 3-item, closes
a bin of load 4, and moves to Adv[0, 0] or Adv[0, 1], while ON either closes a bin of load 3, or it
closes a bin of load 2 and a bin of load 3. Again, all final state combinations are legal.

Adv{1, 1} and ON[0, 1] or ON[1, 1]: The adversary issues a 2-item, closes a bin of load 4
containing both 1-items, and moves to Adv[0, 0], while ON cannot reach load 4. Perhaps it closes
a bin of load 3. All ON states are a legal combination with Adv[0, 0].

Adv[0, 1] and ON[0, 1] or ON[1, 2]: The adversary issues a 1-item and moves to Adv{1, 1},
while ON moves to one of the states ON[1, 1], ON[0, 2], or ON[2, 2], or else it closes a bin of load
3 and moves to ON[0, 1]. In any case, ON final state is not ON[1, 2], so the combination is legal.

Adv[0, 1] and ON[1, 1]: The adversary issues two 2-items, closes a bin with them and remains
in Adv[0, 1], while ON closes one or two bins of load 3 and moves to some state. Again, any ON
state is a legal combination with Adv[0, 1].

This completes the description of the adversary’s strategy, as all the cases are covered. To
summarize: the adversary only closes bins of load 4, whereas ON always closes bins of load at most
3. This yields the following theorem.

Theorem 7.2 Any 2-bounded-space online bin packing algorithm ON has performance ratio
R∞2 (ON) ≥ 4/3. tu

12

Acknowledgments. This research has been partially supported by NSF Grant CCF-0729071;
by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of MŠMT ČR) and grant IAA100190902 of
GA AV ČR, by the Netherlands Organization for Scientific Research (NWO), grant 639.033.403; by
BSIK grant 03018 (BRICKS: Basic Research in Informatics for Creating the Knowledge Society).

References

[1] E.G. Coffman, Jr., J. Csirik, G.J. Woeginger (2002). Approximate solutions to bin
packing problems. In Handbook of Applied Optimization, P.M. Pardalos and M.G.C. Resende
(eds.), Oxford University Press, New York, 607–615.

[2] J. Csirik and B. Imreh (1989). On the worst-case performance of the NkF bin packing
heuristic. Acta Cybernetica 9, 89–105.

[3] J. Csirik and D.S. Johnson (2001). Bounded space on-line bin packing: Best is better than
first. Algorithmica 31, 115–138.

[4] J. Csirik and G.J. Woeginger (2002). Resource augmentation for on-line bounded space
bin packing. Journal of Algorithms 44, 308–320.

[5] M.R. Garey and D.S. Johnson (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco.

[6] C.C. Lee and D.T. Lee (1985). A simple on-line bin-packing algorithm. Journal of the ACM
32, 562–572.

[7] W. Mao (1993). Tight worst-case performance bounds for Next-k-Fit bin packing. SIAM Jour-
nal on Computing 22, 46–56.

[8] G.J. Woeginger (1993). Improved space for bounded-space, on-line bin-packing. SIAM Jour-
nal on Discrete Mathematics 6, 575–581.

[9] G.J. Woeginger (2000). When does a dynamic programming formulation guarantee the ex-
istence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on
Computing 12, 57–75.

13

