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Preface

Linear algebra is one of the core subjects for any serious study of mathe-
matics, computer science, physics, and engineering.

Besides to the factual knowledge, you should master logical reasoning
and learn how to express yourselves in mathematics. Linear Algebra is
probably the first theory built from the axioms you encounter. Its primary
object of study, so called vector space, is defined by several properties (ax-
ioms) and everything else is derived from these. Somewhat similar to the
rules of chess – giving no description of the shape of a knight, but defining
its moves – the definition of a vector space does not describe how a vector
looks. It only states the rules for calculations with vectors. Then we can ap-
ply the established theory to a wide variety of concrete objects, apparently
very different.

Other branches of mathematics are built in this way as well, but linear
algebra is quite easy and it is perfectly suitable for demonstration of the
development of a mathematical theory. Nevertheless, in time you will find
this theory very powerful as well: after mastering basics of linear algebra,
you will have no problem to answer questions concerning linear equations,
very hard and confounding at first sight and hardly solvable even for math-
ematically gifted, but unprepared people.

This text is too brief for a proper study of linear algebra and it does not
contain proofs. As such, it is not sufficient to prepare for the exam! It
can be useful when you want to recapitulate the subject and check that you
haven’t skipped anything important.
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1 Systems of Linear Equations

1. Example: To find a quadratic function (in form y = ax2 + bx+ c) with
its graph passing through given three points gives a system of three
linear equations in three variables.

x1 x2 x3

y1
y2

y3

y = ax2 + bx+ c

2. The equation a1x1 + a2x2 = b (1 equation, 2 variables): its solution
set is

S = {(x1, x2) ∈ R2 : a1x1 + a2x2 = b}.
Here, R2 is the set of all ordered pairs (x, y), where x, y are real num-
bers. We will call the ordered pairs, triples, n-tuples of real numbers
vectors.

3. Geometrically, the solution set represents a line in the plane (if a1 and
a2 are not both equal to 0!):

x1

x2

b
a2

b
a1 S

Another way of expressing the same set (parametric form):

S = {u + tv : t ∈ R},

where u and v are suitable vectors from R2.

x1

x2

u
v
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4. Similarly: the solution set of one linear equation in three variables in
form a1x1 + a2x2 + a3x3 = b corresponds to a plane in R3 (if a1, a2,
a3 are not all equal to 0).

x1

x2

x3

S
b
a3

b
a1

x2

b
a2

We can express it parametrically as well

{u + sv + tw : s, t ∈ R}

for suitable vectors u,v,w ∈ R3 (as we will show later). When we are
solving a system of k such equations, we are searching for an intersec-
tion of k planes in R3.

5. Generally, we consider a system of m linear equations in n variables in
form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(the first index always denotes the row !!). A more concise notation of
the same system:

Ax = b,

where

• A is a matrix of the system (matrix with m rows and n
columns, or an m × n (m-by-n) matrix, with the element aij
in the i-th row and the j-th column),
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• b is a column vector of the right-hand side, i.e., an m× 1-matrix,

• x is a column vector of the variables, i.e., an n× 1-matrix.

The notation Ax on the left-hand side is matrix multiplication. We
will define the multiplication of matrices in general later on.

2 Solving a Linear System: Gaussian Elimination

6. Elementary row operations on a matrix:

(a) multiplication of the i-th row by a non-zero number t,

(b) addition of the j-th row to the i-th row, i 6= j.

By combining the operations (a) and (b) we can get the following

(b′) addition of a t-multiple of the j-th row to the i-th row, i 6= j, and

(c) switching of two rows.

7. Augmented matrix of the system Ax = b is the matrix (A|b), i.e.,
a matrix A with the column b added to the right-hand side of the
matrix. Claim: elementary row operations of the augmented matrix
do not change the solution set of the linear system.

8. Echelon form of the matrix A: there exists an index r, 0 ≤ r ≤ m,
such that the rows 1, 2, . . . , r are non-zero, and the rows r + 1, . . . ,
m equal to zero, and if j(i) = min{j : aij 6= 0}, then j(1) < j(2) <
· · · < j(r). (More precisely, this is the definition of the row echelon
form of the matrix, in the literature sometimes referred to as ‘REF’,
as we can analogously define a column echelon form analogously. We
are not going to talk about it, so we can stick to the shorter term.)

1

r

m

1 n

0 •

•
•

•
•

•

The dots in the picture correspond to the non-zero elements with co-
ordinates (i, j(i)), i = 1, 2, . . . , r; these are sometimes called pivots.
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9. Gaussian elimination: an algorithm to convert a given matrix A
into the echelon form by performing elementary row operations.

10. Solving a system Ax = b by elimination: the matrix A is converted
to the echelon form while all the row operations are applied to the
augmented matrix. How does the solution set of a system look like,
when the matrix A is in the echelon form? If br+1, . . . , bm are not
all equal to zero, then there is no solution. Otherwise we get all the
solutions when we choose variables xj in the columns not containing
the pivot arbitrarily (there are n − r such variables) and calculate
(unambiguously) values of the r remaining variables. In the special
case when r = n there is exactly one solution.

11. Numerical issues, ill-conditioned matrices (a small change of the ma-
trix causes huge change in the solution). Example (2 × 2): geometric
interpretation (almost parallel lines).

3 Operations on Matrices; Special Types of Matrices

12. Addition of matrices (of the same type!) element-wise, multiplication
by a real number element-wise.

13. Transpose of a matrix AT : the element aij goes to position (j, i).
Symmetric matrix: a square (i.e., n× n) matrix, AT = A.

14. Identity matrix In (n-by-n, ones in positions (i, i), i = 1, 2, . . . , n,
zeros elsewhere).

15. Matrix A is diagonal if all non-zero elements are on the main diagonal,
i.e., aij = 0 for all i 6= j.

16. Matrix multiplication: the product AB is not defined for every
pair of matrices A and B, but only if the number of columns of A
equals to the number of rows of B, i.e., A is an m×n-matrix and B is
an n× p-matrix. The product AB is then an m× p-matrix C, where

cij = ai1b1j + ai2b2j + · · ·+ ainbnj .
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n

m
n

p

row i
column
j· =

A
B

C

cij
m

p

Check: AIn = ImA = A, for every m× n-matrix A.

17. Multiplication and transposition: (AB)T = BTAT (more precisely:
the product AB is defined if and only if the product BTAT is defined,
and in that case the equality holds – similar assumptions apply to
further matrix equalities below as well.)

18. Distributivity: A(B + C) = AB +AC, and similarly from the right.

19. Matrix multiplication is associative.

20. Let A be an n×n-matrix. The matrix B is an inverse of A if AB = In.
(Be careful, only a square matrix can have an inverse!) The inverse of
a matrix A, if it exists, is referred to by A−1.

21. Which matrix has an inverse? We need the following notion for an
answer: A square matrix A is non-singular if the system Ax = 0 has
a unique solution (i.e., x = 0).

22. Theorem: An n × n-matrix A has an inverse if and only if it is non-
singular. In that case the inverse is determined uniquely and the fol-
lowing holds: AA−1 = A−1A = In, i.e., the inverse is a left-inverse and
a right-inverse as well. Non-singular matrices are also called invert-
ible.

23. In the proof and not only there we can use the following claim: A
matrix is non-singular ⇔ in (some) echelon form there is r = n ⇔ the
system Ax = b has a unique solution for every b.

24. Multiplication and inversion: (AB)−1 = B−1A−1 (as with transposi-
tion).

25. Calculating an inverse of a matrix: We take the matrix (A|In) and we
convert it by row operations to the form (In|B) (if possible) – then
B = A−1. If it is impossible, A is singular.
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26. Elementary row operations on a matrix correspond to multiplying the
matrix by a suitable square non-singular matrix from the left. A prod-
uct of invertible matrices is invertible and therefore a sequence of el-
ementary row operations corresponds to multiplication of the matrix
from the left by a suitable non-singular matrix.

4 Groups and Permutations

27. Now we step aside from the main topic of linear algebra and explore two
important mathematical structures – groups and fields. This will be
our first encounter with the abstract approach in mathematics, where
objects are defined by axioms (“rules of the game”).

28.
If X is a set, a binary operation on X is an arbitrary mapping
X ×X → X.

Informally, a binary operation assigns an element of X to every pair
of elements a, b ∈ X, as a result of the operation applied on a and b.

29. We can view binary operations as a generalization of the “four basic
arithmetic operations” – addition, subtraction, multiplication and di-
vision. Addition, subtraction, and multiplication are indeed examples
of binary operations on the set R of all real numbers. (But there are
many more interesting examples of binary operations and they do not
have to concern numbers at all.)

30. Warning : the division is not a binary operation on the set R (but it is
a binary operation on the set R\{0}). The subtraction is not a binary
operation on the set of all natural numbers.

31. Binary operations are usually denoted by symbols ◦, ∗, +, etc. The
notation is similar to the basic arithmetic operations, i.e., a◦b denotes
the result of a binary operation ◦ applied on a and b.

32. Here are two important properties that a binary operation may or may
not have:

A binary operation ◦ on a set X is called commutative if a ◦ b =
b◦a for all a, b ∈ X, and it is called associative if a◦(b◦c) = (a◦b)◦c
for all a, b, c ∈ X.
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33. Examples: Addition + on R is associative, as well as commutative.
Subtraction − on R is neither associative, nor commutative (check!).

34. One of the most important objects in the whole mathematics is a
group. It is defined by axioms, i.e., properties required from it.

A group is a pair (G, ◦) where G is a set and ◦ is a binary operation
on G, satisfying the following axioms:

(A) The operation ◦ is associative.

(E) There exists an element e ∈ G such that a ◦ e = e ◦ a = a for
every a ∈ G. (Such e is called the identity element of the
group, sometimes also the neutral element.)

(I) For every a ∈ G there is a b ∈ G such that a ◦ b = b ◦ a = e,
where e is the identity element. (Such b is denoted by a−1

and is called the inverse element of the element a.)

35. Notes:

• Beware, the definition of a group also implies the requirement
that for every a, b ∈ G, also a ◦ b ∈ G (given by the definition of
a binary operation).

• Instead of “group (G, ◦)” it is usually enough to say only “group
G”, if it is clear, which operation is used.

• The notation a◦b is often shortened to ab (like for multiplication),
again only if the operation is obvious from the context.

36. We can derive many other properties of groups from the axioms. Ex-
amples of corollaries: There is only one identity element in every group.
There is exactly one inverse element for every element a in any group.
In a group, we can use “cancellation”, i.e., a ◦ c = b ◦ c yields a = b.

37. We need to derive every property of a group from the axioms. The
fact that something is true for one concrete group, or even for many
different groups, by no means implies that the thing is true in every
group.

38. Even though the group axioms look simple, the universe of groups is
very complicated and even after a hundred years of study, it conceals
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many secrets. Only by the end of the twentieth century the so called
“enormous theorem” was proved. (Roughly speaking, it describes all
possible finite “building blocks” of groups.) Its proof consists of several
thousands pages and one concrete example of a group described by the
enormous theorem, the so called monster, has approximately 8× 1053

elements. (Do not worry, linear algebra is easier than the group theory
and we will explain only very simple things concerning groups.)

39. What are groups good for? In mathematics, they show up in the proof
of impossibility of a general solution of a quintic equation by alge-
braic operations, in number theory, in enumerative combinatorics, and
many other fields. In physics, the symmetry conditions of physical laws
are usually essential, and these symmetries are described by suitable
groups. Groups are used in crystallography, cryptography, image anal-
ysis and other fields. We will see some use of groups in linear algebra
as well.

40. One more notion: A subgroup of a group (G, ◦) is a subset H ⊆ G
such that e ∈ H (where e is the identity element of G), a−1 ∈ H for
every a ∈ H, and a ◦ b ∈ H for every a, b ∈ H. That is, H forms a
group under the operation “inherited” from G.

41. Examples of groups (and subgroups):

• (R,+); (Z,+) (where Z is the set of all integers); the set of all pos-
itive rational numbers with multiplication; the set {−1, 1} with
multiplication. In all these cases the operation is commutative
and we are talking about commutative, or Abelian, groups.

• (Z,+) is a subgroup of (R,+); (N,+) is not a subgroup of (Z,+)
(since it is not a group).

• For every n, the set of all invertible n× n-matrices together with
the operation of multiplication forms a group. For n ≥ 2, this
group is not commutative. (On the other hand, the set of all
n× n-matrices with multiplication is not a group.)

• The set of all rotations about origin in three-dimensional space
together with the operation of composition forms a group, which
is non-abelian as well (if you rotate, say, a cup 90◦ around the
x-axis and then 90◦ around the z-axis, it will be in other position
than if you make a 90◦-turn around the z-axis followed up by
90◦-turn around the x-axis – try it with an empty cup).
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42. Permutations are another rich source of examples. Let us recall: A
permutation of a set X is a one-to-one correspondence (bijection)
X → X. Let Sn be the set of all permutations of the set {1, 2, . . . , n}.

43. We use the two-line notation for permutations, e.g.,

(
1 2 3 4
3 1 2 4

)
,

or a figure with arrows (a bipartite graph):

1 2 3 4

1 2 3 4

44. Permutations can be composed as maps; for p, q ∈ Sn the composition
p◦ q is defined as p◦ q(i) = p(q(i)), i = 1, 2, . . . , n. The set Sn together
with the operation ◦ forms a group, called the symmetric group.

45. For n ≥ 3, the group Sn is non-abelian.

46. Subgroups of the symmetric group are called permutation groups.

47. In the course of time we will need the sign of a permutation. First we
define the set of inversions of a permutation p:

I(p) = {(i, j) : i < j and p(i) > p(j)}.

Interpretation: a crossing of arrows in the two-line notation of p. The
sign of permutation is then sgn(p) = (−1)|I(p)|.

48. Claim (composition of permutations and sign): sgn(p◦q) = sgn(p) sgn(q).
Proof: a figure with arrows.

49. A transposition is a permutation switching two elements and leaving
all others in place. Claim: The sign of any transposition is −1. Every
permutation is a composition of transpositions.

50. In the language of group theory, we can formulate the last claim as
follows: The set T ⊆ Sn of all transpositions generates the group Sn.
A general definition: Let G be a group and M ⊆ G an arbitrary subset
of G. We say that M generates the group G (or that M is a set of
generators of G) if the only subgroup of G containing M is the whole
of G.
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51. Equivalently, every a ∈ G can be expressed by finitely many elements
of M using the group operation and the inversion. (Delicacy: M = ∅
generates the group {e} formed only by the identity element.)

52. Some popular puzzles are in fact permutation groups in disguise. The
15-puzzle is a frame of 4 × 4 cells with tiles numbered 1 through 15
and a free space allowing to move the tiles (horizontally or vertically).

Around the year 1880, hundreds of thousands people were trying to
solve the puzzle to move the tiles positioned as in the figure to the
same position with only 14 and 15 switched. It has no solution, as one
can show using the sign of a permutation.

53. A more modern group puzzle is the well-known Rubik’s cube. With
that we want to express a given element of a certain permutation group
(cube with mixed colours on the faces) by generators (rotation of the
faces). (Recently it has been proved by extensive calculations that
every position can be solved in at most 20 moves and for some positions
20 moves are needed.)

5 Fields (in Algebra)

54. We can apply “elementary arithmetic operations” on the rational, real,
and complex numbers; operation of addition and multiplication, and
derived (inverse) operations of subtraction and division.

55. A field is an algebraic structure with defined operations with similar
properties (and thus we can “calculate” with its elements in a way
similar to the real numbers). It is defined by axioms again.
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A field is a set K together with two binary operations + (addition)
and · (multiplication), satisfying the following axioms:

(SG) The set K with the operation + forms an Abelian group. The
identity element of this group is denoted by 0 and the inverse
element to a is denoted by −a.

(NG) The operation · is commutative, and the set K\{0} with this
operation (strictly speaking with its restriction to K \ {0})
forms a group. The identity element of this group is called 1
and the inverse element to a is denoted by a−1.

(D) Multiplication is distributive over addition, i.e. a · (b+ c) =
(a · b) + (a · c) for every a, b, c ∈ K.

For the multiplication a · b, we usually use a shorter notation ab. The
subtraction is defined as a−b = a+(−b), and division as a/b = a ·b−1.
Historically, fields were called commutative fields, as the expression
“field” was used for division rings. That is a structure satisfying all
axioms of a field, only commutativity of multiplication is not assumed.
We will always understand the field as commutative.

56. Claims on matrix multiplication, inverses, or solutions of systems of
linear equations hold for any field. We do not need to work with num-
bers. Everything needs to be proved from the axioms (using nothing
else!!!).

57. Examples of fields: rational numbers Q, real numbers R, complex num-
bers C, two-element Z2. More exotic: R(x) – elements are all rational
functions p(x)/q(x), where p(x) and q(x) are polynomials with real
coefficients.

58. Notation Zn (residue classes modulo n, represented by numbers 0,
1,. . ., n− 1, with operations of addition and multiplication modulo n).
Z3 is a field, Z4 IS NOT!!!

59. Claim: Zn is a field if and only if n is a prime. Idea of the proof: If
n is a composite number in the form n = k`, then residue classes of k
and ` are zero divisors, i.e., their product is 0 in Zn. If n is a prime, we
need to show that for every non-zero ` ∈ Zn: the map ‘multiplication
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by `’: Zn → Zn is surjective (onto). Trick: check that the function is
injective (one-to-one).

60. Notation: GF(q), a finite field with q elements (Galois Field) exists
if and only if q is a power of a prime, and then there is exactly one
(without proof). Finite fields are very important in computer science
(e.g., for codes, on computer discs or DVDs).

61. The characteristics of a field: the smallest n ≥ 1 such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−times

= 0,

or 0 if there is no such n. Claim: characteristic is always a prime or 0.

6 Vector Spaces

62. So far, we took vectors as ordered n-tuples of real numbers in the form
v = (v1, . . . , vn), living in Rn (Cartesian product of n copies of R;
e.g., R2 describes the plane). We can add them together and multiply
them by a real number. In the same way as we have generalized the
real numbers to fields by axioms, we generalize Rn to so called vector
spaces.

63. We can say that linear algebra is a study of vector spaces. When we
talk about vector spaces, we can always visualize R2, R3 and Rn in
general as the basic (and most important) examples.
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A vector space over a field K is a set V (elements = vectors)
together with a binary operation + (vector addition) and an oper-
ation · (multiplication of a vector by scalar from the field K; it is
a map K× V → V ) satisfying the following axioms:

(SG) The set V together with the operation + is an Abelian group.
Its neutral element is called 0, and the inverse of the vector
v is called −v. [Be aware that we have two distinct zeros, 0
in K and 0 in V !!!]

(NA) Scalar multiplication of vectors is ‘associative’, i.e., a·(b·v) =
(a · b) · v for every a, b ∈ K and every v ∈ V .

(N1) We have 1 · v = v for every v ∈ V (and 1 ∈ K is the identity
of the field).

(D1) The following distributivity holds: (a+b) ·v = (a ·v)+(b ·v),
for every a, b ∈ K and every v ∈ V ,

(D2) and also this distributivity: a · (u + v) = (a · u) + (a · v), for
every a ∈ K and every u,v ∈ V .

Instead of a · v, we write the shorter av. Note that for any u,v ∈ V
and a ∈ K we also have u + v ∈ V and av ∈ V .

64. Examples:

• {0} (trivial vector space).

• Kn (arithmetic vector space of dimension n over K) for any
field K.

• The set of all 7-by-11 matrices with elements from K (or any other
fixed m-by-n).

• R[x] (all polynomials with real coefficients).

• Polynomials of degree at most 293 with real coefficients (or any
other given maximum degree).

• The set of all subsets of a set X as a vector space over GF(2)
(addition = symmetric difference of the sets).

• The set of all functions R → R ((f + g)(x) = f(x) + g(x) etc.),
similarly the set of all continuous functions R → R or of all
differentiable functions R→ R.
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• An exotic example: R (real numbers) as a vector space over Q
(rat. numbers).

65. Claims on vector spaces: 0x = 0, (−1)x = −x, ax = 0 if and only if
a = 0 or x = 0.

66. A subspace of a vector space V is a subset W ⊆ V , which is a vector
space in respect to 0, “+” and “·” inherited from V . That is, 0 ∈ W ,
u + v ∈ W for every u,v ∈ W , and also av ∈ W for every a ∈ K and
every v ∈W .

67. Example: vector subspaces R2 are (geometrically) origin, the whole
R2, and every line passing through the origin (we will check later).

68. Observation: the intersection of an arbitrary system of subspaces of a
vector space V is again a subspace. Definition: If X is a subset of a
vector space V , the subspace generated by X is the intersection
of all subspaces W of V containing X. Notation: span(X) (in the
literature also 〈X〉, L(X), [X], called also linear span or linear hull
of X).

69. If v1, . . . ,vn ∈ V are vectors, every expression a1v1+a2v2+· · ·+anvn,
where ai ∈ K, is called linear combination v1, . . . ,vn (in a linear
combination, we always have a finite number of vectors!). The vector
0 is considered to be a linear combination of an empty set of vectors.
Claim (explicit description of a subspace generated by X): span(X) is
a set of all linear combinations of vectors from X.

70. Let A be an m-by-n matrix. Vector spaces related to it:

• row space (= a subspace of Kn generated by the rows of A),

• column space (= a subspace of Km generated by the columns
of A),

• kernel or null space (= a subspace of Kn generated by all solu-
tions of the system Ax = 0), notation: KerA.

Observation: elementary row operations on a matrix do not change its
row space or its kernel.
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7 Linear Dependence, Basis, Dimension

71.

A collection (finite sequence) of vectors (v1, . . . ,vn) is linearly
independent if from the equality a1v1 + · · · + anvn = 0 follows
that a1 = a2 = · · · = an = 0, i.e. vectors can be combined to equal
zero in only one possible, trivial way.

(The vectors in a collection, in contrast to a set, can repeat, but as
soon as vi = vj , the collection is linearly dependent.)

72. Infinite collection of vectors is linearly independent, if every finite sub-
collection is linearly independent. (What is an infinite collection? Sim-
ilar to a set, but the elements can repeat themselves; formally we write
an infinite collection as (vi)i∈I , where I is an infinite set of ‘indices’.)

73. Examples of linearly independent collections:

• (e1, e2, . . . , en) – rows of the identity matrix In (i.e., so called
standard basis of Rn);

• first r rows of a matrix in the echelon form;

• (xi)i=0,1,... in R[x],

• (1,
√

2) in R as vector space over Q.

74. Alternative, but maybe more intuitive description of linear indepen-
dence: (v1, . . . ,vn) is linearly independent if every vi “adds some-
thing” to the linear span: vi 6∈ span(v1, . . . ,vi−1,vi+1, . . . ,vn) for
every i = 1, 2, . . . , n.

75. Definition: Let B be a collection of vectors in a vector space V ; it is
called a generating system of V if span(B) = V .

A linearly independent generating system of a vector space V is
called a basis of the space V .

76. Examples: an empty system is a basis of the trivial space {0}; (e1, . . . , en)
is a basis of Kn; (1, x, x2, . . .) is a basis of R[x].

77. Claim: A minimal generating system (i.e., no proper subsystem gener-
ates the whole space) is a basis. Therefore we can select a basis from
any finite generating system.



19

78. Theorem: every vector space has a basis. The proof requires the axiom
of choice. We have shown (only) for spaces with some finite generating
system (such spaces are called finitely generated).

79. Can one vector space have two bases of different sizes? NO!! For the
proof, we need the Steinitz exchange lemma.

80. First, an exchange lemma: If G = (v1, . . . ,vn) is a generating sys-
tem of a space V , w ∈ V is a vector, and w = a1v1+a2v2+· · ·+· · · anvn
is its expression in terms of vectors from G, then whenever ai 6= 0, the
system (v1, . . . ,vi−1,w,vi+1, . . . ,vn) is a generating system as well
(i.e., the vector vi with a non-zero coefficient can be replaced by w).

81. Steinitz exchange lemma: If N = (w1,w2, . . . ,wm) is a linearly
independent collection of vectors in V and G = (v1, . . . ,vn) is a gen-
erating system of V , then m ≤ n and we can replace some m vectors
from G by the vectors w1,w2, . . . ,wm so that we get a generating
system again.

82. Main corollary: All bases of a finitely generated space are finite and
they have the same number of vectors. (In an arbitrary vector space,
every basis has the same cardinality, but we will not prove this.)

The dimension of a vector space V is the cardinality of a (and
therefore any) basis of V .

83. Another corollary of the Steinitz lemma: An arbitrary linearly inde-
pendent system in a finitely generated space can be extended to a
basis.

84. Then: If W is a subspace of a finitely generated space V , then

dim(W ) ≤ dim(V )

(and in particular, W is finitely generated). In case of equality we have
W = V .

85. Example: what are the subspaces of R2? They can have dimension 0
(then it is {0}), 2 (then it is R2), or 1, and a one-dimensional vector
space consists of all multiples of a non-zero vector, that means it is
a line passing through 0. Similarly for R3: there will be additional
planes passing through 0.

86. Terminology: coordinates of a vector relative to a given basis.
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8 Finding a Basis, Rank of a Matrix

87. How can we calculate the dimension (and find a basis) of a space?
Let V = span(a1,a2, . . . ,am) be a vector space spanned by a1,. . . ,am
– given vectors from Kn. We enter a1,. . . ,am as rows of a matrix A
(then V is its row space). Gaussian elimination is an algorithm for
finding a basis: non-zero rows of some echelon form make up a basis
of V .

The rank of a matrix A is defined as the dimension of its row
space, and we will denote it by rankA.

The rank also equals to the number of non-zero rows in an echelon
form (and therefore this number does not depend on the progress of
the Gaussian elimination, which is not obvious from the algorithm
itself).

88. Theorem (one of the “marvels” of linear algebra): The rank of a matrix
is equal to the dimension of the column space as well.

Proof:

– Obvious for the reduced echelon form.

– Elementary row operations, and more general multiplication by an
invertible matrix R from the left, do not change the dimension of the
column space (even when the column space changes). This follows
from the claim: if {v1, . . . ,vr} is a basis of the column space of A,
then {Rv1, . . . , Rvn} spans the column space of RA.

89. From the echelon form, we can also find the basis of Ker(A), and
deduce that

dim(KerA) + rank(A) = n

for every matrix A with n columns. This is quite an important equa-
tion.

90. rank(AB) ≤ min(rank(A), rank(B)) (A, B are matrices for which the
product AB is defined). Because: the row space of AB ⊆ the row
space of B, and the column space of AB ⊆ the column space of A.

91. From this: rank(RA) = rank(A) for a (square) invertible R.
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9 Linear Maps

92.
A map f : U → V , where U and V are vector spaces (over the same
field!), is linear if f(u + v) = f(u) + f(v) and f(au) = af(u) for
every u,v ∈ U and a ∈ K.

93. A composition of linear maps is a linear map too (if they can be com-
posed!).

94. Example (simple): linear maps R1 → R1 must be in the form x 7→ ax,
a ∈ R.

95. Linear maps R2 → R2 are already quite interesting. Examples:

• projection to the x-axis,

• projection to a given line passing through 0,

•

(x, y) 7→ (−x, y)

reflection, e.g.,

•

(x, y) 7→ (1.7x, 1.7y)

enlargement (homothety), e.g.,

•

(x, y) 7→ (x+ y, y)

shearing, e.g.,
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•

(x, y) 7→ (− 1
2x−

√
3
2 y,

√
3
2 x− 1

2y)
120◦

rotation about 0, e.g.,

96. General form: f(x, y) = (ax+by, cx+dy), there are no others. Matrix
form: f(v) = Av, where v ∈ R2 is a column vector (x, y) and A is a
matrix with rows (a, b), (c, d).

(x, y) 7→ (ax+ by, cx+ dy)

(0, 1)

(1, 0)

(a, b)

(c, d)

97. Claim (Every choice of values on the basis determines the linear map
uniquely) Let U, V be vector spaces and B a basis of U . For every
map f : B → V , there is exactly one linear map f̄ : U → V such that
f̄(b) = f(b) for every b ∈ B.

98. From that: when we know (geometrically) that, e.g., a rotation about
0 by an angle τ is a linear map, we can easily express it; we get
(x, y) 7→ (x cos τ − y sin τ, x sin τ + y cos τ).

99. Example: Let v1,v2, . . . ,vn be vertices of a regular n-gon with the
origin in 0. Show that s =

∑n
i=1 vi = 0. An elegant solution: let τ be

a rotation about 0 by the angle 2π
n , then τ(s) = s, and therefore s = 0.

100. An arbitrary linear map f : Rn → Rm is in the form f(x) = Ax, where
x is a column vector from Rn and A is an m-by-n matrix; its columns
are the images of the basis vectors e1, . . . , en. Matrices of the usual
geometrical transformations, like a rotation about origin, appear for
example in computer graphics.

101. Terminology: matrix of a (linear) map f : U → V relative to
given bases of spaces U and V ; the j-th column of this matrix is the
coordinates of the image of the j-th vector of the basis of the space U
relative to the basis of the space V .
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102. Composition of linear maps and matrix multiplication : If V1, V2, V3
are vector spaces and Bi is a basis of Vi, f : V2 → V1 is a linear map
with a matrix A relative to the bases B2 and B1, and g : V3 → V2 is
a linear map with a matrix B relative to the bases B3 and B2, then
f ◦ g : V3 → V1 has the matrix AB relative to the bases B3 and B1.
Proof from the associativity of matrix multiplication. Let v ∈ V3, and
let x be the coordinate vector of v with respect to B2. Then g(v) has
the coordinates Bx and f(g(x)) has the coordinates A(Bx) = (AB)x.

103. Example: matrix multiplication of rotations about origin in R2 yields
the addition formulas for sine and cosine functions.

104. If B and C are two bases of the space V , then the matrix of the identity
map id: V → V relative to bases B and C is called a change of basis
matrix from B to C. If x is a coordinate vector of some v ∈ V relative
to the basis B, then the coordinates of v in the basis C are given by
the vector Ax, where A is the change of basis matrix from B to C.

10 Isomorphism of Vector Spaces

105. What does it mean that the vector spaces V and W are “the same”?
There exists an isomorphism f : V → W between them, which is
a linear map with an inverse map that is also linear (equivalently if
f is an isomorphism if it is linear and bijective). An isomorphism is
something like renaming the vectors: vectors in isomorphic spaces can
“look” different, but they “behave” exactly in the same way.

106. An isomorphism maps a basis to a basis, and therefore it preserves the
dimension.

107.
Claim (there is only one n-dimensional vector space over K): every
n-dimensional vector space V over K is isomorphic to Kn.

Proof: select a basis of V ; an isomorphism V → Kn maps the vector
v ∈ V to its coordinates in this basis. (Note: many isomorphisms =
many “possible views” of the given vector space!)

108. If dim(U) = dim(V ) = n, f : U → V is linear, and A is the matrix of
f relative to some bases, then f is an isomorphism if and only if A is
invertible. (From this, we get another proof of the theorem on matrix
inverses from item 3).
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11 Affine Subspaces

109. Affine subspaces: A subset F of a vector space V that is either empty
or in the form F = x + U = {x + u : u ∈ U}, where U is a (vector)
subspace of V , is called an affine subspace) of V .

110. We have U = {u− v : u,v ∈ F}, and therefore F determines U . The
dimension of F is defined as dim(U). For example, general lines and
planes in R3 are affine subspaces. Terminology: a one-dimensional
affine subspace is called a line, a two-dimensional a plane, and an
(n−1)-dimensional affine subspace of an n-dimensional space is called
a hyperplane.

111. If f : U → V is a linear map and b ∈ V is a given vector, then f−1(b)
is an affine subspace of U ; if it is not empty, it has the form x+Ker(f),
where x is an (arbitrary) vector satisfying f(x) = b.

112. The same in the matrix language: set of all solutions of the system
Ax = b, where A is an m-by-n matrix and b is an m-component
vector, is either empty, or of the form x0 +L, where x0 is an arbitrary
solution of the system Ax = b and L is the set of all solutions of the
homogeneous system Ax = 0. Finding all solutions of the system
Ax = b: we find one solution x0 (if there is any) and some basis for the
space of solutions of the homogeneous system Ax = 0, i.e., Ker(A).

113. Summary of our knowledge about solutions of systems of linear equa-
tions Ax = b, and different views of it:

• Vector-space view: is b in the subspace spanned by the columns
of A?

• Geometric view: an intersection of hyperplanes in Kn.

• Linear-mapping view: the preimage of the vector b under linear
map x 7→ Ax; the solution is an affine subspace of Kn.


