Reminder: Group

Definition
A group is a pair (X, o), where

@ Xisasetando: X x X — X is a total function,
satisfying the following axioms:

associativity (aob)oc=ao(boc)forall a,b,cec X.

neutral element There exists e € X s.t. ace=eoa= afor
every a € X.

inverse for every a € X there exists a~' € X such
thataca '=a 'oa=e.

The group is abelian if additionally
commutativity aob=boaforall abe X.



Reminder: Field

A field is a triple (F, +, ), where
@ (F,+) is an abelian group,
e let 0 denote its neutral element and —x the inverse to x,
@ (F\ {0},) is an abelian group,
e let 1 denote its neutral element and x ' the inverse to x,
@ a-(b+c)=a-b+a-cforall a,b,c e F (distributivity)

Examples:
@ rational numbers Q
@ real numbers R
@ complex numbers C
@ finite fields.



Vector space

Let F be a field.

Definition
A vector space over F is a triple (V, +, ), where
@ (V,+) is an abelian group (neutral element o, inverse —v)
and
: F x V — Vs atotal function (multiplication by a scalar),
satisfying the following axioms for all o, 8 € Fand u, v € V:

associativity (af)-v=a-(B-V)
neutral element 1-v=v

distributivity (1) (¢ +58)-v=a-v+5-vVv
distributivity (2) a-(u+Vv)=a-u+a-v

Elements of a vector space are called vectors.



Examples of vector spaces

Euclidean plane:
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(X1, 1) + = (X1 + X2, %1 +Y2)
- (X7y) = (O[X,Cky)
Similarly: for any integer n > 1, (R, +,-), where

(Oé1,062,...,06n)+(61,52,...,,8n):(041 +/31a042+527'--704n+6n)
Oé'(61,62,...,,3n) = (0431705/827---7046/7)



Examples of vector spaces

For any field F and integers n,m > 1, the set F”*™ of all n x m

matrices with coefficients in F.
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Examples of vector spaces

Theyset of all functionsR — R

/
e f+ gis the function whose value at 3 is f(3) + g()
@ of is the function whose value at 3 is af(3)

Related vector spaces:
@ functions from [0,1] to R
@ continuous functions from R to R
@ functions from Q to Q




Examples of vector spaces

P: polynomials with real coefficients
A+ x+x3)+32—x+x2)=(1+x+x3) +(6—-3x+3x%
=7 -—2x+3x>+x3

Related vector spaces:
@ Forany n> 0, Pp: polynomials of degree at most n.
@ Formal infinite series

(Z Bix ) = f} ()X’

i=0
@ Infinite sequences
(ag,v1,...) + (Bo, B1,...) = (ao + Bo, 1 + B1,...)
a(ﬁo» 61 P ) = (O‘BO) O‘B'I g )



More confusing examples

@ Trivial space ({o},+,-)
@ Every field forms a vector space over itself.
@ Complex numbers are a vector space over real numbers.

@ Real numbers are a vector space over rational numbers.




Basic properties

IfV is a vector space, then

av=oifandonlyifoa =0o0rv=o0

and
(=1)v=—viforeveryveV.

Ov_0v+o_0v+0v+( (© ) (0+0)v+(—(0v))
=0v+(—(0v)) =
a0=a0+0=a0+ a0+ (—(ao)) = a(0+ 0) + (—(«0))
=a0+ (—(a0)) =0
aZ0hNav=0=>v=1v=(a'a)v=alav)=ao=0
v+ (-Nv=1v4+(-1)v=(1+(-1)v=0v=o0
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Linear combinations

Let V be a vector space over F, let v, ..., v, € V be vectors.

Definition
For any a4, ..., an € F, the vector

aq1Vqy +aoVo + ... + apVp

is a linear combination of v4, ..., vp.

Remark: the number of terms in a linear combination must be
finite.




(1,2,3) is a linear combination of
(-1,2,-3), , and (0,0,1/2),

since

(1,2,3) =2(-1,2,-3) + +18(0,0,1/2).




Example

Problem
Is 3x2 + 1 a linear combination of x2 + x and x2 +2x +17?

Suppose that

3x2 +1 = a(x? + x) + B(X% 4+ 2x + 1).

Then
a+ B=38 ...coefficient at x
a+28=0 ...coefficient at x
s =1 ...constant term

The system has no solution, so 3x2 + 1 is not a linear
combination of x? + x and x® + 2x + 1.



Span

Let V be a vector space, let S C V be a set of vectors.

The linear span of S (denoted by span(S)) is the set of all linear
combinations of elements of S.

@ For Sfinite, instead of span({vy, ..., vs}), we sometimes
write span(vy, ..., V).

@ S Cspan(S), since 1v is a linear combination belonging to
span(S) for v € S.

@ o0 € span(S), since empty linear combination is equal to o.




3

span(1,x,x2,x3) = {ao+a1x+a2X2+a3X o, a1, a2, a3 € R}

is the space P3 of polynomials of degree at most 3.

span( ,(1,2,3)) ={(x,y,2) : 3x =3y + z = 0}
is a plane in 3-dimensional Euclidean space.





Spans and matrices

Letay,...,ame R", let A= (ai1|az|...|am). Then
span(ay,...,am) = {Ax: x € R}.
Hence,
b € span(ay,...,am)

if and only if the system
Ax=0>b

has a solution. Equivalently,
@ the last column of RREF(A|b) = (A'|b') is not a basis
column, and
@ the coefficients of the linear combination can be chosen as

e 0 for non-basis columns
e the entries of b’ for the corresponding basis columns



Example

Does (1, 1) belong to span((1,2),(2,4),(1,3),(2,1))?

Equivalently, does
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Example

Does (1,1) belong to span((1.2),(2,4), ,(2,1))?

Equivalently, does

Hence,




Span is a vector space

Theorem

LetV = (V,+,-) be a vector space overF, let S C V be any set
of vectors. Then

(span(S),+, )
is a vector space, satisfying span(S) C V.




Span is a vector space

Proof.
It suffices to prove that 4 and - are total on span(S), and
o € span(S).

@ inverses —v = (—1)v are in span(S) by the totality of -
If u,v € span(S), then there exist v4,...,v, € Sand
aq,...,an,B1,...,Bn € Fsuch that

U:Oé1v1+...+OénVn
V=73Vi+ ...+ BnVn

Then,
U+V:(Oz1 +ﬂ1)V1 +...+(an+ﬁn)vn
and thus u + v, av € span(S). O



Subspaces

Definition

LetV=(V,+,-) be avector space. If UC Vand U = (U, +, )
is a vector space, we say that U is a subspace of V.

We write U € V.

Examples:

@ the plane {(x,y,z) :3x -3y + z=0} € R®
e More generally, any line or plane in R® containing the origin
(0,0,0) is a subspace of R3.
@ P, (polynomials of degree at most n) form a subspace of
the space P of all polynomials

@ P, and the space of continuous functions R — R, form
subspaces of the space of all functions R — R

@ trivial subspaces: ({o},+,-) and V itself.



All subspaces are spans

LetV = (V,+,-) be a vector space, and let U be a subset of V.
Then (U, +, ) is a vector space if and only if span(U) = U.

If span(U) = U: As we observed before, span(U) is a vector
space; hence, U is a vector space.

If span(U) # U: Then + or - is not total on U, and thus U is not
a vector space.

Ol

We say that S generates U if U = span(S).



Intersection of subspaces

LetV = (V,+,-) be a vector space overF, let | be an arbitrary
set, and for i € I, let U; be a subspace of V. Then

U=V

iel

is a subspace of V.

Note that o € U,. It suffices to show that + and - are total on U,.
If u,v e Uyand a € F, then

@ u,v e U;foreveryie I, hence

@ u+v,a-veUforeveryiel hence
@ Uu+Vv,a-veU

D
e 4 4444



Example

Describe the intersection of spaces

U, = and
U, = span((1,0,-1),(1,—1,0)).

If (x,y,Zz) € Uy N Ug, then there exist «, 5,~,d € R such that

(x,y,2) =« + 8 ...visin U
(x,y,2) =~(1,0,-1) 4+ 4(1,-1,0) ...visin Uy
Comparing the coefficients, we get
a+ f—-y—-56=0 atx

a+203 +6=0 aty
368+ =0 atz



Example

Describe the intersection of spaces

U, = and
U, = span((1,0,-1),(1,—1,0)).

If (x,y,Zz) € Uy N Ug, then there exist «, 5,~,d € R such that

(x,y,2) =« + 8 ...visin U
(x,y,2) =~(1,0,-1) 4+ 4(1,-1,0) ...visin Uy

The set of solutions is («, 3,v,0) € {(—3t,t,—3t,t) : t € R}.

UinU; = {«a + 8 }
:{—31‘ +t :t € R}
={t(-2 ,3): t e R} =span((-2,-1,3)).



Example

Describe the intersection of spaces

U, = and
U, = span((1,0,-1),(1,—1,0)).

NU, = span((—-2,-1,3))





Span as an intersection

LetV = (V,+,-) be a vector space and let S be a subset of V.
Then span(S) is the smallest subspace of V containing S, that
is,

span(S)= (] V.
Uev,Scu

Let
W = ﬂ u.

UeV,Scu

@ Since S C W, we have span(S) &€ span(W) = W.
@ Since S C span(S), the subspace span(S) is one of the
spaces in the intersection, hence W & span(S).



