Proof of Regularity Lemma

Zdeněk Dvořák

January 11, 2024

We are going to use the following well-known inequality.
Lemma 1 (Cauchy-Schwarz inequality). For any real numbers u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n}, we have $\left(\sum_{i=1}^{n} u_{i}^{2}\right)\left(\sum_{i=1}^{n} v_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} u_{i} v_{i}\right)^{2}$.

Our goal is to prove the Regularity Lemma.
Theorem 2. For any positive integer m_{0} and real number $\varepsilon>0$, there exists an integer $M \geq m_{0}$ such that the following holds. Every graph G with at least m_{0} vertices has an ε-regular partition of order at least m_{0} and at most M.

Without loss of generality, we can assume that $\varepsilon<1 / 2$. Let $n \geq m_{0}$ be the number of vertices of G. Let us recall that an ε-regular partition consists of parts V_{1}, \ldots, V_{m} of the same size, and an exceptional part V_{0} of size at most εn. For the purposes of the proof, it will be more convenient to further break up V_{0} to single-element parts. Hence, we say that a partition \mathcal{P} of $V(G)$ is an ε-regular partition of order m if \mathcal{P} contains distinct parts V_{1}, \ldots, V_{m} such that
(i) $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{m}\right|$,
(ii) for all but at most εm^{2} values of $1 \leq i<j \leq m$, the pair $\left(V_{i}, V_{j}\right)$ is ε-regular, and
(iii) $\mathcal{P} \backslash\left\{V_{1}, \ldots, V_{m}\right\}$ consists of at most εn parts of size one.

The proof proceeds by starting with an initial partition of order m_{0} satisfying (i) and (iii) and proceeds to refine it, increasing a suitably defined "quality" of the partition, so that the following conditions hold:

- each refinement increases the quality by at least $\frac{\varepsilon^{5}}{4} n^{2}$,
- each refinement increases the order of the partition at most exponentially, and
- once further refinement is not possible, (ii) holds.

Moreover, the quality is bounded from above by n^{2}, guaranteeing that the process ends after at most $\frac{4}{\varepsilon^{5}}$ iterations, at which point the order is bounded by the tower function of exponentials of height $\frac{4}{\varepsilon^{5}}$ and ending in m_{0}, i.e., a constant M depending only on ε and m_{0}.

Let us now show the details of this argument, starting with the definition of the quality function. For disjoint sets $A, B \subseteq V(G)$, let $q(A, B)=$ $|A||B| d^{2}(A, B)$. For a partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of $V(G)$, let

$$
q(\mathcal{P})=\sum_{i<j} q\left(P_{i}, P_{j}\right) .
$$

Note that $q(A, B) \leq|A||B|$ and $q(\mathcal{P}) \leq \sum_{i<j}\left|P_{i}\right|\left|P_{j}\right|<n^{2}$. Next, let us show that the quality does not decrease when we refine the partition.

Lemma 3. If $\left\{A_{1}, \ldots, A_{s}\right\}$ is a partition of A and $\left\{B_{1}, \ldots, B_{s}\right\}$ is a partition of B, then $\sum_{i, j} q\left(A_{i}, B_{j}\right) \geq q(A, B)$.

Proof. We have $e(A, B)=\sum_{i, j} e\left(A_{i}, B_{j}\right)$ and $|A||B|=\sum_{i, j}\left|A_{i}\right|\left|B_{j}\right|$.
Let $u_{i, j}=\sqrt{\left|A_{i}\right|\left|B_{j}\right|} d\left(A_{i}, B_{j}\right)$ and $v_{i, j}=\sqrt{\left|A_{i}\right|\left|B_{j}\right|}$. Therefore,

$$
\begin{aligned}
\sum_{i, j} u_{i, j}^{2} & =\sum_{i, j} q\left(A_{i}, B_{j}\right) \\
\sum_{i, j} v_{i, j}^{2} & =\sum_{i, j}\left|A_{i}\right|\left|B_{j}\right|=|A||B| \\
\sum_{i, j} u_{i, j} v_{i, j} & =\sum_{i, j} d\left(A_{i}, B_{j}\right)\left|A_{i}\right|\left|B_{j}\right|=\sum_{i, j} e\left(A_{i}, B_{j}\right)=e(A, B) .
\end{aligned}
$$

Cauchy-Schwarz inequality gives

$$
|A||B| \sum_{i, j} q\left(A_{i}, B_{j}\right) \geq e^{2}(A, B)=|A|^{2}|B|^{2} d^{2}(A, B)
$$

and thus

$$
\sum_{i, j} q\left(A_{i}, B_{j}\right) \geq|A||B| d^{2}(A, B)=q(A, B) .
$$

We say that a partition \mathcal{P}^{\prime} is a refinement of a partition \mathcal{P} if every part of \mathcal{P}^{\prime} is a subset of a part of \mathcal{P}. The common refinement of two partitions \mathcal{P}_{1} and \mathcal{P}_{2} is the partition $\left\{A \cap B: A \in \mathcal{P}_{1}, B \in \mathcal{P}_{2}, A \cap B \neq \emptyset\right\}$.

Corollary 4. If a partition \mathcal{P}^{\prime} is a refinement of a partition \mathcal{P}, then $q\left(\mathcal{P}^{\prime}\right) \geq$ $q(\mathcal{P})$.

Proof. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$. For $1 \leq i \leq s$, let $\mathcal{P}_{i}=\left\{Q \in \mathcal{P}^{\prime}: Q \subseteq P_{i}\right\}$, so that $\mathcal{P}^{\prime}=\mathcal{P}_{1} \cup \ldots \cup \mathcal{P}_{s}$. Then

$$
q\left(\mathcal{P}^{\prime}\right) \geq \sum_{1 \leq i<j \leq s} \sum_{Q \in \mathcal{P}_{i}, R \in \mathcal{P}_{j}} q(Q, R) \geq \sum_{1 \leq i<j \leq s} q\left(P_{i}, P_{j}\right)=q(\mathcal{P})
$$

by Lemma 3.
We also need to know that if (A, B) is not an ε-pair, then we can partition it with a substantial increase in quality.

Lemma 5. Suppose (A, B) is a non- ε-regular pair of disjoint subsets of vertices of a graph G; i.e., there exist sets $A_{1} \subseteq A$ and $B_{1} \subseteq B$ such that $\left|A_{1}\right| \geq \varepsilon|A|,\left|B_{1}\right| \geq \varepsilon|B|$, and $\left|d\left(A_{1}, B_{1}\right)-d(A, B)\right|>\varepsilon$. For $A_{2}=A \backslash A_{1}$ and $B_{2}=B \backslash B_{1}$, we have $\sum_{1 \leq i, j \leq 2} q\left(A_{i}, B_{j}\right)>q(A, B)+\varepsilon^{4}|A||B|$.

Proof. Let $d=d(A, B)$. For $1 \leq i, j \leq 2, u \in A_{i}$, and $v \in B_{j}$, let $d(u, v)=$ $d\left(A_{i}, B_{j}\right)$ and $\delta(u, v)=d(u, v)-d$. Note that $|\delta(u, v)|>\varepsilon$ for $u \in A_{1}$ and $v \in B_{1}$. We have

$$
\begin{aligned}
d|A||B| & =e(A, B)=\sum_{1 \leq i, j \leq 2} e\left(A_{i}, B_{j}\right) \\
& =\sum_{1 \leq i, j \leq 2} d\left(A_{i}, B_{j}\right)\left|A_{i}\right|\left|B_{j}\right|=\sum_{u \in A, v \in B} d(u, v) \\
& =d|A||B|+\sum_{u \in A, v \in B} \delta(u, v),
\end{aligned}
$$

and thus

$$
\sum_{u \in A, v \in B} \delta(u, v)=0
$$

Moreover, $q(A, B)=|A||B| d^{2}$ and

$$
\begin{aligned}
\sum_{1 \leq i, j \leq 2} q\left(A_{i}, B_{j}\right) & =\sum_{1 \leq i, j \leq 2}\left|A_{i}\right|\left|B_{j}\right| d^{2}\left(A_{i}, B_{j}\right)=\sum_{u \in A, v \in B} d^{2}(u, v) \\
& =\sum_{u \in A, v \in B}(d+\delta(u, v))^{2}=\sum_{u \in A, v \in B}\left(d^{2}+2 d \delta(u, v)+\delta^{2}(u, v)\right) \\
& =|A||B| d^{2}+2 d \sum_{u \in A, v \in B} \delta(u, v)+\sum_{u \in A, v \in B} \delta^{2}(u, v) \\
& =q(A, B)+\sum_{u \in A, v \in B} \delta^{2}(u, v) \geq q(A, B)+\sum_{u \in A_{1}, v \in B_{1}} \delta^{2}(u, v) \\
& >q(A, B)+\left|A_{1}\right|\left|B_{1}\right| \varepsilon^{2} \geq q(A, B)+\varepsilon^{4}|A||B| .
\end{aligned}
$$

Let $\mathcal{P}=\left\{V_{1}, \ldots, V_{s}, V_{s+1}, \ldots, V_{s+t}\right\}$ be a partition of $V(G)$ such that $t \leq \varepsilon n,\left|V_{i}\right|=1$ for $i \geq s+1$ and $\left|V_{1}\right|=\ldots=\left|V_{s}\right|=N$. Note that $s N=n-t \geq(1-\varepsilon) n \geq n / 2$. Suppose that \mathcal{P} is not an ε-regular partition of order s, i.e., that it does not satisfy (ii). Let X be the set of pairs (i, j) such that $1 \leq i<j \leq s$ and $\left(V_{i}, V_{j}\right)$ is not ε-regular; we have $|X| \geq \varepsilon s^{2}$. For each $(i, j) \in X$, let $\mathcal{P}_{i j}=\left\{V_{i, j, 1}, V_{i, j, 2}, V_{j, i, 1}, V_{j, i, 2}, V(G) \backslash\left(V_{i} \cup V_{j}\right)\right\}$ be the partition of $V(G)$ where

$$
\begin{aligned}
V_{i}=V_{i, j, 1} \cup V_{i, j, 2}, V_{j} & =V_{j, i, 1} \cup V_{j, i, 2}, \\
\left|V_{i, j, 1}\right| \geq \varepsilon\left|V_{i}\right|,\left|V_{j, i, 1}\right| & \geq \varepsilon\left|V_{j}\right|, \text { and } \\
\left|d\left(V_{i, j, 1}, V_{j, i, 1}\right)-d\left(V_{i}, V_{j}\right)\right| & >\varepsilon .
\end{aligned}
$$

Let \mathcal{P}^{\prime} be the common refinememt of \mathcal{P} and all partitions $\mathcal{P}_{i j}$ for $(i, j) \in X$.
Let $\mathcal{V}_{i}=\left\{A \in \mathcal{P}^{\prime}: A \subseteq V_{i}\right\}$. We have

$$
q\left(\mathcal{P}^{\prime}\right) \geq \sum_{i<j} \sum_{A \in \mathcal{V}_{i}, B \in \mathcal{V}_{j}} q(A, B) .
$$

Lemma 3 implies

$$
\sum_{A \in \mathcal{V}_{i}, B \in \mathcal{V}_{j}} q(A, B) \geq q\left(V_{i}, V_{j}\right)
$$

for every $i<j$. Moreover, if $(i, j) \in X$, then

$$
\sum_{A \in \mathcal{V}_{i}, B \in \mathcal{V}_{j}} q(A, B) \geq \sum_{1 \leq o, p \leq 2} q\left(V_{i, j, o}, V_{j, i, p}\right)>q\left(V_{i}, V_{j}\right)+\varepsilon^{4}\left|V_{i}\right|\left|V_{j}\right|
$$

by Lemma 5 . We conclude that

$$
q\left(\mathcal{P}^{\prime}\right)>\left(\sum_{i<j} q\left(V_{i}, V_{j}\right)\right)+|X| \varepsilon^{4} N^{2} \geq q(\mathcal{P})+\varepsilon^{5} s^{2} N^{2} \geq q(\mathcal{P})+\frac{\varepsilon^{5}}{4} n^{2}
$$

The partition \mathcal{P}^{\prime} has at most $s 2^{s}$ non-singleton parts (each of the parts V_{1}, \ldots, V_{s} is contained in less than s pairs of X, and thus it is divided less than s times). However, the non-singleton parts can have different sizes. Let $f(s)=s 4^{s}$. We divide every non-singleton part of \mathcal{P}^{\prime} into as many parts of size $\left\lceil\frac{N}{4^{s}}\right\rceil$ as possible, and their remainders to singleton parts. This gives a refinement $\mathcal{P}^{\prime \prime}$ of \mathcal{P}^{\prime} such that

- every non-singleton part of $\mathcal{P}^{\prime \prime}$ has size exactly $\left\lceil\frac{N}{4^{s}}\right\rceil$,
- the number of non-singleton parts of $\mathcal{P}^{\prime \prime}$ is at most $f(s)$, since \mathcal{P} has s non-singleton parts of size N and at most 4^{s} parts of size $\left\lceil\frac{N}{4^{s}}\right\rceil$ fit into each of them, and
- the number of singleton parts of $\mathcal{P}^{\prime \prime}$ is by at most $s 2^{s} \frac{N}{4^{s}} \leq s \frac{n / s}{2^{s}}=\frac{n}{2^{s}}$ larger than the number of singleton parts of \mathcal{P}.

Moreover, $q\left(\mathcal{P}^{\prime \prime}\right) \geq q\left(\mathcal{P}^{\prime}\right)>q(\mathcal{P})+\frac{\varepsilon^{5}}{4} n^{2}$.
Proof of Regularity Lemma. Let

$$
\begin{aligned}
& s_{0}=\max \left(2 m_{0},\left\lceil\log \frac{8}{\varepsilon^{6}}\right\rceil\right), \text { and } \\
& M=\max \left(\left\lceil\frac{2}{\varepsilon} s_{0}\right\rceil, f\left(f\left(\ldots f\left(s_{0}\right) \ldots\right)\right)\right),
\end{aligned}
$$

where f is iterated $\left\lfloor\frac{4}{\varepsilon^{5}}\right\rfloor$-times.
If G has at most M vertices, then G has an ε-regular partition to $|V(G)| \leq$ M singleton parts. Otherwise, let us start with an arbitrary partition of $V(G)$ to s_{0} parts of the same size and less than $s_{0} \leq \frac{\varepsilon}{2} n$ singleton parts. We repeat the refinement procedure described until we reach an ε-regular partition \mathcal{P}. Since $0 \leq q(\mathcal{Q}) \leq n^{2}$ for every partition \mathcal{Q} of $V(G)$ and each iteration of the procedure increases the value of q by more than $\frac{\varepsilon^{5}}{4} n^{2}$, the number of iterations is at most $\frac{4}{\varepsilon^{5}}$, and thus \mathcal{P} has at most M non-singleton parts.

We need to verify that the number of singleton parts does not increase over εn. Each iteration increases the number of singleton parts by at most $\frac{n}{2^{s}} \leq \frac{n}{2^{s_{0}}}$. Therefore, after $\left\lfloor\frac{4}{\varepsilon^{5}}\right\rfloor$ iterations, there are at most $\frac{4}{\varepsilon^{5} 2^{s_{0}}} n+\frac{\varepsilon}{2} n \leq \varepsilon n$ singleton parts.

Since the initial partition consists of parts of size at most n / s_{0}, this is also an upper bound on the size of the parts in \mathcal{P}. Consequently, the order of \mathcal{P} is at least $\frac{(1-\varepsilon) n}{n / s_{0}} \geq s_{0} / 2 \geq m_{0}$.

