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For integers a, b, and c, let D(a, b, c) be the diagonal matrix with

Di,i =


+1 for i = 1, . . . , a,

−1 for i = a+ 1, . . . , a+ b,

0 for i = a+ b+ 1, . . . , a+ b+ c.

.

Definition 1. We say that a quadratic form f on a vector space V of finite
dimension has signature (a, b, c) if there exists a basis B such that [f ]B =
D(a, b, c).

A symmetric matrix A has signature (a, b, c) if the quadratic form f(x) =
xTAx has signature (a, b, c); i.e., A = BD(a, b, c)BT for some regular matrix
B.

Lemma 1. Let A be a real symmetric matrix. If f has signature (a, b, c),
then the sum of algebraic multiplicities of the positive eigenvalues of A is a,
and the sum of algebraic multiplicities of the negative eigenvalues of A is b.

1 Positive definiteness and semidefiniteness

Definition 2. Let V be a vector space over real numbers. A symmetric
bilinear form b : V × V → R is positive semidefinite if b(x, x) ≥ 0 for all
x ∈ V, and it is positive definite if b(x, x) > 0 for all x ∈ V \ {o}.

Similarly, a quadratic form f : V→ R is positive semidefinite if f(x) ≥ 0
for all x ∈ V, and it is positive definite if f(x) > 0 for all x ∈ V \ {o}.

A real symmetric n×n matrix A is positive semidefinite if xTAx ≥ 0 for
all x ∈ Rn, and it is positive definite if xTAx > 0 for all x ∈ Rn \ {o}.

We write X � 0 if X is positive semidefinite, and X � 0 if X is positive
definite.
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Observation 2. Let V be a vector space over real numbers of finite dimen-
sion and let C be its basis. A symmetric bilinear form b : V×V→ R is pos-
itive (semi)definite if and only if the quadratic form f(x) = b(x, x) is positive
(semi)definite, and if and only if the matrix [b]C is positive (semi)definite.

Observation 3. A symmetric bilinear form defines an inner product if and
only if it is positive definite. Conversely, every inner product is a symmetric
bilinear form.

Lemma 4. Let A be a symmetric real n × n matrix. If A � 0, then A is
regular, and A−1 � 0.

Proof. If Ax = o, then xTAx = 0, and thus x = o since A is positive
definite; hence, A is regular. For any x ∈ Rn \ {o}, we have xTA−1x =
xT (A−1A)A−1x = (A−1x)TA(A−1x) > 0.

Lemma 5. Let A be a symmetric real n × n matrix. The following claims
are equivalent.

1. A � 0.

2. A has signature (p, 0, z) for some integers p, z ≥ 0 such that p+ z = n.

3. All eigenvalues of A are non-negative.

4. A = B2 for some symmetric positive semidefinite matrix B.

5. A = B2 for some symmetric matrix B.

6. A = F TF for some matrix F .

Proof. 1⇒ 2: Let (a, b, c) be the signature of A; then, D(a, b, c) = BTAB
for some regular matrix B, and thus D(a, b, c)i,i = (Bei)

TA(Bei) ≥ 0
for i = 1, . . . , n. Hence, b = 0.

2⇒ 3: By Lemma 1.

3⇒ 4: Since A is symmetric and real, we have A = QTDQ for some orthog-
onal Q and a diagonal matrix D with eigenvalues of A on the diagonal.
Hence, all entries of D are non-negative. Let E be the diagonal ma-
trix such that Ei,i =

√
Di,i for i = 1, . . . , n, so that D = E2. Letting

B = QTEQ, we have B2 = QTE2Q = A. Furthermore, B is positive
semidefinite, since xTBx = (Qx)TE(Qx) =

∑n
i=1Ei,i(Qx)2i ≥ 0 for all

x ∈ Rn.

4⇒ 5⇒ 6: Trivial.
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6⇒ 1: For any x ∈ Rn, we have xTAx = (Fx)T (Fx) = ‖Fx‖2 ≥ 0.

Similarly, the following holds.

Lemma 6. Let A be a symmetric real n × n matrix. The following claims
are equivalent.

• A � 0.

• A has signature (n, 0, 0).

• All eigenvalues of A are positive.

• A = B2 for some symmetric positive definite matrix B.

• A = B2 for some symmetric regular matrix B.

• A = F TF for some matrix F of rank n.

Example 1. Find 5 points z1, . . . , z5 in R3 such that the distance between
zi and zj is Si,j for the matrix

S =


0 1 1 1
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 .

Without loss of generality, we can fix z1 = (0, 0, 0).
We have S2

ij = ‖zi−zj‖2 = 〈zi−zj, zi−zj〉 = 〈zi, zi〉+〈zj, zj〉−2〈zi, zj〉 =
‖zi− z1‖2 + ‖zj − z1‖2− 2〈zi, zj〉 = S2

i,1 +S2
j,1− 2〈zi, zj〉. Let P be the matrix

such that Pi,j = 〈zi+1, zj+1〉 for i, j = 1, . . . , 4. Note that S2
i+1,j+1 = S2

i+1,1 +
S2
j+1,1 − 2Pi,j, and thus Pi,j = 1

2
(S2

i+1,1 + S2
j+1,1 − S2

i+1,j+1). Furthermore,
S2
i+1,1 = Pi,i. Hence, the matrix S uniquely determines P , and vice versa. In

our example, we have

P =


1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 3

 .
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Let Z = (z2|z3|z4|z5)T ; we have P = ZZT , and thus P � 0. We can
express P = QDQT , where

Q =


1√
12
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
is orthogonal and

D =


4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Let

E =


2 0 0
0 1 0
0 0 1
0 0 0

 ,

so that D = EET , and P = QE(QE)T . Hence, we can set Z = QE, and
thus

z2 =

(
1√
3
,

1√
2
,

1√
6

)
z3 =

(
1√
3
,− 1√

2
,

1√
6

)
z4 =

(
1√
3
, 0,− 2√

6

)
z5 =

(√
3, 0, 0

)
is a solution.

Lemma 7. If A � 0 and B is regular, then the diagonal entries of BABT

are positive.

Proof. We have (BABT )i,i = eTi BAB
T ei = (BT ei)

TA(BT ei) > 0, since
BT ei 6= o.

Suppose we apply the algorithm from Sylvester’s law of inertia (simulta-
neous Gaussian elimination on rows and columns). By Lemma 7, we never
need to exchange rows (and columns), and we only need to add multiples of
rows (columns) to the latter ones. Also, we only multiply rows (columns) by
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positive numbers. Consequently, each of the row operations is expressed by
a lower-triangular matrix with positive entries on the diagonal. We end up
with the identity matrix.

Corollary 8 (Cholesky decomposition). If A is a positive definite n × n
matrix, then there exists a unique lower-triangular matrix L with positive
entries on the diagonal such that A = LLT .

Proof. The existence follows by the analysis of the simultaneous Gaussian
elimination on rows and columns.

For the uniqueness, suppose that A = LLT . Then for any i ≤ j, we have

Ai,j =
n∑
k=1

Li,kLj,k =
i∑

k=1

Li,kLj,k,

and thus

Li,iLj,i = Ai,j −
i−1∑
k=1

Li,kLj,k.

Since the diagonal entries of L are positive, it follows that

Li,i =

√√√√Ai,i −
i−1∑
k=1

L2
i,k

for i = 1, . . . , n, and that

Lj,i =
Ai,j −

∑i−1
k=1 Li,kLj,k
Li,i

for i < j. Only the entries of L with lexicographically smaller indices appear
in these formulas, and thus they uniquely determine L.

Example 2. Find the Cholesky decomposition of

A =

 1 −1 2
−1 5 −2
2 −2 5

 .

Let

L =

a 0 0
b c 0
d e f

 .
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Then

LLT =

a2 ab ad
ab b2 + c2 bd+ ce
ad bd+ ce d2 + e2 + f 2

 .

Hence,

a2 = 1⇒ a = 1

ab = b = −1

ad = d = 2

b2 + c2 = 1 + c2 = 5⇒ c = 2

bd+ ce = −2 + 2e = −2⇒ e = 0

d2 + e2 + f 2 = 4 + f 2 = 5⇒ f = 1,

and thus

L =

 1 0 0
−1 2 0
2 0 1

 .

Cholesky decomposition is useful to solve systems of linear equations,
when the left-hand side happens to be positive definite: To solve Ax = b, we
first solve Ly = b, then LTx = y, by forward and backward substitution.

Example 3. Let A be the matrix from Example 2. Solve the system of
equations Ax = (3, 5, 7)T .

First, solve the system Ly = (3, 5, 7)T :

y1 = 3

−y1 + 2y2 = 5

2y1 + y3 = 7

This gives y = (3, 4, 1)T .
Next, we solve the system LTx = y:

x1 − x2 + 2x3 = 3

2x2 = 4

x3 = 1

This gives x = (3, 2, 1).
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Corollary 9. Let A be a symmetric real n × n matrix. For i = 1, . . . , n,
let Ai be the i × i matrix obtained from A by removing the last n − i rows
and columns. The matrix A is positive definite if and only if det(Ai) > 0 for
i = 1, . . . , n.

Proof. Perform the simultaneous Gaussian elimination on rows and columns,
without ever swapping rows (columns) and with only adding to later rows
(columns) and multiplying by positive numbers. This does not affect the sign
of det(Ai) for any i.

If A is positive definite, this is possible and we end up with the identity
matrix I, with det(Ii) = 1 for i = 1, . . . , n.

If det(Ai) > 0 for i = 1, . . . , n, this also ensures that the process goes
through and ends up with the identity matrix, showing that A has signature
(n, 0, 0), and thus A � 0.

2 Linear and semidefinite programming

A linear program is a problem of form “minimize cTx subject to Ax ≥ b,”
for a real matrix A and real vectors b and c (or with ≤/= in the constraints,
or with max instead of min). Linear programs can be solved exactly in
polynomial time.

Example 4. We have warehouses in towns s1, . . . , s4, containing 100, 200,
250, and 100 kgs of our product, respectively. We have orders from towns t1,
t2, and t3, requesting 150, 200, and 200 kgs of our product, respectively. Ship-
ping 1 kg of our product from town si to town tj costs Ci,j for the following
matrix

C =


1 2 3
2 1 3
1 2 2
4 3 1

 .

How to ship the product to minimize the cost?

Let xij denote the amount of the product sent from the town si to the
town sj. Then, we want to minimize∑
ij

Cijxij = x11+2x12+3x13+2x21+x22+3x23+x31+2x32+2x33+4x41+3x42+x43
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subject to

x11 + x12 + x13 ≤ 100 x21 + x22 + x23 ≤ 200

x31 + x32 + x33 ≤ 250 x41 + x42 + x43 ≤ 100

x11 + x21 + x31 + x41 = 150 x12 + x22 + x32 + x42 = 200

x13 + x23 + x33 + x43 = 200 for all i, j, xij ≥ 0

A semidefinite program is a problem of form “minimize cTx subject to
A0 + A1x1 + . . .+ Anxn � 0” for real symmetric matrices A0, . . . , An and a
real vector c ∈ Rn.

Example 5. The largest eigenvalue of a symmetric real matrix A is the
minimum t such that It− A � 0.

We may also require positive semidefiniteness of several matrices (since(
A 0
0 B

)
� 0 if and only if A � 0 and B � 0), and linear equalities and

inequalities among x1, . . . , xn (since α1x1+ . . .+αnxn+b ≥ 0 is equivalent to
(α1)x1 + . . . + (αn)xn + (b) � 0). Hence, positive semidefinite programming
generalizes linear programming. The solutions to semidefinite programs can
be approximated arbitrarily well in polynomial time.

Example 6. Let G be a graph with vertex set {z1, . . . , zn}. Let θ(G) be the
minimum r such that there exist vectors v1, . . . , vn ∈ Rn such that ‖vi‖ = 1
for i = 1, . . . , n, and such that 〈vi, vj〉 ≤ r for all i, j such that zizj ∈ E(G).

This minimum can be computed by a semidefinite program. By Lemma 5,
an n × n symmetric matrix X is positive semidefinite if and only if there
exists vectors v1, . . . , vn ∈ Rn such that Xi,j = 〈vi, vj〉 for 1 ≤ i, j ≤ n.
Hence, equivalently, we want to minimize r in a semidefinite program with
variables r and xij for i ≤ j, such that xi,i = 1 for i = 1, . . . , n, xij ≤ r
whenever zizj ∈ E(G), and X =

∑
1≤i≤j≤nA(i, j)xij � 0, where A(i, j) is

the matrix with [A(i, j)]i,j = [A(i, j)]j,i = 1 and all other entries equal to 0.
Let us establish an upper and a lower bound on θ(G). Firstly, observe

that θ(Kt) = − 1
t−1 for all t ≥ 1, and that θ(H) ≤ θ(G) for any subgraph H

of G, and thus θ(G) ≥ − 1
ω(G)−1 . On the other hand, if G can be properly

k-colored, then we can assign to all vertices of G of the same color one of
the vectors of the optimal solution for Kk, and thus θ(G) ≤ − 1

χ(G)−1 .

Therefore, ω(G) ≤ − 1
θ(G)
− 1 ≤ χ(G), and thus θ(G) gives an efficiently

computable bound for two hard to compute graph parameters.
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