1. Prove that for every matrix $A \in \mathbf{R}^{n \times m}$, the set of solutions to the system of equations $A x=0$ forms a subspace of \mathbf{R}^{m}.
Find a basis of the space of solutions of the following system of equations.

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0 \\
x_{1}+2 x_{3}+x_{5}=0 \\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=0
\end{array}
$$

2. Write the definition of a group. Which of the following objects are groups, and why?

- Integers with the operation of addition.
- Integers with the operation of multiplication.
- Bijective functions from \mathbf{R}^{2} to \mathbf{R}^{2} with the operation of composition.
- Non-negative rational numbers with the operation of addition.
- Positive rational numbers with the operation of multiplication.

3. Find some linear function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ such that $f(1,2,3,4)=(3,2,1)$ and $f(4,3,2,1)=(1,2,3)$, and write its matrix with respect to the standard bases of \mathbf{R}^{4} and \mathbf{R}^{3}.
4. Write a definition of kernel and image of a linear function.

Let $d: \mathcal{P}^{n} \rightarrow \mathcal{P}^{n}$ be the derivative on the space of polynomials of degree at most n, that is, the function defined by
$d\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\ldots+\alpha_{n} x^{n}\right)=\alpha_{1}+2 \alpha_{2} x+3 \alpha_{3} x^{2}+\ldots+n \alpha_{n} x^{n-1}$
for every $\alpha_{0}, \ldots, \alpha_{n}$. Determine $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$.
5. Let A be a square matrix.

- Prove that if A has a right inverse (that is, a matrix B such that $A B=I$) and a left inverse (that is, a matrix C such that $C A=I$), then both inverses are equal $(B=C)$.
- Prove that A has a right inverse if and only if it has a left inverse.

