Dot product and inner product

Zdeněk Dvořák

February 24, 2015

1 Dot (scalar) product of real vectors

Definition 1. Let $u = (\alpha_1, \dots, \alpha_n)$ and $v = (\beta_1, \dots, \beta_n)$ be vectors from \mathbb{R}^n . The dot product of u and v is

$$u \cdot v = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \ldots + \alpha_n \beta_n.$$

Definition 2. The Euclidean norm of $v = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is

$$|v| = \sqrt{\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_n^2} = \sqrt{v \cdot v}.$$

Lemma 1 (Geometric interpretation). For any $u, v \in \mathbb{R}^n$ such that the angle between u and v is θ .

$$u \cdot v = |u||v|\cos\theta.$$

Proof. Note that the dot product is commutative and linear in both arguments, and thus

$$(u-v) \cdot (u-v) = u \cdot (u-v) - v \cdot (u-v)$$
$$= (u \cdot u - u \cdot v) - (v \cdot u - v \cdot v)$$
$$= u \cdot u + v \cdot v - 2u \cdot v$$

Recall that in a triangle

we have

$$c^2 = a^2 + b^2 - 2ab\cos\theta,$$

and thus

$$|u - v|^2 = |u|^2 + |v|^2 - 2|u||v|\cos\theta.$$

It follows that

$$|u||v|\cos\theta = \frac{|u|^2 + |v|^2 - |u - v|^2}{2}$$

$$= \frac{u \cdot u + v \cdot v - (u - v) \cdot (u - v)}{2}$$

$$= \frac{u \cdot u + v \cdot v - (u \cdot u + v \cdot v - 2u \cdot v)}{2}$$

$$= \frac{2u \cdot v}{2}$$

$$= u \cdot v.$$

Uses of dot product:

• Determining the angle between two vectors:

• Two vectors are perpendicular iff their dot product is 0.

• Orthogonal projection:

The projection p of u on v (where θ is the angle between u and v) has norm

$$|u|\cos\theta = \frac{u\cdot v}{|v|}$$

and the same direction as v, hence

$$p = \frac{v}{|v|} \cdot \frac{u \cdot v}{|v|} = \frac{u \cdot v}{v \cdot v} v.$$

• Determining coordinates in an orthogonal basis (projections to basis vectors).

Example 1. Let $u_1 = (\sqrt{2}/2, \sqrt{2}/2)$ and $u_2 = (-\sqrt{2}/2, \sqrt{2}/2)$. Determine the coordinates of (3,5) with respect to the basis $B = u_1, u_2$.

Note that $u_1 \cdot u_2 = 0$ (the vectors u_1 and u_2 are perpendicular) and $|u_1| = |u_2| = 1$. Hence, the coordinates are

$$(3,5)\cdot u_1 = 4\sqrt{2}$$

and

$$(3,5) \cdot u_2 = \sqrt{2}$$

2 Inner product spaces

Recall:

• R: the field of real numbers

• C: the field of complex numbers

• complex conjugation:

$$-\overline{\alpha + \beta i} = \alpha - \beta i$$

$$-\overline{x + y} = \overline{x} + \overline{y}$$

$$-\overline{xy} = \overline{x}\overline{y}$$

$$-x\overline{x} = |x|^2, \text{ where } |\alpha + \beta i| = \sqrt{\alpha^2 + \beta^2}$$

Definition 3. Let **F** be either **R** or **C**.

 $\underline{\mathit{Inner\ product\ space}\ is\ a\ \mathit{vector\ space}\ \mathbf{V}\ \mathit{over}\ \mathbf{F},\ \mathit{together\ with\ an\ \underline{\mathit{inner}}}}_{\mathit{product}}$

$$\langle \cdot, \cdot \rangle : \mathbf{V}^2 \to \mathbf{F}$$

satisfying the following axioms:

positive definiteness For all $v \in \mathbf{V}$, $\langle v, v \rangle$ is a non-negative <u>real</u> number, and $\langle v, v \rangle = 0$ if and only if v = o.

linearity in the first argument For all $u, v, w \in \mathbf{V}$ and $\alpha \in \mathbf{F}$,

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

 $\langle \alpha u, w \rangle = \alpha \langle u, w \rangle$

conjugate commutativity For all $u, v \in \mathbf{V}$,

$$\langle u, v \rangle = \overline{\langle v, u \rangle}.$$

Remark:

- $\langle o, v \rangle = 0 = \langle v, o \rangle$ for every $v \in \mathbf{V}$.
- If F = R, then

- the last axiom states commutativity $\langle u, v \rangle = \langle v, u \rangle$, and
- $\langle \cdot, \cdot \rangle$ is linear in the second argument as well

$$\langle w, u + v \rangle = \langle w, u \rangle + \langle w, v \rangle$$

 $\langle w, \alpha u \rangle = \alpha \langle w, u \rangle$

• If $\mathbf{F} = \mathbf{C}$, then

$$\langle w, u + v \rangle = \overline{\langle u + v, w \rangle}$$

$$= \overline{\langle u, w \rangle + \langle v, w \rangle}$$

$$= \overline{\langle u, w \rangle} + \overline{\langle v, w \rangle}$$

$$= \langle w, u \rangle + \langle w, v \rangle$$

$$\langle w, \alpha u \rangle = \overline{\langle \alpha u, w \rangle}$$

$$= \overline{\alpha \langle w, u \rangle}.$$

 $-\langle \cdot, \cdot \rangle$ is <u>not</u> linear in the second argument, because of the conjugation in <u>scalar</u> multiplication.

Example 2.

- Dot product gives an inner product on \mathbb{R}^n .
- Another example of possible inner product on \mathbb{R}^2 :

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = 2\alpha_1\beta_1 + \alpha_2\beta_2 - \alpha_1\beta_2 - \alpha_2\beta_1$$

- positive definiteness: $\langle (\alpha_1, \alpha_2), (\alpha_1, \alpha_2) \rangle = \alpha_1^2 + (\alpha_1 \alpha_2)^2 \ge 0$, and equal to 0 if and only if $\alpha_1 = 0$ and $\alpha_1 \alpha_2 = 0 \Rightarrow \alpha_2 = 0$.
- Complex dot product on \mathbb{C}^n :

$$(\alpha_1, \ldots, \alpha_n) \cdot (\beta_1, \ldots, \beta_n) = \alpha_1 \overline{\beta_1} + \ldots + \alpha_n \overline{\beta_n}.$$

• Standard inner product on the space of continuous functions $f : [\alpha, \beta] \to \mathbf{R}$:

$$\langle f, g \rangle = \int_{\alpha}^{\beta} f(x)g(x)dx$$

Definition 4. Let V be an inner product space. Vectors $u, v \in V$ are orthogonal if $\langle u, v \rangle = 0$. We write $u \perp v$.

Example 3.

- (1,0) and (0,1) are orthogonal with respect to the dot product, since $(1,0)\cdot(0,1)=0$.
- (1,0) and (0,1) are not orthogonal with respect to the inner product

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = 2\alpha_1\beta_1 + \alpha_2\beta_2 - \alpha_1\beta_2 - \alpha_2\beta_1,$$

since
$$\langle (1,0), (0,1) \rangle = -1$$
.

• $f(x) = \sin x$ and g(x) = 1 are orthogonal with respect to the standard inner product on the space of continuous functions from $[0, 2\pi]$:

$$\int_0^{2\pi} f(x)g(x)dx = \int_0^{2\pi} \sin x \, dx = \left[-\cos x\right]_0^{2\pi} = \cos 0 - \cos(2\pi) = 0.$$

Theorem 2 (Pythagoras theorem). Let \mathbf{V} be an inner product space and let $u, v \in \mathbf{V}$. If $u \perp v$, then

$$\langle u, u \rangle + \langle v, v \rangle = \langle u + v, u + v \rangle$$
.

Proof.

$$\langle u + v, u + v \rangle = \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle$$
$$= \langle u, u \rangle + \langle v, v \rangle,$$

since
$$\langle u, v \rangle = 0$$
 and $\langle v, u \rangle = \overline{\langle u, v \rangle} = 0$.

Theorem 3 (Cauchy-Schwarz inequality). Let V be an inner product space. Then for all $u, v \in V$,

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle,$$

and if u and v are linearly independent, then the inequality is sharp.

Proof. The claim is clearly true if v = o, hence assume that $\langle v, v \rangle > 0$.

Let $w = \frac{\langle u, v \rangle}{\langle v, v \rangle} v$ and z = u - w. Then

$$\begin{aligned} \langle z, v \rangle &= \left\langle u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v, v \right\rangle \\ &= \langle u, v \rangle - \left\langle \frac{\langle u, v \rangle}{\langle v, v \rangle} v, v \right\rangle \\ &= \langle u, v \rangle - \frac{\langle u, v \rangle}{\langle v, v \rangle} \langle v, v \rangle \\ &= 0, \end{aligned}$$

and thus $v \perp z$ and $w \perp z$.

Since u = w + z, Pythagoras theorem implies

$$\begin{split} \langle u,u\rangle &= \langle w,w\rangle + \langle z,z\rangle \\ &\geq \langle w,w\rangle \\ &= \frac{\langle u,v\rangle}{\langle v,v\rangle} \overline{\langle u,v\rangle} \, \langle v,v\rangle \\ &= \left|\frac{\langle u,v\rangle}{\langle v,v\rangle}\right|^2 \langle v,v\rangle \\ &= \frac{|\langle u,v\rangle|^2}{\langle v,v\rangle}, \end{split}$$

and thus

$$\langle u, u \rangle \langle v, v \rangle \ge |\langle u, v \rangle|^2$$
.

The equality holds only if z=o, i.e., if $u=\frac{\langle u,v\rangle}{\langle v,v\rangle}v$, which implies that u and v are linearly dependent. \square

Example 4. Let x_1, \ldots, x_n be positive real numbers. Prove that

$$x_1^2 + \ldots + x_n^2 \ge \frac{(x_1 + \ldots + x_n)^2}{n},$$

where the equality holds if and only if $x_1 = x_2 = \ldots = x_n$.

Proof. We apply the Cauchy-Schwarz inequality for the dot product of $u = (x_1, \ldots, x_n)$ and $v = (1, \ldots, 1)$:

$$(x_1^2 + \ldots + x_n^2)n = (u \cdot u)(v \cdot v)$$

$$\geq (u \cdot v)^2$$

$$= (x_1 + \ldots + x_n)^2,$$

where the equality only holds if u and v are linearly dependent, i.e., $x_1 = \ldots = x_n$.

Definition 5. Let V be a vector space over a field $F \in \{R, C\}$. A function $s : V \to R$ is a norm if

- $s(v) \ge 0$ for every $v \in \mathbf{V}$, and s(v) = 0 if and only if v = o.
- $s(\alpha v) = |\alpha| s(v)$ for every $v \in \mathbf{V}$ and $\alpha \in \mathbf{F}$.
- $s(u+v) \le s(u) + s(v)$ for every $u, v \in \mathbf{V}$ (triangle inequality).

Definition 6. The norm induced by an inner product is

$$||v|| = \sqrt{\langle v, v \rangle}.$$

- If $\langle \cdot, \cdot \rangle$ is the dot product, then $\| \cdot \|$ is the Euclidean norm.
- Pythagoras theorem reformulated using the norm: if $u \perp v$, then

$$||u||^2 + ||v||^2 = ||u + v||^2$$

• Cauchy-Schwarz inequality reformulated using the norm:

$$|\langle u, v \rangle| \le ||u|| ||v||$$

• The triangle inequality holds because of Cauchy-Schwarz:

$$||u+v||^{2} = \langle u+v, u+v \rangle$$

$$= ||u||^{2} + ||v||^{2} + \langle u, v \rangle + \langle v, u \rangle$$

$$\leq ||u||^{2} + ||v||^{2} + 2|\langle u, v \rangle|$$

$$\leq ||u||^{2} + ||v||^{2} + 2||u||||v||$$

$$= (||u|| + ||v||)^{2}$$