Reminders

Let **V** be a vector space.

Definition

A set $S \subseteq V$ is a basis if

- S generates V, i.e., span(S) = V, and
- *S* is linearly independent.

Assuming that V has a finite basis:

- All bases of V have the same size, the dimension dim(V).
- Every linearly independent set can be extended to a basis.
- If **U** ∈ **V**, then dim(**U**) ≤ dim(**V**).

A square matrix is regular if it has a multiplicative inverse.

Uniqueness of basis linear combinations

Lemma

Let **V** be a vector space over a field **F**. If v_1, \ldots, v_n is a basis of **V**, then for every $v \in \mathbf{V}$, there exist unique $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Proof.

- $\alpha_1, \ldots, \alpha_n$ exist, since $\mathbf{V} = \operatorname{span}(v_1, \ldots, v_n)$.
- If $\mathbf{v} = \alpha_1' \mathbf{v}_1 + \ldots + \alpha_n' \mathbf{v}_n$, then

$$(\alpha_1 - \alpha_1')v_1 + ... + (\alpha_n - \alpha_n')v_n = v - v = o$$
, and

• since v_1, \ldots, v_n are linearly independent, $\alpha'_i = \alpha_i$ for $i = 1, \ldots, n$.

Coordinates

Let **V** be a vector space over a field **F**. Let $B = v_1, \dots, v_n$ be a basis of **V**.

Definition

The coordinates of a vector $v \in \mathbf{V}$ with respect to the basis \mathbf{B} are the vector $[v]_B = (\alpha_1, \dots, \alpha_n) \in \mathbf{R}^n$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Example

- the standard basis (0,1), (1,0): coordinates (3,2)
- the basis (1,3),(1,-1): coordinates (5/4,7/4)

Example

Problem

Let $B = 1, x + 1, x^2 + x + 1$ be a basis of \mathcal{P}_2 . Determine the coordinates of $x^2 + 3x + 6$ with respect to B.

We need

$$\alpha_1 \cdot 1 + \alpha_2(x+1) + \alpha_3(x^2+x+1) = x^2 + 3x + 6.$$

By comparing the coefficients

$$lpha_3=1$$
 at x^2 $lpha_3=1$ $lpha_2+lpha_3=3$ at x $lpha_2=2$ $lpha_1+lpha_2+lpha_3=6$ constant term $lpha_1=3$ $[x^2+3x+6]_B=(3,2,1)$

Size of vector spaces over finite fields

Corollary

If **V** is a vector space over a finite field \mathbf{F}_n , then

$$|\mathbf{V}| = n^{\dim(\mathbf{V})}.$$

Proof.

Each element of \mathbf{V} bijectively corresponds to a dim(\mathbf{V})-tuple of its coordinates.

Sum of subspaces

Let V_1 , V_2 be subspaces of the same space.

• Union of two subspaces typically is not a subspace.

Definition

$$V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$$

Sum and union

Lemma

 $oldsymbol{V}_1 + oldsymbol{V}_2$ is the smallest subspace containing $oldsymbol{V}_1$ and $oldsymbol{V}_2$, i.e.,

$$V_1 + V_2 = span(V_1 \cup V_2).$$

- \subseteq If $v \in V_1 + V_2$, then
 - $v = v_1 + v_2$ for some $v_1 \in \mathbf{V}_1$ and $v_2 \in \mathbf{V}_2$, and
 - $v_1 + v_2 \in \text{span}(V_1 \cup V_2)$.

Sum and union

Lemma

 $oldsymbol{V}_1 + oldsymbol{V}_2$ is the smallest subspace containing $oldsymbol{V}_1$ and $oldsymbol{V}_2$, i.e.,

$$\mathbf{V}_1 + \mathbf{V}_2 = span(\mathbf{V}_1 \cup \mathbf{V}_2).$$

- \supseteq If $v \in \text{span}(\mathbf{V}_1 \cup \mathbf{V}_2)$, then
 - $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \ldots + \alpha_n \mathbf{u}_n$, where $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbf{V}_1$ and $\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n \in \mathbf{V}_2$
 - Let $v_1 = \alpha_1 u_1 + \ldots + \alpha_k u_k \in \text{span}(V_1) = V_1$
 - Let $v_2 = \alpha_{k+1}u_{k+1} + \ldots + \alpha_nu_n \in \text{span}(V_2) = V_2$
 - $v = v_1 + v_2 \in V_1 + V_2$.

Lemma

Let V have a finite dimension, let $V_1,V_2 \in V$.

$$\text{dim}(\boldsymbol{V}_1 \cap \boldsymbol{V}_2) + \text{dim}(\boldsymbol{V}_1 + \boldsymbol{V}_2) = \text{dim}(\boldsymbol{V}_1) + \text{dim}(\boldsymbol{V}_2)$$

- Let *B* be a basis of $V_1 \cap V_2$.
- For i = 1, 2, B extends to a basis $B_i \supseteq B$ of V_i .
- $B_1 \cup B_2$ is a basis of $\mathbf{V}_1 + \mathbf{V}_2$

Lemma

Let V have a finite dimension, let $V_1,V_2 \in V$.

$$\text{dim}(\boldsymbol{V}_1 \cap \boldsymbol{V}_2) + \text{dim}(\boldsymbol{V}_1 + \boldsymbol{V}_2) = \text{dim}(\boldsymbol{V}_1) + \text{dim}(\boldsymbol{V}_2)$$

Proof.

• $B_1 \cup B_2$ is a basis of $V_1 + V_2$

 $B_1 \cup B_2$ generates $V_1 + V_2$:

$$\mathbf{V}_1 + \mathbf{V}_2 = \operatorname{span}(\mathbf{V}_1 \cup \mathbf{V}_2) = \operatorname{span}(B_1 \cup B_2)$$

Lemma

Let V have a finite dimension, let $V_1, V_2 \subseteq V$.

$$\text{dim}(\boldsymbol{V}_1 \cap \boldsymbol{V}_2) + \text{dim}(\boldsymbol{V}_1 + \boldsymbol{V}_2) = \text{dim}(\boldsymbol{V}_1) + \text{dim}(\boldsymbol{V}_2)$$

Proof.

• $B_1 \cup B_2$ is a basis of $\mathbf{V}_1 + \mathbf{V}_2$

Suppose
$$\alpha_1 v_1 + \ldots + \alpha_n v_n = o$$
 with $v_1, \ldots, v_k \in B$, $v_{k+1}, \ldots, v_t \in B_1 \setminus B$ and $v_{t+1}, \ldots, v_n \in B_2 \setminus B$. Then $x = \alpha_1 v_1 + \ldots + \alpha_t v_t = -\alpha_{t+1} v_{t+1} - \ldots - \alpha_n v_n \in \mathbf{V}_1 \cap \mathbf{V}_2 = \operatorname{span}(B)$.

x is a <u>unique</u> linear combination of $B_1 \supseteq B \Rightarrow \alpha_i = 0$ for $i = k+1,\ldots,t$. Symmetrically for $i = t+1,\ldots,n$.

Thus, $\alpha_1 v_1 + \ldots + \alpha_k v_k = o$ and $\alpha_i = 0$ for $i = 1, \ldots, k$ by linear independence of B.

Lemma

Let V have a finite dimension, let $V_1, V_2 \subseteq V$.

$$\text{dim}(\boldsymbol{V}_1 \cap \boldsymbol{V}_2) + \text{dim}(\boldsymbol{V}_1 + \boldsymbol{V}_2) = \text{dim}(\boldsymbol{V}_1) + \text{dim}(\boldsymbol{V}_2)$$

- Let *B* be a basis of $V_1 \cap V_2$.
- For i = 1, 2, B extends to a basis $B_i \supseteq B$ of V_i .
- $B_1 \cup B_2$ is a basis of $\mathbf{V}_1 + \mathbf{V}_2$

$$\begin{aligned} \dim(\mathbf{V}_1 \cap \mathbf{V}_2) + \dim(\mathbf{V}_1 + \mathbf{V}_2) &= |B| + |B_1 \cup B_2| \\ &= |B_1 \cap B_2| + |B_1 \cup B_2| \\ &= |B_1| + |B_2| \\ &= \dim(\mathbf{V}_1) + \dim(\mathbf{V}_2) \end{aligned}$$

Example

Let V_1 , V_2 be 2-dimensional planes in \mathbf{R}^4 . One of the following holds:

- $V_1 = V_2$, dim $(V_1 \cap V_2) = dim(V_1 + V_2) = 2$, or
- $V_1 \cap V_1$ is a line (dimension 1), $dim(V_1 + V_2) = 3$, or
- $V_1 \cap V_1$ is $\{o\}$ (dimension 0), $V_1 + V_2 = \mathbf{R}^4$.

Minimum intersection size

Corollary

If V_1 and V_2 are subspaces of a space of dimension n, then

$$\dim(\boldsymbol{V}_1\cap\boldsymbol{V}_2)\geq\dim(\boldsymbol{V}_1)+\dim(\boldsymbol{V}_2)-n.$$

Example: two planes in R³ cannot intersect in exactly one point

- w.l.o.g. the point would be (0,0,0), hence
- the planes are subspaces
- their intersection has dimension at least 2+2-3=1

Matrix spaces

Let A be an $n \times m$ matrix with entries from field **F**.

Definition

The row space of A is the linear span of its rows.

$$\mathsf{Row}(A) = \mathsf{span}(A_{1,\star}, A_{2,\star}, \dots, A_{n,\star}) \in \mathbf{F}^{1 \times m}$$

Definition

The column space of A is the linear span of its columns.

$$\operatorname{Col}(A) = \operatorname{span}(A_{\star,1}, A_{\star,2}, \dots, A_{\star,m}) \in \mathbf{F}^{n \times 1}$$

Equivalently:

$$Row(A) = \{xA : x \in \mathbf{F}^{1 \times n}\}$$
$$Col(A) = \{Ax : x \in \mathbf{F}^{m \times 1}\}$$

Example

Let

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{array}\right).$$

$$\mathsf{Row}(A) = \mathsf{span}((1,1,1),(1,2,3),(2,3,4)) = \mathsf{span}((1,1,1),(1,2,3))$$

$$Col(A) = span\left(\begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\3\\4 \end{pmatrix}\right)$$
$$= span\left(\begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}\right)$$

Matrix spaces and multiplication

Lemma

Let A be an $m \times n$ matrix, B an $n \times p$ matrix, C an $q \times m$ matrix.

$$Row(CA) \subseteq Row(A)$$

 $Col(AB) \subseteq Col(A)$

$$Row(CA) = \{x(CA) : x \in \mathbf{F}^{1 \times q}\}$$

$$= \{(xC)A : x \in \mathbf{F}^{1 \times q}\} \subseteq \{yA : y \in \mathbf{F}^{1 \times n}\} = Row(A)$$

$$Col(AB) = \{(AB)x : x \in \mathbf{F}^{p \times 1}\}$$

$$= \{A(Bx) : x \in \mathbf{F}^{p \times 1}\} \subseteq \{Ay : y \in \mathbf{F}^{m \times 1}\} = Col(A)$$

Multiplication by regular matrices

Let A be an $m \times n$ matrix, B an $n \times n$ matrix, C an $m \times m$ matrix.

Corollary

```
If C is regular, then Row(CA) = Row(A).
If B is regular, then Col(AB) = Col(A).
```

$$\mathsf{Row}(\mathit{CA}) \in \mathsf{Row}(A)$$
 $\mathsf{Row}(A) = \mathsf{Row}(\mathit{C}^{-1}(\mathit{CA})) \in \mathsf{Row}(\mathit{CA})$
 $\mathsf{Col}(\mathit{AB}) \in \mathsf{Col}(\mathit{A})$
 $\mathsf{Col}(\mathit{AB}) = \mathsf{Col}((\mathit{AB})\mathit{B}^{-1}) \in \mathsf{Col}(\mathit{AB})$

Multiplication from the other side

... may change the space. But preserves <u>linear dependences</u>.

Lemma

If
$$\alpha_1 A_{1,\star} + \ldots + \alpha_n A_{n,\star} = o$$
, then
$$\alpha_1(AB)_{1,\star} + \ldots + \alpha_n(AB)_{n,\star} = o.$$
 If $\alpha'_1 A_{\star,1} + \ldots + \alpha'_m A_{\star,m} = o$, then
$$\alpha'_1(CA)_{\star,1} + \ldots + \alpha'_m(CA)_{\star,m} = o.$$

$$\alpha_{1}(AB)_{1,\star} + \ldots + \alpha_{n}(AB)_{n,\star} = (\alpha_{1}A_{1,\star} + \ldots + \alpha_{n}A_{n,\star})B$$

$$= oB = 0$$

$$\alpha'_{1}(CA)_{\star,1} + \ldots + \alpha'_{m}(CA)_{\star,m} = C(\alpha'_{1}A_{\star,1} + \ldots + \alpha'_{m}A_{\star,m})$$

$$= Co = o$$

Multiplication by regular matrix

Let A be an $m \times n$ matrix, B an $n \times n$ matrix, C an $m \times m$ matrix.

Corollary

If B is regular, then

$$\alpha_1 A_{1,\star} + \ldots + \alpha_n A_{n,\star} = o$$

if and only if

$$\alpha_1(AB)_{1,\star}+\ldots+\alpha_n(AB)_{n,\star}=o.$$

If C is regular, then

$$\alpha'_1 A_{\star,1} + \ldots + \alpha'_m A_{\star,m} = o$$

if and only if

$$\alpha'_1(CA)_{\star,1} + \ldots + \alpha'_m(CA)_{\star,m} = o.$$

Multiplication by regular matrix and bases

Corollary

If B is regular and

$$A_{i_1,\star},\ldots,A_{i_k,\star}$$

is a basis of Row(A), then

$$(AB)_{i_1,\star},\ldots,(AB)_{i_k,\star}$$

is a basis of Row(AB). Hence, dim(Row(A)) = dim(Row(AB)).

If C is regular and

$$A_{\star,j_1},\ldots,A_{\star,j_t}$$

is a basis of Col(A), then

$$(CA)_{\star,j_1},\ldots,(CA)_{\star,j_t}$$

is a basis of Col(CA). Hence, dim(Col(A)) = dim(Col(CA)).

RREF and matrix spaces

Recall: for every A, there exists a reqular matrix C such that

$$RREF(A) = QA$$
.

Corollary

Let A be an $n \times m$ matrix.

$$Row(A) = Row(RREF(A)),$$

and

$$\alpha_1 A_{\star,1} + \ldots + \alpha_m A_{\star,m} = o$$

if and only if

$$\alpha_1(RREF(A))_{\star,1} + \ldots + \alpha_m(RREF(A))_{\star,m}.$$

Dimensions of matrix spaces

- Non-zero rows of RREF(A) form a basis of Row(A).
- If p_1, \ldots, p_k are the basis colum indices of RREF(A), then $A_{\star,p_1}, \ldots, A_{\star,p_k}$ is a basis of Col(A).

Corollary

$$rank(A) = dim(Col(A)) = dim(Row(A)) = rank(A^T)$$

• The "proper" definition of rank:

Definition

Rank of a matrix A is the maximum number of its linearly independent rows.

 A square matrix is regular if and only if its rows (and columns) are linearly independent.

Description of RREF

Lemma

Let A be an $n \times m$ matrix and let $A' \sim A$ be in RREF.

• For p = 1, ..., m, the column p is a basis column of A' if and only if $A_{\star,p} \notin span(A_{\star,1}, ..., A_{\star,p-1})$.

Let $p_1 < p_2 < \ldots < p_k$ be the basis column indices of A'.

• For every $i = 1, ..., m, A'_{1,i}, ..., A'_{k,i}$ are the unique coefficients such that

$$A'_{1,i}A_{\star,p_1}+A'_{2,i}A_{\star,p_2}+\ldots+A'_{k,i}A_{\star,p_k}=A_{\star,i},$$
 and $A'_{i,i}=0$ for $j=k+1,\ldots,n.$

Corollary (as promissed in the 2nd lecture)

There exists exactly one matrix A' in RREF such that $A \sim A'$.

Example

$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & 3 \\ 1 & 2 & 3 & 3 & 6 \\ 1 & 3 & 5 & 2 & 6 \end{array}\right) \sim \left(\begin{array}{ccccc} \underline{1} & 0 & -1 & 0 & 1 \\ 0 & \underline{1} & 2 & 0 & 1 \\ 0 & 0 & 0 & \underline{1} & 1 \end{array}\right)$$