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Abstract. In early seventies it was shown that the asymptotic approxi-
mation ratio of BestFit bin packing is equal to 1.7. We prove that also
the absolute approximation ratio for BestFit bin packing is exactly 1.7,
improving the previous bound of 1.75. This means that if the optimum
needs Opt bins, BestFit always uses at most b1.7 · OPTc bins. Fur-
thermore we show matching lower bounds for all values of Opt, i.e., we
give instances on which BestFit uses exactly b1.7 · OPTc bins. Thus
we completely settle the worst-case complexity of BestFit bin packing
after more than 40 years of its study.

1 Introduction

Bin packing is a classical combinatorial optimization problem in which we are
given an instance consisting of a sequence of items with rational sizes between
0 and 1, and the goal is to pack these items into the smallest possible number
of bins of unit size. BestFit algorithm packs each item into the most full bin
where it fits, possibly opening a new bin if the item does not fit into any currently
open bin. A closely related FirstFit algorithm packs each item into the first
bin where it fits, again opening a new bin only if the item does not fit into any
currently open bin.

Johnson’s thesis [8] on bin packing together with Graham’s work on schedul-
ing [6, 7] belong to the early influential works that started and formed the whole
area of approximation algorithms. The proof that the asymptotic approxima-
tion ratio of FirstFit and BestFit bin packing is 1.7 given by Ullman [14] and
subsequent works by Garey et al. and Johnson et al. [5, 10] were among these
first results on approximation algorithms.

We prove that also the absolute approximation ratio for BestFit bin packing
is exactly 1.7, i.e., if the optimum needs Opt bins, BestFit always uses at most
b1.7 · Optc bins. This builds upon and substantially generalizes our previous
upper bound for FirstFit from [3]. For the comparison of the techniques, see
the beginning of Section 4. Furthermore we show matching lower bounds for
all values of Opt, i.e., we give instances on which BestFit and FirstFit use
exactly b1.7 ·Optc bins. This is also the first construction of an instance that
has absolute approximation ratio exactly 1.7 for an arbitrarily large Opt.



Note that the upper bound for BestFit is indeed a generalization of the
bound for FirstFit: The items in any instance can be reordered so that they ar-
rive in the order of bins in the FirstFit packing. This changes neither FirstFit,
nor the optimal packing. Thus it is sufficient to analyze FirstFit on such in-
stances. On the other hand, on them BestFit behaves exactly as FirstFit, as
there is always a single bin where the new item fits. Thus any lower bound for
FirstFit applies immediately to BestFit and any upper bound for FirstFit
is equivalent to a bound for BestFit for this very restricted subset of instances.
To demonstrate that the extension of the absolute bound from FirstFit to
BestFit is by far not automatic, we present a class of any-fit-type algorithms
for which the asymptotic bound of 1.7 holds, but the absolute bound does not.

History and related work. The upper bound on BestFit (and FirstFit)
was first shown by Ullman in 1971 [14]; he proved that for any instance, BF,FF ≤
1.7 · Opt + 3, where BF, FF and Opt denote the number of bins used by
BestFit, FirstFit and the optimum, respectively. Still in seventies, the addi-
tive term was improved first in [5] to 2 and then in [4] to BF ≤ d1.7 · Opte;
due to integrality of BF and Opt this is equivalent to BF ≤ 1.7 · Opt + 0.9.
Recently the additive term of the asymptotic bound was improved for FirstFit
to FF ≤ 1.7 ·Opt + 0.7 in [16] and to FF ≤ 1.7 ·Opt in [3].

The absolute approximation ratio of FirstFit and BestFit was bounded by
1.75 by Simchi-Levy [13]. Recent improvements again apply only to FirstFit:
after bounds of 12/7 ≈ 1.7143 by Xia and Tan [16] and Boyar et al. [1] and
101/59 ≈ 1.7119 by Németh [11], the tight bound of FF ≤ 1.7 ·Opt was given
in our previous work [3].

For the lower bound, the early works give examples both for the asymptotic
and absolute ratios. The example for the asymptotic bound gives FF = 17k
whenever Opt = 10k+ 1, thus it shows that the asymptotic upper bound of 1.7
is tight, see [14, 5, 10]. For the absolute ratio, an example is given with FF = 17
and Opt = 10, i.e., an instance with approximation ratio exactly 1.7 [5, 10], but
no such example was known for large Opt. In our previous work [3] we have
given lower bound instances with BF = FF = b1.7 ·Optc whenever Opt 6≡ 0, 3
(mod 10).

We have mentioned only directly relevant previous work. Of course, there is
much more work on bin packing, in particular there exist asymptotic approxi-
mation schemes for this problem, as well as many other algorithms. We refer to
the survey [2] or to the recent excellent book [15].

Organization of the paper. The crucial technique of the upper bound is a
combination of amortization and weight function analysis, following the scheme
of our previous work [12, 3]. We present it first in Section 2 to give a simple proof
of the asymptotic bound for BestFit and any-fit-type algorithms. We prove the
lower bound in Section 3, as it illustrates well the issues that we need to deal
with in the upper bound proof, which is then given in Section 4. Most proofs are
omitted, but we try to explain the main ideas behind them. For a version with
all proofs, see http://iuuk.mff.cuni.cz/~sgall/ps/BF.pdf.



2 Notations and the simplified asymptotic bound

Let us fix an instance I with items a1, . . . , an and denote the number of bins
in the BestFit and optimal solutions by BF and Opt, respectively. We will
often identify an item and its size. For a set of items A, let s(A) =

∑
a∈A a, i.e.,

the total size of items in A and also for a set of bins A, let s(A) =
∑
A∈A s(A).

Furthermore, let S = s(I) be the total size of all items of I. Obviously S ≤ Opt.
We classify the items by their sizes: items a ≤ 1/6 are small, items a ∈

(1/6, 1/2] are medium, and items a > 1/2 are huge. A bin is called a k-bin
or k+-bin, if it contains exactly k items or at least k items, respectively, in the
final packing. Furthermore, the rank of a bin is the number of medium and huge
items in it. An item is called k-item if BF packs it into a k-bin.

The bins in the BF packing are ordered by the time they are opened (i.e.,
when the first item is packed into them). Expressions like “before”, “after”, “first
bin”, “last bin” refer to this ordering. At any time during the packing, the level
of a bin is the total size of items currently packed in it, while by size of a bin
we always mean its final level. A level of an item a denotes the level of the
bin where a is packed, just before the packing of a.

The following properties of BestFit follow easily from its definition.

Lemma 2.1. At any moment, in the BF packing the following holds:
(i) The sum of levels of any two bins is greater than 1. In particular, there is

at most one bin with level at most 1/2.
(ii) Any item a with level at most 1/2 (i.e., packed into the single bin with level

at most 1/2) does not fit into any bin open at the time of its arrival, except
for the bin where the item a is packed.

(iii) If there are two bins B,B′ with level at most 2/3, in this order, then either
B′ contains a single item or the first item in B′ is huge. ut

To illustrate our technique, we now present a short proof of the asymptotic
ratio 1.7 for BestFit. It uses the same weight function as the traditional analysis
of BestFit. (In some variants the weight of an item is capped to be at most 1,
which makes almost no difference in the analysis.) To use amortization, we split
the weight of each item a into two parts, namely its bonus w(a) and its scaled
size w(a), defined as

w(a) =


0 if a ≤ 1

6 ,
3
5 (a− 1

6 ) if a ∈
(
1
6 ,

1
3

)
,

0.1 if a ∈
[
1
3 ,

1
2

]
,

0.4 if a > 1
2 .

For every item a we define w(a) = 6
5a and its weight is w(a) = w(a) +w(a). For

a set of items B, w(B) =
∑
a∈B w(a) denotes the total weight, similarly for w

and w.
It is easy to observe that the weight of any bin B, i.e., of any set with

s(B) ≤ 1, is at most 1.7: The scaled size of B is at most 1.2, so we only need to



check that w(B) ≤ 0.5. If B contains no huge item, there are at most 5 items
with non-zero w(a) and w(a) ≤ 0.1 for each of them. Otherwise the huge item
has bonus 0.4; there are at most two other medium items with non-zero bonus
and it is easy to check that their total bonus is at most 0.1. This implies that
the weight of the whole instance is at most 1.7 ·Opt.

The key part is to show that, on average, the weight of each BF-bin is at
least 1. Lemma 2.2 together with Lemma 2.1 implies that for almost all bins
with two or more items, its scaled size plus the bonus of the following such bin
is at least 1.

Lemma 2.2. Let B be a bin such that s(B) ≥ 2/3 and let c, c′ be two items that
do not fit into B, i.e., c, c′ > 1− s(B). Then w(B) + w(c) + w(c′) ≥ 1.

Proof. If s(B) ≥ 5/6, then w(B) ≥ 1 and we are done. Otherwise let x = 5/6−
s(B). We have 0 < x ≤ 1/6 and thus c, c′ > 1/6 + x implies w(c), w(c′) > 3

5x.
We get w(B) + w(c) + w(c′) > 6

5 ( 5
6 − x) + 3

5x+ 3
5x = 1. ut

Any BF-bin D with a huge item has w(D) ≥ 0.4 and 6
5s(D) > 0.6, thus

w(D) > 1.
For the amortization, consider all BF-bins B with two or more items, size

s(B) ≥ 2/3, and no huge item. For any such bin except for the last one choose
C as the next bin with the same properties. Since C has no huge item, its first
two items c, c′ have level at most 1/2 and by Lemma 2.1(ii) they do not fit into
B. Lemma 2.2 implies w(B) + w(C) ≥ w(B) + w(c) + w(c′) ≥ 1.

Summing all these inequalities (note that each bin is used at most once as
B and at most once as C) and w(D) > 1 for the bins with huge items we
get w(I) ≥ BF − 3. The additive constant 3 comes from the fact that we are
missing an inequality for at most three BF-bins: the last one from the amorti-
zation sequence, possibly one bin B with two or more items and s(B) < 2/3 (cf.
Lemma 2.1(iii)) and possibly one bin B with a single item and s(B) < 1/2 (cf.
Lemma 2.1(i)). Combining this with the previous bound on the total weight, we
obtain BF− 3 ≤ w(I) ≤ 1.7 ·Opt and the asymptotic bound follows.

This simple proof holds for a wide class of any-fit-type algorithms: Call an
algorithm a RAAF (relaxed almost any fit) algorithm, if it uses the bin with level
at most 1/2 only when the item does not fit into any previous bin (Lemma 2.1(i)
implies that there is always at most one such bin). Our proof of the asymptotic
ratio can be tightened so that the additive constant is smaller:

Theorem 2.3. For any RAAF algorithm A and any instance of bin packing we
have A ≤ b1.7 ·Opt + 0.7c ≤ d1.7 ·Opte. ut
The proof is given in the full version, where we also give an example of a RAAF
algorithm which does not satisfy the absolute bound of 1.7. The asymptotic
bound for almost any fit (AAF) algorithms was proved in [8, 9], where the original
AAF condition prohibits packing an item in the smallest bin if that bin is unique
and the item does fit in some previous bin (but the restriction holds also if the
smallest bin is larger than 1/2). Theorem 2.3 improves the additive term and
generalizes the bound from AAF to the slightly less restrictive RAAF condition
(although it seems that the original proof also uses only the RAAF condition).



3 Lower bound

The high level scheme of the lower bound for Opt = 10k is this: For a tiny
ε > 0, the instance consists of Opt items of size approximately 1/6, followed by
Opt items of size approximately 1/3, followed by Opt items of size 1/2+ε. The
optimum packs in each bin one item from each group. BestFit packs the items
of size about 1/6 into 2k bins with 5 items, with the exception of the first and
last of these bins that will have 6 and 4 items, respectively. The items of size
about 1/3 are packed in pairs. To guarantee this packing, the sizes of items differ
from 1/6 and 1/3 in both directions by a small amount δi which is exponentially
decreasing, but greater than ε for all i. This guarantees that only the item with
the largest δi in a bin is relevant for its final size and this in turn enables us to
order the items so that no additional later item fits into these bins.

Theorem 3.1. For all values of Opt, there exists an instance I with FF =
BF = b1.7 ·Optc. ut

4 Upper bound

At the high level, we follow the weight function argument from the simple proof
in Section 2. As we have seen, the BF packing in the lower bound contains
three types of bins that play different roles. To obtain the tight upper bound,
we analyze them separately. For two of these types we can argue easily that the
weight of each bin is at least 1: First, the bins with size at least 5/6, called big
bins below; these are the initial bins in the lower bound containing the items of
size approximately 1/6. Second, the 1-bins, called dedicated bins; these are the
last bins with items 1/2 + ε in the lower bound. The remaining bins, common
bins, are the middle bins of size approximately 2/3 with items of size around
1/3 (except for the first bin) in the lower bound. They are analyzed using the
amortization lemma. This general scheme has several obstacles which we describe
now, together with the intuition behind their solution.
Obstacle 1: There can be one dedicated bin with item d0 < 1/2. We need to
change its bonus to approximately 0.4, to guarantee a sufficient weight of this
bin. This in turn possibly forces us to decrease the bonus of one huge item f1
to 0.1, if d0 and f1 are in the same Opt-bin, so that the Opt-bin has weight at
most 1.7.
Obstacle 2: The amortization lemma needs two items that do not fit into the
previous bin. Unlike FirstFit, BestFit does not guarantee this, if the first
item in a bin is huge. If this first item is not f1, we can handle such bins, called
huge-first bins, similarly as dedicated bins. If this happens for f1, we need to
argue quite carefully to find the additional bonus. This case, called the freaky
case, is the most complicated part of our analysis.
Obstacle 3: Even on the instances similar to our lower bound, the amortization
leaves us with the additive term of 0.1, because we cannot use the amortization
on the last common bin, and its scaled weight is only about 0.8 if its size is



around 2/3. Here the parity of the items of size around 1/3 comes into play:
Typically they come in pairs in BF-bins, as in the lower bound, but for odd
values of Opt one of them is missing or is in a FirstFit bin of 3 or more items.
This allows us to remove the last 0.1 of the additive term, using the mechanism
of an exceptional set, see Definition 4.9.
Obstacle 4: If the last common bin is smaller than 2/3, the problem with
amortizing it is even larger. Fortunately, then the previous common bins are
larger than 2/3 and have additional weight that can compensate for this, using
a rather delicate argument, see Proposition 4.11.

Notations and preliminary lemmata

We classify the BF bins into four groups.
Any 1-bin D is a dedicated bin; D denotes the set of all dedicated bins and

δ their number. If some dedicated bin has size at most 1/2, denote the item in
it d0 and let ∆ = 1/2 − d0; otherwise d0 and ∆ are undefined. Lemma 2.1(i)
implies that there is at most one such item; also we shall see that in the tightest
case ∆ is close to 0.

If d0 is defined, there may exist a (unique) huge item in its Opt-bin. In that
case, denote it f1 for the rest of the proof and leave f1 undefined otherwise.
Furthermore, if f1 is the first item in a BF-bin, denote that bin F for the rest of
the proof; otherwise let F undefined. Note that F cannot be a 1-bin as otherwise
d0 would fit there contradicting Lemma 2.1(i). Let f2 be the second item in F .

If the first item of a 2+-bin H is huge and H 6= F , we call H a huge-first
bin; H denotes the set of all huge-first bins and η their number.

If a 2+-bin B satisfies s(B) ≥ 5/6 and it is not in H, we call it a big bin; B
denotes the set of all big bins and β their number.

Any remaining bin (i.e., any 2+-bin with size less than 5/6 and the first
item small or medium, and also F if it is defined and not a big bin) is called a
common bin; C denotes the set of all common bins, and γ their number.

An item is called an H-item, if it is do or a huge item different from f1 (if
defined). Note that each Opt-bin and each BF-bin contains at most one H-item.

The definitions imply that in every big or common bin different from F (if
defined), the first item is small or medium. Then Lemma 2.1(ii) implies that the
first two items of the bin do not fit into any previous bin.

Throughout the proof we distinguish two cases depending on the bin F .
If F is not defined, or it is a big bin, or f2 does not fit into any previous

common bin, then we call this the regular case and all the common bins,
including F if it is defined and a common bin, are called regular bins.

If F is defined and it is a common bin, and f2 would fit into some previous
common bin at the time of its packing, fix one such bin G for the rest of the proof.
We call this the freaky case and F the freaky bin. All the other common bins
are called regular bins.

In both cases, denote the set of all regular bins by R and their number by ρ,
furthermore number the regular bins C1, . . . , Cρ, ordered by the time of their
opening. In the freaky case, let g be the index of bin G in this ordering, i.e., let
Cg = G. Note that ρ = γ in the regular case and ρ = γ − 1 in the freaky case.



In the following lemma we significantly reduce the set of instances that we
need to consider in our proof. Our goal is to reorder or remove the items in the
sequence so that BestFit packs most items similarly as FirstFit. For these
transformations, we use two important properties of BestFit that follow from
its definition. First, if we remove all the items from a BF-bin from the instance,
the packing of the remaining items into the remaining bins does not change;
often we use this so that we move the items to a later position in the instance
and then this implies that the packing of the initial segment before the new
position of the moved items does not change. Second, if two instances lead to
the same configuration and we extend them by the same set of items, then the
resulting configurations are also the same, where the configuration is the current
multiset of levels of BF-bins. (This does not hold for FirstFit, as permuting
the bins can change the subsequent packing, but the configuration is the same.)

Lemma 4.1. If there exists an instance with BF > 1.7 ·Opt, then there exists
such an instance I that in addition satisfies the following properties:

(i) All the 1-items form a final segment of the input instance.
(ii) If a BF bin B contains an item a such that for all other BF bins B′ we

have a+ s(B′) > 1 then B is an 1-bin.
(iii) In each BF 2+-bin, the first two items are aj−1 and aj for some j (i.e., they

are adjacent in I). Furthermore, these two items are packed into different
bins in Opt.

(iv) Suppose that for a BF 3+-bin B, the first item in B is not huge, and no
new bin is opened after opening B and before packing the third item into
B. Then the first three items packed into B are aj−2, aj−1 and aj for some
j (i.e., they are adjacent in I). Furthermore, these three items are packed
into different bins in Opt.

(v) Suppose that aj is the last item packed into a BF bin B. Then for all j′ > j,
we have aj′ + s(B) > 1 (i.e., no later items fit into B). Consequently, no
later item has level s(B) or larger in BF packing. ut

For the rest of the proof we assume that our instance I satisfies the properties
from Lemma 4.1. The following lemma states the consequences for the common
bins: The medium items are packed as in FirstFit and the small items are
restricted to only first few common bins.

Lemma 4.2. (i) Any item aj > 1/6 packed into a regular bin Ci has the
property that at the time of its packing, aj does not fit into any previous
common bin.

(ii) If a small item aj is packed into a common bin, then this is a common bin
with the largest level at the time of packing aj. Except for C1 and F , any
small item in a common bin has level at least 2/3.

(iii) From the moment when there are two common bins with level at least 2/3
on, no small item arrives. In particular, no small item is packed into a
common bin opened later than C2.

(iv) If aj ∈ C2 is small, some ak > 1/6, k > j (i.e., ak is after aj), is packed
into C1. ut



In the next lemma we state some properties important for the freaky case.
For the rest of the proof, let g0 denote the item in bin G guaranteed by the next
lemma. Note that the lemma implies that there are at least three items packed
into G, as there are two other items in G when F opens.

Lemma 4.3. In the freaky case, the BF packing satisfies the following:
(i) There exists an item g0 that is packed into bin G such that g0 arrives after

f2 and s(F ) + g0 > 1. Furthermore, s(F ) + s(G) > 1 + d0.
(ii) If the regular bins Ci and Ck are opened before F then s(F ) > 2/3 and

s(Ci) + s(Ck) + s(F ) > 2. ut

Lemma 4.4. In the BF packing the following holds:
(i) The total size of any k ≥ 2 BF-bins is greater than k/2.
(ii) If d0 is defined, then s(H ∪D) ≥ (δ + η)/2 + (δ + η − 2)∆.

(iii) The total number of huge-first and dedicated bins is δ + η ≤ Opt.
(iv) Suppose that C is a regular bin of size s(C) = 2/3 − 2x for some x ≥ 0.

For any bin B before C we have s(B) > 2/3 + x and for any regular or big
bin B after C we have s(B) > 2/3 + 4x.

(v) Suppose we have a set A of k common and big bins such that there are at
least 3 common bins among them. Then s(A) > 2k/3. ut

Now we assume that the instance violates the absolute ratio 1.7 and derive
some easy consequences that exclude some degenerate cases. Note that the values
of 1.7·Opt are multiples of 0.1 and BF is an integer, thus BF > 1.7·Opt implies
BF ≥ 1.7 ·Opt+ 0.1. Typically we derive a contradiction with the lower bound
S ≤ Opt on the optimum.

Lemma 4.5. If BF > 1.7 ·Opt then the following holds:
(i) Opt ≥ 7.
(ii) No common bin C has size s(C) ≤ 1/2.
(iii) The total number of dedicated and huge-first bins is bounded by η + δ ≥ 5.

If d0 is not defined then there is no huge-first bin, i.e., η = 0.
(iv) The number of regular bins is at least ρ ≥ Opt/2 + 1 > 4. If BF ≥

1.7 ·Opt + τ/10 for some integer τ ≥ 1 then ρ > (Opt + τ)/2. ut

The weight function, amortization, exceptional set

Now we give the modified and final definition of the weight function. The
weight is modified only for d0 and f1 and their modified bonus is at least 0.1.
Thus Lemma 2.2 still holds, as its proof uses at most 0.1 of bonus for each item.

Definition 4.6. The weight function w, bonus w and scaled size w are defined
as follows:

If d0 is defined, we define w(d0) = 0.4− 3
5∆.

If f1 is defined, we define w(f1) = 0.1

For any other item a, we define w(a) =


0 if a ≤ 1

6 ,
3
5 (a− 1

6 ) if a ∈
[
1
6 ,

1
3

]
,

0.1 if a ∈
[
1
3 ,

1
2

]
,

0.4 if a > 1
2 .



For every item a we define w(a) = 6
5a and w(a) = w(a) + w(a).

For a set of items A and a set of bins A, let w(A) and w(A) denote the total
weight of all items in A or A; similarly for w and w. Furthermore, let W = w(I)
be the total weight of all items of the instance I.

Note that H-items are exactly the items with bonus greater than 0.1.
In the previous definition, the function w is continuous on the case bound-

aries, except for a jump at 0.4. Furthermore, if we have a set A of k items with
size in [ 16 ,

1
3 ] and d0 6∈ A, then the definition implies that the bonus of A is

exactly w(A) = 3
5

(
s(A)− k

6

)
. More generally, if A contains at least k items and

no H-item, then we get an upper bound w(A) ≤ 3
5

(
s(A)− k

6

)
.

The analysis of Opt-bins and big, dedicated and huge-first BF-bins in the
next two lemmata is easy.

Lemma 4.7. For every optimal bin A its weight w(A) can be bounded as follows:
(i) w(A) ≤ 1.7.
(ii) If A contains no H-item, then w(A) ≤ 1.5. ut

Lemma 4.8. (i) The total weight of the big bins is w(B) ≥ w(B) ≥ β.
(ii) The total weight of the dedicated and huge-first bins is w(D ∪H) ≥ δ + η.

ut

The analysis of the common bins is significantly harder. Typically we prove
that their weight is at least γ−0.2 which easily implies that BF ≤ 1.7·Opt+0.1.
Due to the integrality of BF and Opt, this implies our main result whenever
Opt 6≡ 7 (mod 10). To tighten the bound by the remaining 0.1 and to analyze
the freaky case, we need to reserve the bonus of some of the items in the common
bins instead of using it for amortization; this is possible if we still have two items
in each regular bins whose bonus we can use. Now we define a notion of an
exceptional set E, which contains these items with reserved bonus. In the freaky
case, g0 ∈ E, as its bonus is always needed to amortize for F . Other items are
added to E only if Opt ≡ 7 (mod 10), depending on various cases.

Definition 4.9. A set of items E is called an exceptional set if
(i) for each i = 2, . . . , ρ, the bin Ci contains at least two items c, c′ > 1

6 that
are not in E;

(ii) if Opt 6≡ 7 (mod 10) then E = ∅ in the regular case and E = {g0} in the
freaky case; and

(iii) if Opt ≡ 7 (mod 10) then E has at most two items and g0 ∈ E in the
freaky case.

The next lemma modifies the amortization lemma for the presence of the
exceptional set.

Lemma 4.10. (i) Let i = 2, . . . , ρ and s(Ci−1) ≥ 2/3. Then w(Ci−1)+w(Ci\
E) ≥ 1.

(ii) In the freaky case, if s(F ) ≥ 2/3 then w(F ) + w(f1) + w(g0) ≥ 1.



Proof. (i): Let c, c′ > 1
6 be two items in Ci \E; their existence is guaranteed by

the definition of the exceptional set. By Lemma 4.2(i), c, c′ > 1− s(Ci−1). The
claim follows by Lemma 2.2 (which applies even to the modified weights, as we
noted before).

(ii): Lemma 4.3(i) implies g0 > 1 − s(F ). Trivially, f1 > 1/2 > 1 − s(F ).
Thus we can apply Lemma 2.2 with c = g0 and c′ = f1 and the claim follows. ut

Analyzing the common bins

The following proposition is relatively straightforward if s(Cρ) ≥ 2/3, oth-
erwise it needs a delicate argument. It implies easily our upper bound with the
additive term 0.1.

Proposition 4.11. Let Opt ≥ 8, BF > 1.7 ·Opt, and E be an exceptional set.
Then:

(i) w(R)− w(E) ≥ ρ− 0.2.
(ii) If Cρ has rank at least 3 then w(R)− w(E) ≥ ρ.

(iii) In the freaky case, if E = {g0}, and G = Cg 6= Cρ then we have w(R) −
w(E)− w(Cg)− w(Cg+1) ≥ ρ− 1.2. ut

Proposition 4.12. For any instance of bin packing with Opt ≥ 8, we have
W > BF− 0.2 and W ≤ 1.7 ·Opt. Thus also BF ≤ 1.7 ·Opt + 0.1.

Proof. Suppose that BF > 1.7 · Opt. First we show that w(C) ≥ γ − 0.2,
distinguishing three cases.

In the regular case we set E = ∅ and Proposition 4.11(i) gives w(C) ≥ γ−0.2.
In the freaky case, if s(F ) ≥ 2/3, we set E = {g0}, then sum Lemma 4.10(ii)

and Proposition 4.11(i) to obtain w(C) = w(R) − w(E) + w(g0) + w(F ) >
ρ− 0.2 + 1 = γ − 0.2.

In the freaky case, if s(F ) < 2/3, then Lemma 4.3(ii) implies that F opens
before C2 and G = C1. Each Cj , j ≥ 2, contains two items larger than 1/3, thus
w(Cj) > 1. Finally, f1 < 2/3, thus the level of C1 when F opens is greater than
1/3. Using Lemma 4.3(i) we have s(F ) + g0 > 1, thus also g0 > 1/3 and w(g0) ≥
0.1. Thus w(G)+w(F ) ≥ w(G)+w(F )+w(g0)+w(f1) ≥ 6

5 ( 1
3+1)+0.1+0.1 = 1.8.

Summing this with w(Cj) > 1 for j ≥ 2 we obtain w(C) > γ − 0.2 as well.
Together with Lemma 4.8, w(C) > γ − 0.2 implies W = w(B) + w(D) +

w(H) + w(C) > β + η + δ + (γ − 0.2) = BF − 0.2. By Lemma 4.7(i) we have
W ≤ 1.7 ·Opt. Thus BF−0.2 < W ≤ 1.7 ·Opt. Since BF and Opt are integers
the theorem follows. ut

Now after having proved BF ≤ 1.7 · Opt + 0.1, we are going to prove our
main result.

Theorem 4.13. For any instance of bin packing we have BF ≤ 1.7 ·Opt.

Proof. Suppose the theorem does not hold. Then Proposition 4.12 implies BF =
1.7 ·Opt + 0.1 and integrality of Opt and BF then gives Opt ≡ 7 (mod 10),
in particular Opt is odd.



In general, we try to save 0.1 in the analysis of the common bins, i.e., to
prove w(C) > γ − 0.1. In some of the subcases we need to use some additional
weight of other bins and we then show W > BF − 0.1. In both cases we then
get BF− 0.1 < W ≤ 1.7 ·Opt and the theorem follows by integrality of BF and
Opt. In a few remaining cases we derive a contradiction directly.

The proof splits into three significantly different cases, Opt = 7, the regular
case, and the freaky case. We give only a sketch of the proof in the freaky case.
The next lemma enables the parity argument we mentioned before; it is thus
also needed in the regular case.

Lemma 4.14. Suppose that every Opt-bin contains an H-item. Then no Opt-
bin contains two 2-items c1 and c2. ut

After excluding some easy subcases of the freaky case, we in particular know
that every Opt-bin contains an H-item. The general idea of the proof in the
freaky case is that we try to find an item c different from f1 such that the bonus
of {g0, c} is sufficient and can be used to pay for the freaky bin F . If we find
such c, we save the bonus 0.1 of f1 and use it to tighten Proposition 4.11 by the
necessary 0.1. We have three subcases.

Case 1: F opens after C2. Thus F contains no small item by Lemma 4.2(iii);
since f1 is huge and s(F ) < 5/6, it follows that F is a 2-bin containing only f1
and f2.

The intuition is that we use the bonus of f2 instead of f1 to pay for F .
However, in general, the bonus of {g0, f2} is not sufficient to pay for F , if F is
smaller than Cg. In that case, the bonus of {g0, f2} is sufficient to pay for Gg
and we use the bonus of the next common bin, Gg+1 to pay for F . A further
complication is that the bonus of {g0, f2} smaller than necessary by a term
proportional to ∆; this is compensated by the dedicated and huge-first bins.

Case 2: F opens before C2 and some Ck, k ≥ 2, has rank at least three.
Let c be one of the medium items in this Ck and set E = {g0, c}. Then E is a
valid exceptional set. Furthermore, c does not fit into F .

If s(F ) ≥ 2/3, we have w(F ) + w(E) ≥ 1 by Lemma 2.2. Using Propo-
sition 4.11(i) we have w(C) ≥ (w(R) − w(E)) + (w(F ) + w(E)) + w(f1) ≥
ρ− 0.2 + 1 + 0.1 = γ − 0.1.

If s(F ) < 2/3, we have w(E) = 0.2 and by Lemma 4.4(iv), Cρ is a 2-bin
such that s(Cρ) + s(F ) > 4/3. Thus w(E) + w(F ) + w(Cρ) > 0.2 + 0.1 + 1.6 =
1.9. Adding all the inequalities w(Ci−1) + w(Ci \ E) ≥ 1, i = 2, . . . , ρ from
Lemma 4.10(i), we get w(C) > γ − 0.1.

Case 3: F opens before C2 and each Ci, i ≥ 2, has rank 2. Then all bins
Ci, i ≥ 2, are 2-bins and by Lemma 4.14, all items in these ρ−1 bins are packed
into different optimal bins. Thus there are at most Opt/2 such bins, and since
Opt is odd (from Opt ≡ 7 (mod 10)) we actually get ρ ≤ (Opt + 1)/2. and
thus γ = ρ + 1 ≤ Opt/2 + 3/2. Instead of using the weights, here we get a
contradiction by bounding the size of all the bins. ut
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A Lemma 2.1 and AnyFit algorithms

Proof ( of Lemma 2.1). (i): The first item in any BF-bin does not fit in any
open bin by the definition of BestFit, thus the sum of the levels of the two bins
is greater than 1 already at the time when the second bin is opened.

(ii): Let x ≤ 1/2 be the level of a, which is the level of its bin just before a
is packed there. By (i), there is at most one bin with level at most 1/2, thus at
the time of packing of a all the other bins have level strictly greater than x. By
the definition of BestFit, a does not fit into any of these bins.

(iii): If B′ contains two items and the first one is not huge, then by (ii) the
first two items in B′ do not fit into B. Thus they are larger than 1/3 and the
level of B′ is greater than 2/3. ut

Now we revisit the simple proof from Section 2. We save one of the three
bins by noticing that we do not need to do amortization for bins that are after
the bin of size smaller than 2/3.

Proof ( of Theorem 2.3). We observe that Lemma 2.1(i) and (iii) hold also for
any RAAF algorithm A. Lemma 2.1(i) follows from the condition on opening
a new bin, which remains the same as in BestFit. Next note that this and
the RAAF condition together imply a weaker version of Lemma 2.1(ii), namely
that any item with level at most 1/2 does not fit into any previous bin. Now
using this instead of Lemma 2.1(ii) in the proof of Lemma 2.1(iii) implies that
Lemma 2.1(iii) also holds for A.

Lemma 2.2 holds for any RAAF algorithm as well, as it does not mention
the algorithm at all.

Any A-bin (i.e., a bin of the RAAF algorithm) D with a huge item has
w(D) ≥ 0.4 and 6

5s(D) > 0.6, thus w(D) > 1. Similarly, any A-bin with two
items larger than 1/3 has w(D) ≥ 0.2 and 6

5s(D) > 0.8, thus w(D) > 1.
For the amortization, consider all the A-bins B, with (i) two or more items,

(ii) no huge item, and (iii) no pair of items both larger than 1/3. For any such
bin except for the last one choose C as the next bin with the same properties.
Since C has no huge item, its first two items c, c′ have level at most 1/2 and by
the RAAF condition they do not fit into B. Since C has no pair of items larger
than 1/3, we have c ≤ 1/3 or c′ ≤ 1/3 and thus s(B) ≥ 2/3. Lemma 2.2 now
implies w(B) + w(C) ≥ w(B) + w(c) + w(c′) ≥ 1.

Let C be the last bin used in the amortization, if it exists, and D be the
single bin with s(D) ≤ 1/2, if it exists.

If C and D both exist, we have s(C) + s(D) > 1 by Lemma 2.1(i) and thus
w(C) + w(D) > 1.2. Summing this, all the amortization inequalities (note that
each bin is used at most once as B or C and at most once as C) and w(D) > 1
for the bins with huge items or two items larger than 1/3 we get w(I) > A−0.8,
where A denotes the number of A-bins. Combining this with the previous bound
w(I) ≤ 1.7 ·Opt on the total weight, we obtain A < w(I) +0.8 ≤ 1.7 ·Opt+0.8
and the theorem follows from the integrality of A and Opt.

If C exists but D does not, we have s(C) > 1/2 and thus w(C) > 0.6.
Summing this and again both all the amortization inequalities and w(D) > 1



for the bins with huge items or two items larger than 1/3 we get w(I) ≥ A− 0.4
and the theorem follows again.

If C does not exist but D does, let C be an arbitrary bin other than D (if
none exists, A = 1 = Opt and the theorem is trivial). We have s(C) + s(D) > 1
and thus w(C) +w(D) > 1.2. Summing this and w(D) > 1 for all the remaining
bins, we get w(I) > A− 0.8 and the theorem follows as above.

Finally, if neither C nor D exists, we have w(D) > 1 for all the A-bins, thus
w(I) > A and the theorem follows as well. ut

Next we give an example showing that RAAF algorithms do not have an
absolute approximation ratio 1.7. In particular, we give an instance with Opt =
7 and RAAF packing with 12 bins.

We first describe the RAAF packing; the input sequence contains items in the
order of the bins, i.e., it starts by all the items from the first bin, then continues
by items from the second bin, etc. The first bin contains 6 items of size 0.12,
total of 0.72. The next three bins contain each 2 items of size 0.34; note that
these do not fit into any previous bin. The fifth bin has items 0.52 and 0.01; the
item 0.01 fits into the previous bins, but it is packed at a level larger than 0.5,
so this satisfies the RAAF condition. The sixth bin contains a single item of size
0.48 and the remaining six bins contain each an item of size 0.53; again, these
items do not fit into any previous bin.

Opt contains a bin with two items of sizes 0.52 and 0.48. The remaining
6 bins contain each three items of sizes 0.53, 0.34, and 0.12, total of 0.99; in
addition one of them contains also the item 0.01. This packs all the items in the
7 bins and completes the example.

B Proof of the lower bound

Proof ( of Theorem 3.1). We prove the theorem for Opt = 10k and Opt =
10k + 3, k ≥ 1. For the other values, the theorem follows from the results of [3]
where we used another construction.

Let δ > 0 be sufficiently small (δ = 1/50 will be sufficient). Let δj = δ/4j

and ε < δ10k+4.
The instance I contains the following items, reordered as described later:

Items b+j = 1/6 + δj and c−j = 1/3 − δj − ε for j = 1, . . . , bOpt/2c, items

b−j = 1/6 − δj and c+j = 1/3 + δj − ε for j = 0, . . . , dOpt/2e − 1, and Opt
items of size 1/2 + ε. Note the shifted indices in the two subsets of items; this is
important for the construction.

The optimal packing uses bins {b+j , c
−
j , 1/2 + ε}, j = 1, . . . , bOpt/2c, and

{b−j , c
+
j , 1/2 + ε}, j = 0, . . . , dOpt/2e − 1. All these bins have size exactly 1 and

their number is Opt.
Now we describe the sequence of FF-bins for the case of Opt = 10k. The

items are then issued in the order of FF-bins they are packed into, thus the BF
and FF packings coincide. The first 2k bins B1, . . . , B2k contain all the b+j and b−j
items. Bin B1 contains the 6 smallest items b−0 , b

−
1 , . . . , b

−
5 , bin B2k contains the



4 largest items b+1 , b
+
2 , b

+
3 , b

+
4 . Each remaining bin Bi, i = 2, . . . , 2k − 1 contains

items b+i+3 and b−i+4 (i.e., the largest and the smallest among the remaining
ones of size about 1/6) and some other three items chosen arbitrarily from the
remaining items b+j and b−j . We need to verify that the first fit packing indeed
behaves this way. Since δ is sufficiently small, the size of B1 is close to 1 and
no other item fits there. For i = 2, . . . , 2k − 1, it is crucial that all items of size
at most 1/6 − δi+3 are packed into previous bins Bi′ , i

′ < i. First, this implies
that s(Bi) ≥ b+i+3 + b−i+4 + 3b−i+5 > 5/6 + δi+3/2. Second, this in turn implies
that all items packed in later bins Bi′ , i

′ > i have size at least 1/6 − δi+5 >
1 − (5/6 + δi+3/2) > 1 − s(Bi) and indeed they cannot be packed in Bi. The
following part of FF packing contains 5k bins C1, . . . , C5k and Ci contains items
c+i−1 and c−i . First note that no c+j or c−j item fits into Bi, i < 2k, as s(Bi) > 5/6.

Also, s(B2k) > 2/3 + δ1 + δ2, thus no c+j or c−j item fits into B2k. Similarly as in
the previous segment the fast decreasing δi and small ε yield s(Ci) > 2/3 + 2δi,
which guarantees that no later item c+j−1 or c−j , j > i, fits there. Finally, the
last segment of FF packing contains 10k bins with a single item 1/2 + ε; all the
bins have size more than 1/2 so these items are packed separately. Altogether
the FF packing contains 2k + 5k + 10k = 17k bins as needed.

It remains to describe the modification of the construction for Opt = 10k+3.
The items and Opt packing are already described; they are the same as in the
instance for Opt = 10k plus the new items b+5k+1, c

−
5k+1, b

−
5k, b

−
5k+1, c

+
5k, c

+
5k+1

and three items 1/2 + ε. We pack items from the instance for Opt = 10k as
above, with the exception of b+2k+3 which we replace by new b−5k. This creates

no problems, as b+2k+3 is among the arbitrarily assigned items for Opt = 10k,
i.e., it is not the largest item in any Bi and its size is not relevant in any
calculations. We pack the remaining items as follows: We create a bin B =
{b+2k+3, b

+
5k+1, b

−
5k+1, c

+
5k+1} and insert it between B2k−1 and B2k. None of these

items fit in the previous bins, as the smallest one of them has size 1/6 − δ5k+1

and s(B2k−1) > 5/6+δ2k+2/2. Furthermore, s(B) > 5/6, thus no item from B2k

and later bins fits into B. Next we add C5k+1 = {c+5k, c
−
5k+1} after C5k, following

the pattern of bins Ci, and three bins with single items of size 1/2 + ε. Thus
FF = 17k + 5 and b1.7 ·Optc = b1.7(10k + 3)c = 17k + 5 and we are done. ut

While we have only shown how to obtain an instance for Opt = 10k + 3
from the one for Opt = 10k, analogous construction can be used to modify the
instance for any Opt to one for Opt + 3 with additional 5 BF-bins. Thus we
can get instances for any Opt in a uniform way as follows: For any k ≥ 1 and
i = 0, . . . 9 use the instance for Opt = 10k and repeat the transformation to
construct an instance for Opt = 10k + 3i with FF = 17k + 15i = b1.7 ·Optc.
(The equality is easy to check for all residues.) Since the instances for k ≤ 2
can be constructed trivially, we can get the lower bound instances also for the
remaining small values of Opt.



C Omitted proofs of preliminary lemmata from Section 4

Proof ( of Lemma 4.1). If some instance J does not satisfy the properties, we
modify it into another instance I so that the number of BF bins stays the
same and the number of Opt bin does not increase. Most often, the constructed
instances has fewer items, thus we can simply claim that the minimal coun-
terexample satisfies the properties. In the remaining cases we reorder the items
and decrease the overall number of violations of the conditions of the lemma.
Formally, it is easy to check that in each step, the following vector lexicograph-
ically decreases: “(the number of items; the number of 1-items violating (i); the
number of bins violating (iii); the number of violating (iv))”. Since all compo-
nents are bounded by the number of items, this is sufficient to guarantee that
we eventually reach an instance satisfying all the properties.

(i): If some 1-item a in bin B is followed by one or more 2+-items in J ,
construct I by moving a to the end of J . Until a arrives, the sequence is the
original sequence with all items in B removed, thus the BF packing on the other
items does not change. When a arrives, it does not fit into any bin: In J , it did
not fit into any bin fit before B, so it cannot if there in I either. No bin B′

opened after B and before arrival of a can accommodate a, as in I the first item
of B′ did not fit into B with only a. So a opens a new bin. The number of items
stays the same and the number of violations of (i) decreases.

(ii): If some such item a is in a 2+-bin B, then remove all the items of B
and put a at the end of the sequence. The condition aj + s(B′) > 1 guarantees
that aj opens a new bin. The number of items decreases.

(iii): If the first two items a′ and a′′ of B are not adjacent in J , move a′

just before a′′ in I. Check that BF behavior does not change, except for the
permutation of the bins: Between the original position of a′ and a′′ the open
bins are the same, except that the bin with only a′ is missing. Since a′ opened
a new bin in J , it does not fit into any bin before B. Also bin B′ opened after
B in J can accommodate a′, as in J the first item of B′ did not fit into the bin
with only a′. So a′ opens a new bin in I and the configurations before packing
a′′ are identical in I and J . Thus a′′ is packed in the bin of a′ and the final
configuration of I is the same as that of J .

If a′ and a′′ come from the same Opt-bin, we further modify I so that we
replace a′ and a′′ by a single item ā of size a′+ a′′. BestFit packs ā into a new
bin (since already a′ did not fit in the currently open bins) and the configuration
after packing ā is the same as in the original packing after packing a′′. Also, the
number of bins in Opt does not change.

In this step, either the number of items decreases, or the number of violations
of (iii) decreases, while the previous components of the vector do not increase.

(iv): Let a′, a′′, and a′′′ be the first three items in B. By (iii) we may assume
that a′ and a′′ are not in the same Opt-bin.

If a′′ and a′′′ are adjacent in J , let I = J and proceed to the next paragraph.
Otherwise construct I by moving a′ and a′′ just before a′′′. By the assumption,
the remaining items between a′ and a′′′ in J are packed into bins opened before
B, thus they are packed into the same bins in I. Since a′ opened a new bin in J ,



it does not fit into any previous bin. Since a′ ≤ 1/2, Lemma 2.1(ii) for J implies
that a′′ also does not fit into any bin before B. In I, when a′ arrives all the bins
have the level equal to or greater than their level in J , thus a′ and a′′ do not fit
into them, a′ opens a new bin in which also a′′ is packed. At this moment, just
before the arrival of a′′′, the configurations are the same in J and I, thus the
final configuration is also the same.

If a′′′ is in the same Opt-bin as a′′, we further modify I so that we replace
a′′ and a′′′ by a single item ā of size a′′ + a′′′. BestFit packs ā into the bin of
a′ (since already a′′ did not fit into any other bin) and the configuration after
this is the same as before after packing a′′′.

If a′′′ is in the same Opt-bin as a′, we further modify I so that we replace a′

and a′′′ by a single item ā of size a′+a′′′. If ā is huge, we put it after a′′, otherwise
before a′′. Since a′ + a′′ + a′′′ ≤ 1, as they are in the same bin in J , at most one
of a′′ and ā is huge. By our choice of their order the first of these two items is
not huge. Both a′′ and ā do not fit into any previous bin, as already a′′ and a′

did not fit. Thus they are packed together in a new bin and the configuration
after packing them is the same as before after packing a′′′.

In both cases, the resulting configuration is also the same as well as the
number of Opt-bins. In this step, either the number of items decreased, or the
number of violations of (iv) decreases, while the previous components of the
vector do not increase.

(v): If this does not hold, we remove from the instance the last item aj′ such
that j′ > j and aj′ ≤ 1 − s(B). The level of aj′ cannot be less than s(B), as
BestFit would pack it into B instead. Thus by removing aj′ , the level of its
bin B′ is still at least s(B). Thus no remaining item after aj can fit in B′ and
the BestFit packs the remaining items into the same bins as before.

In this step, the number of items decreased. ut

Proof ( of Lemma 4.2). (i): Since a common bin has size at most 5/6, the level
of aj is less than 2/3. By the definition of a regular bin, the first two items of Ci
do not fit into any previous common bin, and one of them is smaller than 1/3.
Thus any previous common bin has level greater than 2/3, thus by the definition
of BestFit aj would be packed into Ck if it would fit there.

(ii): The first part follows since any small item fits into any common bin.
Once C2 is open and receives its first two items, there is a common bin with level
greater than 2/3, so any subsequent small item must have level greater than 2/3
as well.

(iii): Suppose that aj is packed Ci and Ck is a bin different from Ci which
has level at least 2/3; Ck exists by the assumption of existence of two bins with
level at least 2/3. As the s(Ck) < 5/6 and the current level of Ck is at least
2/3, no item larger than 1/6 can be later packed there. As after packing of aj
the level of Ck is less than the level of Ci by (ii), no small item is packed into
Ck either. But this means that aj arrives after the last item was packed into Ck
and fits there, which contradicts Lemma 4.1(v).

The second part follows, since after C2 gets the first two items, one of C1

and C2 has level at least 2/3, thus the level of any future small item is at least



as large. However, if it would be packed in a common bin opened after C2 at a
level 2/3 or larger, this would be the second bin of level at least 2/3 at the time
of packing the item, contradicting the first part.

(iv): The level of aj is at least the level of C1 at the time of packing aj .
By Lemma 4.1(v), another item must be later packed into C1; the first such ak
cannot be small, as at the time of its packing C2 is larger than C1 and a small
item would fit there. ut

Proof ( of Lemma 4.3). (i): Let x be the level of G at the arrival of f2, the
second item of bin F . We know that f2 fits into G at the time of its packing,
thus the level of f2 is at least x. At the same time, by Lemma 4.1(v), G will
receive another item, we denote g0 the first such item. Since g0 is packed into G
and not F , which has higher level after packing f2, by the definition of BestFit
g0 does not fit into F . To prove the second part, note that f1 + x > 1, since f1
was not put in G, and f1 + d0 ≤ 1, as f1 and d0 are in the same Opt-bin. Thus
x > 1− f1 ≥ d0 and together with s(G) ≥ x+ g0 and the first part this implies
the second part.

(ii): Since F opens after C2, Lemma 4.2(iii) implies that f2 > 1/6. Since f1
is huge, s(F ) > 2/3 follows. One of Ci and Ck has level at least 2/3 at the time
of arrival of f2, suppose that this is Ci. Since f2 > 1/6 and it is packed into a
common bin, it has level less than 2/3; it follows that f2+s(Ci) > 1 as otherwise
it would be packed into Ci. Trivially, f1 + s(Ck) > 1 and the claim follows by
summing these two bounds. ut

Proof ( of Lemma 4.4). (i) and (ii): Use Lemma 2.1(i) for the two smallest bins
and note that by Lemma 2.1(i) all the remaining bins have size greater than 1/2
in (i), resp. greater than 1− d0 = 1/2 +∆ in (ii).

(iii): The first items in the huge-first bins and the dedicated items except
d0 are strictly larger than a half, thus they are packed into different optimal
bins. Also d0 is packed into different optimal bin, as if the first item in some bin
is huge and is packed with d0, that bin was denoted F and excluded from the
huge-first bins.

(iv): As a regular bin, C contains two items that do not fit into any previous
bin and the size of one of them is at most s(C)/2 = 1/3− x. Thus any B before
C has size s(B) > 1− (1/3−x) = 2/3 +x. If B is regular or big and after C, the
first two items do not fit into C and thus they have size greater than 1/3 + 2x
and s(B) > 2(1/3 + 2x) = 2/3 + 4x.

(v): Among the common bins, there is at most one regular bin smaller than
2/3 and also F may be smaller than 2/3. Choose a set A of exactly three common
bins containing the bins smaller than 2/3. As all the other bins are larger than
2/3, it is sufficient to prove that s(A) > 2. If the last bin from A is regular, this
follows from (iv). If the last bin is F , then this is exactly Lemma 4.3(ii). ut

Proof ( of Lemma 4.5). (i): Lemma 4.4(v) implies that if BF ≥ 2 · Opt then
S > 4 · 12 = Opt, a contradiction. Thus in the following we can assume that
BF < 2 ·Opt.

For Opt ≤ 3, BF < 2 ·Opt implies BF ≤ 1.7 ·Opt and we are done.



For Opt ∈ {4, 5, 6}, 1.7 · Opt < BF < 2 · Opt implies BF = 2Opt − 1;
together with δ+η ≤ Opt we have also β+γ ≥ Opt−1. If BF contains three bins
with total size at least 2, Lemma 4.4(v) now implies that S > 2 + (BF− 3)/2 =
Opt, a contradiction. So it is sufficient to find three such bins.

If β + ρ ≥ 3. Take any three regular and big bins B1, B2, B3; the last one
of them starts by two items c, c′ that do not fit into the previous bins by
Lemma 2.1(ii), as the first item is not huge. Thus the s(B1)+c > 1, s(B2)+c′ > 1,
and s(B1) + s(B2) + s(B3) > 2, a contradiction by the previous paragraph.

Since for Opt ≥ 5, β+ γ ≥ Opt− 1 ≥ 4 we have β+ ρ ≥ 3 and we are done.
Also if γ = 3, Lemma 4.4(v) implies that the total size of the three common bins
is at least 2 and we are done.

It remains to handle the case when Opt = 4, F is defined, β = 1, γ = 2
and δ + η = 4. Note that if F is defined, γ > 2 as also G is a common bin.
Using Lemma 4.3(i) we have s(G) + s(F ) > 1 + d0 = 3/2−∆. Combining with
Lemma 4.4(ii) we have S > 5/6 + 3/2−∆+ 2 + 2∆ > 4 = Opt, a contradiction.

(ii): For a contradiction, suppose that s(C) ≤ 1/2 for some common bin.
Then Lemma 4.4(iv) implies that any bin C ′ before C has s(C ′) > 3/4. Fur-
thermore, any bin after C starts by a huge item not fitting in C and thus also
in no other BF-bin. Thus d0 is not defined and all the later bins are dedicated
by Lemma 4.1(ii). By Lemma 4.4(i), the total size of C and all dedicated and
huge-first bins is at least (δ + 1)/2. Thus we obtain a contradiction by using
Opt ≥ 7 from (i) and δ ≤ Opt from Lemma 4.4(iii) as follows:

S >
3

4
(BF− δ − 1) +

1

2
(δ + 1) =

3

4
BF− 1

4
(δ + 1)

≥ 3

4

(
17

10
Opt +

1

10

)
− 1

4
(Opt + 1) =

41

40
Opt− 7

40
≥ Opt .

(iii): Suppose for a contradiction that δ + η ≤ 4. By Lemma 2.1(iii), there
is at most one regular bin smaller than 2/3; in addition also the freaky bin may
be smaller than 2/3. Thus we obtain

S >
2

3
(BF− δ − η − 2) +

1

2
(δ + η + 2) =

2

3
BF− 1

6
(δ + η + 2)

≥ 2

3

(
17

10
Opt +

1

10

)
− 1 =

17

15
Opt− 14

15
≥ Opt.

If d0 is not defined, by (ii) no BF-bin has size at most 1/2, thus Lemma 4.1(ii)
implies that all the huge items are in dedicated bins.

(iv): To obtain the first bound from the second one, use τ = 1 and the inte-
grality of Opt. Now consider the second claim and suppose for a contradiction
that γ ≤ (Opt + τ)/2.



If γ ≤ 2, we bound the size of all common, huge-first and big bins by
Lemma 4.4(i) and obtain

S >
5

6
(BF− (γ + δ + η)) +

1

2
(γ + δ + η) =

5

6
BF− 1

3
(γ + δ + η)

≥ 5

6

(
17

10
Opt +

1

10

)
− 1

3
(Opt + 2) =

13

12
Opt− 7

12
≥ Opt ,

a contradiction. If γ ≥ 3, we bound the size of all common bins by Lemma 4.4(v)
and the size of huge-first and big bins by Lemma 4.4(i) and obtain

S >
5

6
(BF− (γ + δ + η)) +

2

3
(γ − 2) +

1

2
(δ + η) =

5

6
BF− 1

6
γ − 1

3
(δ + η)

≥ 5

6

(
17

10
Opt +

τ

10

)
− Opt + τ

12
− 1

3
Opt = Opt ,

a contradiction. We have proved (iv) in the regular case, as ρ = γ, and also γ ≥ 5
in the freaky case.

In the freaky case, to complete the proof, suppose for a contradiction that
ρ ≤ (Opt + τ)/2. We bound s(G) + s(F ) by Lemma 4.3(i), the size of the
remaining at least three common bins by Lemma 4.4(v) and the size of huge-
first and big bins by Lemma 4.4(ii) and obtain (using δ+ η ≥ 3 from (iii) in the
first inequality)

S >
5

6
(BF− (δ + η + ρ+ 1)) + (1 + d0) +

1

3
(ρ− 1) +

1

2
(δ + η) + (δ + η − 2)∆

≥ 5

6
(BF− 2)− 1

6
(ρ− 1)− 1

3
(δ + η) + (1 + d0) +∆

≥ 5

6

(
17

10
Opt +

τ

10
− 2

)
− Opt + τ − 2

12
− 1

3
Opt +

3

2
= Opt ,

and we obtain a contradiction as well. ut

Proof ( of Lemma 4.7). In all cases w(A) ≤ 1.2, thus it remains to bound w(A).
Recall that any Opt-bin contains at most one H-item and all other items have
bonus at most 0.1.

Case 1: A contains no H-item. Either A contains at least 4 items with non-
zero bonus, in which case their total bonus is at most w(A) ≤ 3

5 (s(A)− 4
6 ) ≤ 3

5 ·
2
6 = 0.2. Or else it contains at most 3 items with non-zero bonus and w(A) ≤ 0.3.
In both subcases (ii) follows.

Case 2: A contains an H-item different from do. This item is huge and has
bonus 0.4. If A has at most one additional item with non-zero bonus, its bonus is
at most 0.1. Otherwise A has exactly two additional items with non-zero bonus,
their total size is less than 1/2 and their bonus is at most 3

5 ( 1
2 −

2
6 ) = 0.1. In

both subcases w(A) ≤ 0.5 and (i) follows.

Case 3: A contains d0. By definition w(d0) = 0.4− 3
5∆. If A has at most one

additional item with non-zero bonus, its bonus is at most 0.1. If A has at least



two additional items with non-zero bonus, their total size is less than 1/2 + ∆
and their bonus is at most 3

5 ( 1
2 +∆− 2

6 ) = 0.1+ 3
5∆. In both subcases w(A) ≤ 0.5

and (i) follows. ut

Proof ( of Lemma 4.8). (i): For every big bin B, w(B) ≥ w(B) = 6
5s(B) ≥

6
5 ·

5
6 = 1.
(ii): If d0 is undefined then for every dedicated bin D, w(D) = 6

5s(D)+0.4 >
6
5 ·

1
2 + 0.4 = 1. Moreover there is no huge-first bin by Lemma 4.5(iii), and the

claim follows.
(??): The bonus of any H-item except d0 is exactly 2/5 and every huge-first or

dedicated bin contains an H-item. Thus using Lemma 4.4(ii), w(d0) = 0.4− 3
5∆

and δ + η ≥ 5, we get

w(D ∪H) ≥ 6

5

(
δ + η

2
+ (δ + η − 2)∆

)
+

2

5
(δ + η)− 3

5
∆

= δ + η +
6

5
(δ + η − 2.5)∆ > δ + η.

If one of the huge-first bin has size 7/12 or larger, we get

w(D ∪H) ≥ 6

5

(
δ + η − 1

2
+ (δ + η − 3)∆+

7

12

)
+

2

5
(δ + η)− 3

5
∆

= δ + η + 0.1 +
6

5
(δ + η − 3.5)∆ > δ + η + 0.1.

ut

D Proof of Proposition 4.11

Let Cρ denote the first two items in Cρ and let R denote the set of regular
bins R with Cρ replaced by Cρ. We distinguish several cases and prove that
w(R) − w(E) ≥ ρ − 0.2, which implies Proposition 4.11(i). Proposition 4.11(ii)
follows as well, since if Cρ has rank at least three then Cρ \ Cρ contains some
medium item c with w(c) > 0.2 thus w(Cρ) ≥ w(Cρ) + 0.2 and w(R)−w(E) ≥
0.2+w(R)−w(E) ≥ ρ. Proposition 4.11(iii) is discussed in each case separately.

Case 1: Every regular bin and also Cρ has size at least 2/3. We apply
Lemma 4.10(i) for every i = 2, . . . , ρ. The scaled size of the last bin is at least
w(Cρ) ≥ w(Cρ) ≥ 6

5 ·
2
3 = 0.8. Summing all of these inequalities we obtain

w(R)− w(E) ≥ w(Cρ) +

ρ∑
i=2

(w(Ci−1) + w(Ci \ E)) ≥ 0.8 + (ρ− 1) = ρ− 0.2 .

To obtain Proposition 4.11(iii) we omit from the summation the inequality
w(Cg) + w(Cg+1) > 1. Note that by the assumption E = {g0}, E and Cg+1

are disjoint.



Case 2: s(Ck) = 2/3 − x for some x > 0 and k < ρ. Using Lemma 4.4(iv),
each Cj , j > k, contains two items larger than 1/3 + x; thus Cj has rank 2
and (i) Cj cannot contain an item from E and (ii) Cj 6= G, as G = Cg has
rank at least 3 if g > 1. It follows that w(Cj) = w(Cj \ E) = 0.2 and also
s(Cj) > 2/3 + 2x which implies

∑ρ
i=k s(Ci) > (ρ+ 1− k) 2

3 . Combining these we
have w(Ck) +

∑ρ
j=k+1 w(Cj \E) ≥ (ρ+ 1− k)− 0.2. Adding the last inequality

and the inequalities w(Ci−1)+w(Ci\E) ≥ 1 from Lemma 4.10(i) for i = 2, . . . , k,
we get w(R)− w(E) ≥ ρ− 0.2.

To obtain Proposition 4.11(iii) if g < k, we again omit the inequality w(Cg)+
w(Cg+1) > 1 from the summation. We know that g ≤ k by (ii) above, so it
remains to handle the case when g = k, i.e., s(Cg) < 2/3. But then w(Cg) +
w(Cg+1) < 0.8 + 0.2 = 1 and subtracting this from w(R) − w(E) ≥ ρ − 0.2 we
obtain Proposition 4.11(iii) as well.

Case 3: s(Cρ) < 2/3. Fix x > 0 so that s(Cρ) = 2
3 − 2x. Lemma 4.5(ii) implies

s(Cρ) > 1/2 and thus x < 1/12.
Since now the scaled size of Cρ is less than 0.8, we need to compensate for

this. This is indeed possible due to the fact that now Lemma 4.4(iv) implies
that the regular bins Ci, i = 2, . . . , ρ− 1 are larger than 2/3 + x and this allows
us to improve the bounds of Lemma 4.10(i) by an amount proportional to x in
the next stronger version of the amortization lemma. Note that common bins
cannot have rank 5 or more, as a bin with size less than 5/6 cannot contain 5
items larger than 1/6.

Lemma D.1. For i = 2, . . . , ρ− 1 we have the following bounds:
(i) If the rank of Ci is 2 or 3, then w(Ci−1) + w(Ci) ≥ 1 + 3

5x.
(ii) If the rank of Ci is 4, then w(Ci−1) + w(Ci) ≥ 1 + 3

10x.

Proof. Let y be such that s(Ci−1) = 5
6−y. We have w(Ci−1) = 6

5 ( 5
6−y) = 1− 6

5y.
Since Ci−1 is a common bin, y > 0. On the other hand, by Lemma 4.4(iv) the
size of Ci−1 is greater than 2

3 +x and thus also y < 1
6 −x. Lemma 4.2(i) implies

that every item c > 1
6 in Ci satisfies c > 1

6 + y.
We distinguish three cases. To see that they are exhaustive, note that if Ci

has rank 2, it contains an item c ≥ 1/3: Otherwise the two medium items in Ci
reach level less than 2/3 and Lemma 4.2(ii) implies no small item is packed into
it, as i ≥ 2; this contradicts s(Ci) > 2/3.

Case A: Ci has at least one item c ≥ 1/3. There exist another item c′ > 1
6

in Ci and it satisfies c′ > 1
6 + y. Thus

w(Ci−1) +w(Ci) ≥ 1− 6

5
y+

3

5
y+ 0.1 = 1.1− 3

5
y ≥ 1.1− 3

5

(
1

6
− x
)

= 1 +
3

5
x .

Case B: Ci has rank 3 but no item with size at least 1/3. We claim that
one of the three medium items in Ci has size at least 1

6 + x. Then we get

w(Ci−1) + w(Ci) ≥ 1− 6

5
y +

3

5
(y + y + x) = 1 +

3

5
x .



It remains to prove that one of the three medium items has size at least
1/6+x. First, the first three items packed into Ci are the medium items, as they
are smaller than 1/3 and no small item can be packed before the third medium
item. If the total size of the three medium items in Ci is at least 3/4 then one
of them has size at least 1/4 ≥ 1/6 + x, using x < 1/12. Otherwise one of the
medium items is smaller than 1/4 and thus the level of Ci−1 when the third
item is assigned to Ci is greater than 3/4. Thus Ci receives no small item at this
point, either. By the assumption, s(Ci) ≥ 2/3 + x > 1/2 + 3x, using x < 1/12
again, and one of the three items must have size at least 1/6 + x.

Case C: Ci has rank 4 and all items are smaller than 1/3. We claim Ci
has two medium items with total size at least 1

3 + x
2 . Then their total bonus is

at least 3
5 ·

x
2 and

w(Ci−1) + w(Ci) ≥ 1− 6

5
y +

3

5

(
y + y +

x

2

)
= 1 +

3

10
x .

It remains to prove that two of the four medium items have total size at least
1
3 + x

2 . Otherwise the total size of the four medium items is less than 2
3 +x < 3/4

and also each of them has size at most 1
6 + x

2 < 1/4. As in the previous case,
we show that the medium items are the first four items in Ci: At the time of
opening of Ci, the level of Ci−1 is greater than 3/4, as otherwise the first item
is larger than 1/4. Thus no small items are packed into Ci, as the medium items
do not reach the level 3/4. Thus s(Ci) <

2
3 + x, a contradiction. ut

We cannot apply the previous lemma for all bins. We call a bin Ci exceptional
if i = ρ, or if it contains an item from E, or if in the freaky case E = {g0} and
i = g+ 1. The remaining bins among C2, . . . , Cρ−1 are non-exceptional; note
that there are at least ρ− 4 non-exceptional bins. Let γk denote the number of
rank k non-exceptional common bins and α = 2(γ2 + γ3) + γ4.

Lemma D.2. Suppose that s(Cρ) < 2/3. The following holds:
(i) If α ≥ 4 then w(R)− w(E) ≥ ρ− 0.3.
(ii) If α ≥ 8 then Proposition 4.11 holds, in particular w(R)−w(E) ≥ ρ− 0.2.

Proof. We apply Lemma 4.10 for any i = 2, . . . , ρ−1 and such that Ci is disjoint
with E. Otherwise, i.e., if Ci contains exceptional items and also for i = ρ we
apply Lemma 4.10(i). Summing all the resulting bounds on w(Ci−1)+w(Ci \E)
and w(Cρ) = 0.8− 12

5 x we obtain that the total weight of the regular bins is

w(R)−w(E) ≥ ρ−1+(γ2 +γ3)
3

5
x+γ4

3

10
x+0.8− 12

5
x = ρ−0.2+

(3α− 24)x

10
.

For α ≥ 4 we use x < 1/12, which gives (3α − 24)x ≥ −12x ≥ −1 and (i)
follows.

For α ≥ 8 we have 3α ≥ 24 and w(R) − w(E) ≥ ρ − 0.2 follows. To obtain
Proposition 4.11(iii) we omit from the summation the bound w(Cg)+w(Cg+1) ≥
1. By the assumption of Proposition 4.11(iii), Cg+1 exists and is exceptional but
disjoint from E. ut



For the rest of the proof of Proposition 4.11 we assume that BF ≥ 1.7 ·
Opt + 0.1. We distinguish several subcases of Case 3 and in each we either
derive a contradiction or prove that α ≥ 8, which proves the proposition by
Lemma D.2(ii).

Case 3.1: Opt ≥ 22. By Lemma 4.5(iv) we have ρ > (Opt + τ)/2 ≥ 12, i.e.
ρ ≥ γ − 1 ≥ 12. Deducting C1, Cρ, and possibly 2 bins that contain items from
E, at least 8 bins remain and α ≥ γ2 + γ3 + γ4 ≥ 8.

Case 3.2: 8 ≤ Opt ≤ 21, Opt 6≡ 4 (mod 10), and Opt 6≡ 7 (mod 10). If
Opt ≥ 10, then BF ≥ 1.7 ·Opt + 0.3 and using Lemma 4.5(iv) with τ = 3 we
obtain ρ > (Opt+τ)/2 ≥ 6.5. If Opt = 8, 9, then even BF ≥ 1.7 ·Opt+0.4 and
using Lemma 4.5(iv) with τ = 4 we obtain ρ > (Opt + τ)/2 ≥ 6. Thus ρ ≥ 7
in both cases. As Opt 6≡ 7 (mod 10), E contains at most one item g0, and we
have α ≥ γ2 + γ3 + γ4 ≥ 4. Lemma D.2(i) implies W > β + (ρ− 0.3) + δ + η =
BF− 0.3 ≥ 1.7 ·Opt, a contradiction with Lemma 4.7(i).

Case 3.3: Opt = 14 and BF ≥ 24, or Opt = 17 and BF ≥ 29. First we
claim in each case separately that γ2 + γ3 + γ4 ≥ 6.

For Opt = 14, Lemma 4.5(iv) with τ = 2 implies ρ > (Opt + τ)/2 = 8, i.e.
ρ ≥ 9. We have at most 1 item in E, thus γ2 + γ3 + γ4 ≥ 6 follows.

For Opt = 17, Lemma 4.5(iv) implies ρ > (Opt + 1)/2 = 9, i.e. ρ ≥ 10. We
may have two regular bins intersecting E, but γ2 + γ3 + γ4 ≥ 6 follows again.

If γ2 + γ3 ≥ 2 then α ≥ 8 and the proposition follows by Lemma D.2(ii). In
the remaining case γ4 ≥ 5. We claim that these 5 common bins of rank 4 have
total size at least 4: the items of the last bin do not fit in the previous ones, so
always the size of one of the first bins and one of the items in the last bin is
more than 1. We split the remaining bins into two parts. First, Opt bins that
contain all dedicated and huge-first bins (using Lemma 4.4(iii)) and have total
size at least Opt/2. Second, the remaining BF−Opt− 5 bins that contain at
least three common bins and only common and big bins; their average size is at
least 2/3 by Lemma 4.4(v).

For Opt = 14 we get S > 4 + 7 + 2
3 · 5 > Opt, a contradiction.

For Opt = 17 we get S > 4 + 17/2 + 2
3 · 7 > Opt, a contradiction.

E Proofs for Theorem 4.13

E.1 The lemmata

Proof ( of Lemma 4.14). For a contradiction, assume we have such c1 and c2
and number them so that the BF-bin of c1 is not after the BF-bin of c2. Since
the bin of c1 is a 2-bin, the second item of this bin cannot be in the same Opt-
bin by Lemma 4.1(iii). Thus c2 is in a different BF-bin. Let c3 be the other
item in the BF-bin of c1. Since the bin of c1 and c3 has only two items, they
are adjacent by Lemma 4.1(iii). Thus c2 arrives after c3 and by Lemma 4.1(v)
we have c1 + c2 + c3 > 1. This implies that c3 cannot be in the Opt-bin of
c1 and c2. Every Opt-bin contains an H-item by the assumption; let d1 be the
H-item in the Opt-bin of c1 and c2 and d3 the H-item in the Opt-bin of c3. By



Lemma 4.4(i), d1 + d3 > 1 and thus c1 + c2 + c3 + d1 + d3 > 2. As all these items
are in two Opt-bins, this is a contradiction. ut

Proof ( of Lemma ??). We prove most parts of the lemma by contradiction so
that assuming that the assertion does not hold, we prove that BF ≤ 1.7 ·Opt,
which contradicts the assumption of the lemma.

(??): If w(A) ≤ 1.6 then by Lemma 4.7(i) for the remaining Opt-bins we
have W ≤ 1.7·Opt−0.1. On the other hand, by Proposition 4.12, W > BF−0.2,
thus BF < 1.7 ·Opt+ 0.1, a contradiction. If A contains only items with bonus
at most 0.1 then we have even w(A) ≤ 1.5 by Lemma 4.7(ii).

(??): By Lemma 4.4(iii), δ + η ≤ Opt. If δ + η < Opt, then one of the
Opt-bins contains no H-item, contradicting (??).

(??): If a huge-first bin H opens before Cρ, then s(H) > 7/12, as otherwise
Cρ contains two items larger than 5/12, a contradiction with s(Cρ) < 5/6.
Now, by Lemma 4.8(??), w(D ∪ H) > δ + η + 0.1. Thus W > BF − 0.1 and
BF ≤ 1.7 ·Opt, a contradiction.

(??): If the rank of Cρ is at least 3, Proposition 4.11(ii) gives w(R)−w(E) ≥ ρ
instead of w(R)− w(E) ≥ ρ− 0.2. We save 0.2 in the proof of Proposition 4.12
and obtain BF < 1.7 ·Opt, a contradiction.

(??): Let y be the level of Ci when B opens. We have y < 2/3, as after
packing aj > 1/6 we still have s(Ci) < 5/6.

If B is big, it follows that its first item b has w(b) ≥ 0.1. Thus w(B) ≥ β+0.1
and we obtain W > BF− 0.1 and BF ≤ 1.7 ·Opt, a contradiction.

Otherwise B is common and we may assume B = Ci+1. The first two items
of Ci+1 are larger than 1/3, thus Ci+1 is a 2-bin and w(Ci+1) = 0.2. Also,
y > 7/12, as otherwise the first two items in B are larger than 5/12 and B
is not common. We have s(Ci) > 7/12 + 1/6 = 3/4 and w(Ci) > 0.9. Thus
w(Ci) + w(Ci+1) > 1.1, strengthening the amortization lemma by needed 0.1.
We set E = ∅ in the regular case or E = {g0} in the freaky case. The bound
w(R)−w(E) ≥ ρ− 0.1 now follows as in Proposition 4.11: This is easy in Cases
1 and 2 in the proof; in Case 3 we treat Ci+1 as an exceptional bin. Since E
contains at most g0, the argument works.

(??): Follows immediately from (??) and Lemma 4.2(iv). ut

E.2 The freaky case, Case 1 continued

Formally, we first claim that

max(w(Cg), w(F )) + w(g0) + w(f2) ≥ 1− 6

5
∆ . (1)

Since f1 < 1−d0 = 1/2+∆ and g0 does not fit into F , we have g0+f2 > 1/2−∆
and thus w({g0, f2}) ≥ 0.2 − 3

5∆. Furthermore, using Lemma 4.3(i) we get
max(s(Cg), s(F )) ≥ (s(Cg) + s(F ))/2 > (1 + d0)/2 = 3/4 − ∆/2 and thus
max(w(Cg), w(F )) ≥ 6

5

(
3
4 −

∆
2

)
= 0.8 − 3

5∆. Summing the two bounds, (1)
follows.



Next we claim that

min(w(Cg), w(F )) + w(Cg+1) > 1− 6

5
∆ . (2)

Let c and c′ be the first two items of Cg+1. We show that they do not fit in Cg or
F . For Cg this is trivial and also for F if it opens before Cg+1. If F opens after
Cg+1, then let x be the level of Cg when F opens. On one hand, c, c′ > 1 − x,
since Cg+1 is already open. On the other hand x < f1 < s(F ) by the definition
of the freaky case. Thus c and c′ do not fit into F .

If min(s(Cg), s(F )) ≥ 2/3, the claim follows by Lemma 2.2. We know that
s(F ) > 2/3 as it contains a huge item f1 and a medium item f2. It remains
to handle the case s(Cg) < 2/3. Then c, c′ > 1/3 and thus w(Cg+1) ≥ 0.2.
Furthermore, when F is opened, the size of Cg is at least 1/2 − ∆ and later
go > 1/6 is packed into Cg. Thus s(Cg) > 2/3 −∆, w(Cg) > 0.8 − 6

5∆ and (2)
follows.

Summing (1), (2) and w(f1) = 0.1 we get

w(Cg) + w(Cg+1) + w(F ) + w(g0) + w(f2) ≥ 2.1− 4∆ . (3)

Now we set E = {g0} which is a valid exceptional set, add Proposition 4.11(iii)
to (3) and get

w(C) ≥ γ − 0.1− 4∆

From Lemma 4.8(??) and δ + η = Opt ≥ 17 we have w(D ∪H) ≥ δ + η + 4∆.
Finally adding the last two inequalities and w(B) ≥ β we get W > BF− 0.1.

E.3 The regular case

Since Opt is odd, there exists an Opt-bin that contains no item from any 2-bin
Ci, i ≥ 2. Fix one such Opt-bin A. We define E as a set of all items in A with
bonus in (0, 0.1].

Lemma E.1. E is an exceptional set and w(A) ≤ 1.6 + w(E).

Proof. Since A contains at most one item with bonus greater than 0.1 and this
bonus is at most 0.4, we have w(A) ≤ w(A)+w(A\E)+w(E) ≤ 1.2+0.4+w(E)
and the second part follows.

To prove that E is an exceptional set, we first claim that E contains at most
two items. If A contains a huge item with bonus 0.4, then it indeed contains at
most two other items with bonus. Otherwise A contains d0. If A contains at least
three other medium items, their total bonus is at most 3

5∆, thus the bonus of A
is at most 0.4 and w(A) ≤ 1.6, contradicting Lemma ??(??). Thus E contains
at most two items as well.

Observe that each Ci, i ≥ 2, contains no small items by Lemma 4.2(iii) and
Lemma ??(??). Thus the rank of Ci is equal to the number of items in it.

Next we claim that no 3-bin Ci, i ≥ 2, contains two items from E. Lemma ??(??)
implies i < ρ and then Lemma ??(??) together with Lemma 4.1(ii) implies that



the next bin that opens after Ci is big or common. In that case, Lemma ??(??)
implies that all three items in Ci are packed before the next bin opens. Then
Lemma 4.1(iv) implies that the items from Ci are in different Opt-bins, thus Ci
cannot contain both items of E, as they are both from A.

We conclude that each Ci, i ≥ 2, contains at least two medium or huge items
not in E. We have just proved it if Ci is a 3-bin, for a 4-bin it is trivial and
2-bins contain no item from E by the choice of A and E. This completes the
proof that E is an exceptional set. ut

Lemma E.1 for A and Lemma 4.7(i) for the other Opt-bins imply that W ≤
1.7 · Opt − 0.1 + w(E). On the other hand, Proposition 4.11(i) together with
Lemma 4.8 imply thatW = w(B)+w(C)+w(D∪H) > β+(γ−0.2+w(E))+δ+η =
BF − 0.2 + w(E). Combining the inequalities we get BF < 1.7 · Opt + 0.1, a
contradiction.

E.4 Opt = 7

Then BF ≥ 12. By Lemma 4.5(iv) there are at least 5 regular bins.
First we claim that BF = 12: Otherwise by Lemma 4.4(v) the size of the 5

regular bins is and by Lemma 4.4(i) the size of the remaining at least 8 bins is at
least 4, thus S > 5 · 23 + 4 > 7, a contradiction. Similarly we show that δ+η = 7,
as otherwise S > 6 · 23 + 6 · 12 = 7, a contradiction. By the same calculation, all
the dedicated and huge-first bins have size less than 2/3, as otherwise we again
have 6 bins with average size at least 2/3.

Since there are at least 5 regular bins, 7 dedicated and huge-first bins and
12 total bins, there are exactly 5 regular bins, no big bins or a freaky bin and
we are in the regular case.

Next we claim that no two BF-bins have total size greater than or equal to
3/2. Otherwise there remain at least three regular BF-bins and S > 3

2 + 3 · 23 +
7 · 12 = 7, a contradiction.

Among the 5 common bins, there are at most three 2-bins, since by Lemma 4.14
no Opt-bin can contain two 2-items. Thus there are at least two 3+-bins. Let C
be the last 3+-bin and B some common bin before it.

We claim that the first three items of C do not fit into B. First two items of
C do not fit into B, since we are in the regular case and B and C are common
bins. Thus also the level of B at the time of packing the first two items in C
is greater than 1/2, as otherwise the first two items of C would be huge, which
is impossible. Suppose that the third item fits into B. It must be packed into
C because the level of C is greater, however then by Lemma 4.1(v) there must
be another item a later packed into B, since at that point the level of B is less
than the level of C, it must be the case that a + s(C) > 1. However, since the
level of B is at least 1/2 when a is packed there, we have s(B) > 1/2 + a and
s(B) + s(C) ≥ 1/2 + a+ s(C) > 3/2, a contradiction with the fact that no two
bins have total size greater than 3/2.

Then C contains three items larger than 1− s(B) and s(B) + s(C) ≥ s(B) +
3(1 − s(B)) = 3 − 2 · s(B). Since no two bins have total size 3/2 or more, this



implies s(B) ≥ 3/4. Furthermore, this implies that there is a single bin before
C: We proved that any bin B before C has size s(B) ≥ 3/4 and if there would
two bins B and B′ before C, their total size would be at least 3/2. I.e., it follows
B is the first bin, C is the second bin and there are exactly three 2-bins.

We now claim that no bin is opened before the third item arrives in C.
Suppose not, let C ′ be the first bin that opens after C and let y be the level of
C when C ′ opens. If C ′ is a regular bin, then it is a 2-bin and aj is packed after
both items of C ′. By Lemma 4.1(v) aj + s(C ′) > 1. On the other hand, the level
of C before C ′ opens must be greater than 1/2, as otherwise the two items in C ′

are huge. It follows that s(C)+s(C ′) > 3/2, a contradiction. If C ′ is a huge-first
bin, then at the time of opening C ′, the level of one of B and C is at least 2/3,
which is more than s(C ′). Thus the second item in C ′ does not fit into one of
the previous bins. The size of that bin plus s(C ′) is then more than 3/2, as the
first item in C ′ is huge, a contradiction

We proved that the third item arrives in C before the next bin is opened.
Thus we can use Lemma 4.1(iv) and conclude that the first three items in C are
packed into different Opt-bins.

We claim that one of these three Opt-bins contains both a 2-item c and an
H-item d with size d > 1/2: Each Opt-bin contains a H-item and there is at
most one H-item of size at most 1/2; furthermore, there is at most one Opt-bin
not containing a 2-item, as there are six 2-items in the three 2-bins. Thus the
condition excludes at most two Opt-bins. Fix c′ to be an item from C packed
with such a c and d in the same Opt-bin. Note that c and d are in later BF-bins
than C, as B and C are the first bins and they are 3+-bins.

We have c′ + c < 1/2 as they are packed with d > 1/2 in an Opt-bin.
On the other hand we claim that s(C) − c′ < 1/2: otherwise we note that
c′ > 1−s(B), as c′ was not packed in B and thus s(B)+s(C) > s(B)+c′+1/2 >
s(B) + (1− s(B)) + 1/2 = 3/2, contradicting the first claim in the proof. Thus
s(C) + c = (s(C)− c′) + (c′ + c) < 1/2 + 1/2 = 1 and c fits in C. However, c is
one of the first two items packed in the 2-bin, thus in the regular case it cannot
fit into a previous bin, but we have just shown that it fits into C. This is the
final contradiction.


