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1 Dot (scalar) product of real vectors

Definition 1. Let u = (v, ..., ay,) andv = (B, ..., Bn) be vectors from R™.
The dot product of u and v s

U'U:Oélﬂl—i‘OCQBQ—i‘...—FOénﬁn.

Definition 2. The Euclidean norm of v = (aq,...,a,) € R" is
lv] = \/a%+a§+...+a%:\/v-v.
v
o u

Lemma 1 (Geometric interpretation). For any u,v € R™ such that the angle
between u and v is 0,
u-v = |ulv|cos@.

Proof. Note that the dot product is commutative and linear in both argu-
ments, and thus

(u—v)-(u—v)=u-(u—v)—v-(u—0v)
=(u-u—u-v)—(v-u—v-v)

=u-ut+v-v—2u-v

Recall that in a triangle



b c u—v
u
a
we have
2 =a?+b* — 2abcosb,
and thus
lu —v)? = Jul* + |v|* = 2Jul|v]| cos 6.
It follows that
|u|[v] cos 6 = [ul® + Jol® = Ju = of
2
L urutvov—(u—v)- (u—0v)
B 2
L urutvov—(uutvov—2u-v)
B 2
 2u-vw
2
=u-v

Uses of dot product:
e Determining the angle between two vectors:

v

9\ u

u-v

6 = arccos
|ul|v]

e Two vectors are perpendicular iff their dot product is 0.



e Orthogonal projection:

The projection p of u on v (where 6 is the angle between u and v) has

norm
u-v
|u| cos = ——
0]
and the same direction as v, hence

vou-v uU-v
p:|—-—:—v.

e Determining coordinates in an orthogonal basis (projections to basis
vectors).

Example 1. Let u; = (v/2/2,v/2/2) and uy = (—v/2/2,v/2/2). Determine

the coordinates of (3,5) with respect to the basis B = uyq, us.

(3,5)

Uy’ Uy

Note that uq -ug = 0 (the vectors uy and ug are perpendicular) and |uy| =
|ug| = 1. Hence, the coordinates are

(3,5) - uy = 4v2

3



and

(3,5)U2:\/§

2 Inner product spaces

Recall:
e R: the field of real numbers
e C: the field of complex numbers

e complex conjugation:

—a+fi=a— i

—r+y=x+y

—TYy=7y

— 27 = |z|*, where |a + Bi] = /a2 + 32

Definition 3. Let F be either R or C.
Inner product space is a vector space V over F, together with an inner
product

(,Y: V2o F
satisfying the following axioms:

positive definiteness For all v € V, (v,v) is a non-negative real number,
and (v,v) =0 if and only if v = o.

linearity in the first argument For all u,v,w € V and a € F,

(u+v,w) = (u,w) + (v,w)

(ou, w) = a (u, w)

conjugate commutativity For all u,v € V,

(u,v) = (v,u).
Remark:

e (0,0) =0 = (v,0) for every v € V.

o [f F =R, then



— the last axiom states commutativity (u,v) = (v, u), and

— (-, +) is linear in the second argument as well

(w,u~+v) = (w,u) + (w,v)
(w,au) = a{w,u)

o If F =C, then

(w,u+v) = (u+v,w)
= (u,w) + (v, w)
= (u,w) + (v, w)
= (w,u) + (w, v)

(w, au) = {ou, w)

= a(u,w)

— (-,-) is not linear in the second argument, because of the conjuga-
tion in scalar multiplication.

Example 2.
e Dot product gives an inner product on R™.

o Another example of possible inner product on R?:

(o, 2), (B, B2)) = 20101 + a2 — a1 B2 — aa By

— positive definiteness: ((a1,as), (a1, as)) = a2 + (a1 — a)? > 0,
and equal to 0 if and only if 1 =0 and oy — as =0 = ay = 0.

o Complex dot product on C":
(o1, yom) - (Biy.o oy Br) = P + ... + B

e Standard inner product on the space of continuous functions f : [a, 8] —
R:

B8
(f.g) = / f(@)g(x)dz



Definition 4. Let 'V be an inner product space. Vectors u,v € V are
orthogonal if (u,v) = 0. We write u L v.

Example 3.

e (1,0) and (0,1) are orthogonal with respect to the dot product, since
1,0 =0.

(1,0)-(0,1)

e (1,0) and (0,1) are not orthogonal with respect to the inner product

(1, 2), (Br, B2)) = 2011 + azfBa — a1 B2 — a2 B,
since ((1,0),(0,1)) = —1.

e f(x) =sinz and g(x) = 1 are orthogonal with respect to the standard
inner product on the space of continuous functions from [0, 27]:

2m 2m
/ f(z)g(z)dx = / sin @ dz = [~ cos z]2™ = cos 0 — cos(2m) = 0.
0 0

Theorem 2 (Pythagoras theorem). Let V be an inner product space and let
u,v € V. If u L v, then

(u,u) + (v,v) = (u+v,u+v).

Proof.
(u+v,u+v) = (u,u) + (v,v) + (u,v) + (v, u)
7u —"_ <U7U>7
since (u,v) = 0 and (v, u) = (u,v) = 0. O

Theorem 3 (Cauchy-Schwarz inequality). Let V be an inner product space.
Then for all u,v € V,

| (u,0) [* < {u,u) (v,0)
and if uw and v are linearly independent, then the inequality is sharp.

Proof. The claim is clearly true if v = o, hence assume that (v, v) > 0.



u

Let w = Ezzgv and z = u — w. Then

and thus v L z and w L 2.
Since u = w + z, Pythagoras theorem implies

and thus
(u,u) (v, 0) > | (u,v) [°.

The equality holds only if z = o, i.e., if u = 255;1’7 which implies that u and
v are linearly dependent. O]
Example 4. Let x4,...,x, be positive real numbers. Prove that

2
o x> (z1 4. 4 ) ,
n




where the equality holds if and only if xt1 = x5 = ... = x,.

Proof. We apply the Cauchy-Schwarz inequality for the dot product of u =
(x1,...,2,) and v = (1,...,1):

(34 ... +22)n=(u-u)(v-v)

=(z1+ ...+ 3,)%

where the equality only holds if v and v are linearly dependent, i.e., 1 =
.= Ty [

Definition 5. Let 'V be a vector space over a field F € {R,C}. A function
s:V = R is a norm if

e s5(v) >0 for every v € V, and s(v) =0 if and only if v = o.
e s(av) = |als(v) for every v € V and o € F.
o s(u+v) <s(u)+s(v) for every u,v € V (triangle inequality).

Definition 6. The norm induced by an inner product is

[o]] = v/ (v, v).

If (-,-) is the dot product, then || - || is the Euclidean norm.

Pythagoras theorem reformulated using the norm: if v L v, then

ul* + ol* = flu+v]*

Cauchy-Schwarz inequality reformulated using the norm:

| (w0 [ < o]

The triangle inequality holds because of Cauchy-Schwarz:

|u+v|* = (u+ v, u+v)
= [lull® + vll* + (u, v) + (v, u)
< ull® + [[v]* + 2] {u, v) |
< ul® + floll* + 2{Jull[|v|]
= (lull + [[o]))*



