## Orthogonal and orthonormal sets

## Zdeněk Dvořák

## February 24, 2015

**Definition 1.** A set  $S \subseteq \mathbf{V}$  is <u>orthogonal</u> if  $u \perp v$  for all distinct  $u, v \in S$ , and it is orthonormal if additionally ||u|| = 1 for every  $u \in S$ .

**Lemma 1.** Let V be an inner product space over field F. If  $S \subseteq V$  is orthogonal and  $o \notin S$ , then S is linearly independent. In particular, any orthonormal set is linearly independent.

*Proof.* Let  $v_1, \ldots, v_n \in S$  and  $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$  satisfy

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = o.$$

For  $i = 1, \ldots, n$ , we have

$$0 = \langle o, v_i \rangle = \langle \alpha_1 v_1 + \ldots + \alpha_n v_n, v_i \rangle$$
  
=  $\alpha_1 \langle v_1, v_i \rangle + \ldots + \alpha_n \langle v_n, v_i \rangle$   
=  $\alpha_i \langle v_i, v_i \rangle$ ,

since  $\langle v_j, v_i \rangle = 0$  for  $j \neq i$ . Since  $v_i \neq o$ , we have  $\langle v_i, v_i \rangle > 0$ , and thus  $\alpha_i = 0$  for every i.

Note that if S is orthonormal, then  $o \notin S$ , since  $||o|| = 0 \neq 1$ .

**Theorem 2** (Properties of orthonormal bases). Let V be an inner product space and let  $B = v_1, \ldots, v_n$  be an orthonormal basis of V.

- 1. The coordinates of a vector v with respect to B are  $(\langle v, v_1 \rangle, \langle v, v_2 \rangle, \dots, \langle v, v_n \rangle)$ .
- 2. If the coordinates of  $u, v \in \mathbf{V}$  with respect to B are  $(\alpha_1, \ldots, \alpha_n)$  and  $(\beta_1, \ldots, \beta_n)$ , respectively, then  $\langle u, v \rangle = \alpha_1 \overline{\beta_1} + \ldots + \alpha_n \overline{\beta_n}$ .
- 3. If the coordinates of  $v \in \mathbf{V}$  with respect to B are  $(\beta_1, \ldots, \beta_n)$ , then  $||v|| = \sqrt{|\beta_1|^2 + \ldots + |\beta_n|^2}$ .

*Proof.* 1. Let the coordinates of v be  $(\beta_1, \ldots, \beta_n)$ , so that

$$v = \beta_1 v_1 + \ldots + \beta_n v_n.$$

For  $i = 1, \ldots, n$ , we have

$$\langle v, v_i \rangle = \langle \beta_1 v_1 + \ldots + \beta_n v_n, v_i \rangle$$
  
=  $\beta_1 \langle v_1, v_i \rangle + \beta_2 \langle v_2, v_i \rangle + \ldots + \beta_n \langle v_n, v_i \rangle$   
=  $\beta_i$ ,

since  $\langle v_j, v_i \rangle = 0$  if  $i \neq j$  and  $\langle v_i, v_i \rangle = 1$ .

2. We have

$$\langle u, v \rangle = \langle \alpha_1 v_1 + \ldots + \alpha_n v_n, v \rangle$$

$$= \alpha_1 \langle v_1, v \rangle + \ldots + \alpha_n \langle v_n, v \rangle$$

$$= \alpha_1 \overline{\langle v, v_1 \rangle} + \ldots + \alpha_n \overline{\langle v, v_n \rangle}$$

$$= \alpha_1 \overline{\beta_1} + \ldots + \alpha_n \overline{\beta_n}$$

3. We have

$$||v|| = \sqrt{\langle v, v \rangle}$$

$$= \sqrt{\beta_1 \overline{\beta_1} + \ldots + \beta_n \overline{\beta_n}}$$

$$= \sqrt{|\beta_1|^2 + \ldots + |\beta_n|^2}$$



Algorithm 1 (Gram-Schmidt process). Let V be an inner product space.

Input: Vectors  $v_1, \ldots, v_n \in \mathbf{V}$ 

Output: Vectors  $u_1, \ldots, u_m \in \mathbf{V}$ 

Let m := 0. For k = 1, ..., n:

- Let  $v'_k = v_k (\langle v_k, u_1 \rangle u_1 + \ldots + \langle v_k, u_m \rangle u_m)$
- If  $v'_k \neq o$ , then let m := m + 1 and  $u_m = \frac{v'_k}{\|v'_k\|}$ .

**Example 1.** Gram-Schmidt process for vectors (1, 1, 0), (1, 0, 1), (3, 2, 1), (0, 1, 1).

$$v'_{1} = (1, 1, 0) ||v'_{1}|| = \sqrt{2} u_{1} = \frac{\sqrt{2}}{2}(1, 1, 0)$$

$$v'_{2} = \frac{1}{2}(1, -1, 2) ||v'_{2}|| = \frac{\sqrt{6}}{2} u_{2} = \frac{\sqrt{6}}{6}(1, -1, 2)$$

$$v'_{3} = (0, 0, 0)$$

$$v'_{4} = \frac{1}{3}(-2, 2, 2) ||v'_{4}|| = \frac{2\sqrt{3}}{3} u_{3} = \frac{\sqrt{3}}{6}(-2, 2, 2)$$

The result is  $\frac{\sqrt{2}}{2}(1,1,0)$ ,  $\frac{\sqrt{6}}{6}(1,-1,2)$ ,  $\frac{\sqrt{3}}{6}(-2,2,2)$ .

**Theorem 3.** Let V be an inner product space, let  $S = v_1, \ldots, v_n$  be a sequence of vectors of V, and let  $T = u_1, \ldots, u_m$  be the result of the Gram-Schmidt process applied to S. Then T is an orthonormal set and span(T) = span(S).

*Proof.* We prove the claim by induction on n. For n = 0, the claim is trivially true, and thus assume that  $n \geq 1$ . Let  $u_1, \ldots, u_{m'}$  be the result of the Gram-Schmidt process applied to  $v_1, \ldots, v_{n-1}$ , where m' is either m or m-1. By the induction hypothesis,  $u_1, \ldots, u_{m'}$  are othonormal and  $\operatorname{span}(u_1, \ldots, u_{m'}) = \operatorname{span}(v_1, \ldots, v_{n-1})$ .

Suppose first that  $v_n \in \text{span}(v_1, \ldots, v_{n-1}) = \text{span}(u_1, \ldots, u_{m'})$ . By Theorem 2, we have  $v_n = \langle v_n, u_1 \rangle u_1 + \ldots + \langle v_n, u_{m'} \rangle u_{m'}$ , and thus  $v'_n = o$ , m = m', and  $T = u_1, \ldots, u_{m'}$ . Observe that

$$\operatorname{span}(T) = \operatorname{span}(u_1, \dots, u_{m'}) = \operatorname{span}(v_1, \dots, v_{n-1}) = \operatorname{span}(S).$$

Next, suppose that  $v_n \not\in \operatorname{span}(v_1, \ldots, v_{n-1}) = \operatorname{span}(u_1, \ldots, u_{m'})$ . Since  $\langle v_n, u_1 \rangle u_1 + \ldots + \langle v_n, u_{m'} \rangle u_{m'} \in \operatorname{span}(u_1, \ldots, u_{m'})$ , it follows that  $v'_n \neq o$ , and thus m = m' + 1. Note that

- $||u_m|| = \left\| \frac{v'_n}{||v'_n||} \right\| = \frac{||v'_n||}{||v'_n||} = 1$  and
- for i = 1, ..., m',

$$\langle v'_{n}, u_{i} \rangle = \langle v_{n} - (\langle v_{n}, u_{1} \rangle u_{1} + \ldots + \langle v_{n}, u_{m'} \rangle u_{m'}), u_{i} \rangle$$

$$= \langle v_{n}, u_{i} \rangle - (\langle v_{n}, u_{1} \rangle \langle u_{1}, u_{i} \rangle + \ldots + \langle v_{n}, u_{m'} \rangle \langle u_{m'}, u_{i} \rangle)$$

$$= \langle v_{n}, u_{i} \rangle - \langle v_{n}, u_{i} \rangle$$

$$= 0,$$

since  $u_1, \ldots, u_{m'}$  is orthonormal, and thus  $\langle u_m, u_i \rangle = 0$ .

Therefore,  $u_1, \ldots, u_m$  is orthonormal.

Note that  $u_m \in \operatorname{span}(u_1, \ldots, u_{m'}, v_n) = \operatorname{span}(S)$ , and thus  $\operatorname{span}(T) \subseteq \operatorname{span}(S)$ . Furthermore, since T is orthonormal, we have  $\dim(\operatorname{span}(T)) = m = m' + 1$ , and since  $v_n \notin \operatorname{span}(v_1, \ldots, v_{n-1})$ , we have  $\dim(\operatorname{span}(S)) = 1 + \dim(\operatorname{span}(v_1, \ldots, v_{n-1})) = 1 + \dim(\operatorname{span}(u_1, \ldots, u_{m'})) = m' + 1$ , hence  $\dim(\operatorname{span}(S)) = \dim(\operatorname{span}(T))$  and  $\operatorname{span}(S) = \operatorname{span}(T)$ .

**Corollary 4.** Every inner product space V of finite dimension has an orthonormal basis. Furthermore, if  $S \subset V$  is orthonormal, then there exists an orthonormal basis B of V such that  $S \subseteq B$ .

*Proof.* Let  $S = u_1, \ldots, u_k$ . We can extend S to a basis  $S' = u_1, \ldots, u_k, v_{k+1}, \ldots, v_n$  of  $\mathbf{V}$ . By the Gram-Schmidt process, we obtain an orthonormal basis  $B = u_1, \ldots, u_k, w_{k+1}, \ldots, w_n$  (the process does not change  $u_1, \ldots, u_k$ , since they are orthonormal).