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We are going to use the following well-known inequality.

Lemma 1 (Cauchy-Schwarz inequality). For any real numbers u1, . . . , un
and v1, . . . , vn, we have (

∑n
i=1 u

2
i ) (
∑n

i=1 v
2
i ) ≥ (

∑n
i=1 uivi)

2
.

Our goal is to prove the Regularity Lemma.

Theorem 2. For any positive integer m0 and real number ε > 0, there exists
an integer M ≥ m0 such that the following holds. Every graph G with at
least m0 vertices has an ε-regular partition of order at least m0 and at most
M .

Without loss of generality, we can assume that ε < 1/2. Let n ≥ m0 be
the number of vertices of G. Let us recall that an ε-regular partition consists
of parts V1, . . . , Vm of the same size, and an exceptional part V0 of size at
most εn. For the purposes of the proof, it will be more convenient to further
break up V0 to single-element parts. Hence, we say that a partition P of
V (G) is an ε-regular partition of order m if P contains distinct parts V1, . . . ,
Vm such that

(i) |V1| = |V2| = . . . = |Vm|,

(ii) for all but at most εm2 values of 1 ≤ i < j ≤ m, the pair (Vi, Vj) is
ε-regular, and

(iii) P \ {V1, . . . , Vm} consists of at most εn parts of size one.

The proof proceeds by starting with an initial partition of order m0 sat-
isfying (i) and (iii) and proceeds to refine it, increasing a suitably defined
“quality” of the partition, so that the following conditions hold:

• each refinement increases the quality by at least ε5

4
n2,
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• each refinement increases the order of the partition at most exponen-
tially, and

• once further refinement is not possible, (ii) holds.

Moreover, the quality is bounded from above by n2, guaranteeing that the
process ends after at most 4

ε5
iterations, at which point the order is bounded

by the tower function of exponentials of height 4
ε5

and ending in m0, i.e., a
constant M depending only on ε and m0.

Let us now show the details of this argument, starting with the defini-
tion of the quality function. For disjoint sets A,B ⊆ V (G), let q(A,B) =
|A||B|d2(A,B). For a partition P = {P1, . . . , Pk} of V (G), let

q(P) =
∑
i<j

q(Pi, Pj).

Note that q(A,B) ≤ |A||B| and q(P) ≤
∑

i<j |Pi||Pj| < n2. Next, let us
show that the quality does not decrease when we refine the partition.

Lemma 3. If {A1, . . . , As} is a partition of A and {B1, . . . , Bs} is a partition
of B, then

∑
i,j q(Ai, Bj) ≥ q(A,B).

Proof. We have e(A,B) =
∑

i,j e(Ai, Bj) and |A||B| =
∑

i,j |Ai||Bj|.
Let ui,j =

√
|Ai||Bj|d(Ai, Bj) and vi,j =

√
|Ai||Bj|. Therefore,∑

i,j

u2i,j =
∑
i,j

q(Ai, Bj)∑
i,j

v2i,j =
∑
i,j

|Ai||Bj| = |A||B|∑
i,j

ui,jvi,j =
∑
i,j

d(Ai, Bj)|Ai||Bj| =
∑
i,j

e(Ai, Bj) = e(A,B).

Cauchy-Schwarz inequality gives

|A||B|
∑
i,j

q(Ai, Bj) ≥ e2(A,B) = |A|2|B|2d2(A,B),

and thus ∑
i,j

q(Ai, Bj) ≥ |A||B|d2(A,B) = q(A,B).
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We say that a partition P ′ is a refinement of a partition P if every part
of P ′ is a subset of a part of P . The common refinement of two partitions
P1 and P2 is the partition {A ∩B : A ∈ P1, B ∈ P2, A ∩B 6= ∅}.

Corollary 4. If a partition P ′ is a refinement of a partition P, then q(P ′) ≥
q(P).

Proof. Let P = {P1, . . . , Ps}. For 1 ≤ i ≤ s, let Pi = {Q ∈ P ′ : Q ⊆ Pi}, so
that P ′ = P1 ∪ . . . ∪ Ps. Then

q(P ′) ≥
∑

1≤i<j≤s

∑
Q∈Pi,R∈Pj

q(Q,R) ≥
∑

1≤i<j≤s

q(Pi, Pj) = q(P)

by Lemma 3.

We also need to know that if (A,B) is not an ε-pair, then we can partition
it with a substantial increase in quality.

Lemma 5. Suppose (A,B) is a non-ε-regular pair of disjoint subsets of ver-
tices of a graph G; i.e., there exist sets A1 ⊆ A and B1 ⊆ B such that
|A1| ≥ ε|A|, |B1| ≥ ε|B|, and |d(A1, B1) − d(A,B)| > ε. For A2 = A \ A1

and B2 = B \B1, we have
∑

1≤i,j≤2 q(Ai, Bj) > q(A,B) + ε4|A||B|.

Proof. Let d = d(A,B). For 1 ≤ i, j ≤ 2, u ∈ Ai, and v ∈ Bj, let d(u, v) =
d(Ai, Bj) and δ(u, v) = d(u, v) − d. Note that |δ(u, v)| > ε for u ∈ A1 and
v ∈ B1. We have

d|A||B| = e(A,B) =
∑

1≤i,j≤2

e(Ai, Bj)

=
∑

1≤i,j≤2

d(Ai, Bj)|Ai||Bj| =
∑

u∈A,v∈B

d(u, v)

= d|A||B|+
∑

u∈A,v∈B

δ(u, v),

and thus ∑
u∈A,v∈B

δ(u, v) = 0.
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Moreover, q(A,B) = |A||B|d2 and∑
1≤i,j≤2

q(Ai, Bj) =
∑

1≤i,j≤2

|Ai||Bj|d2(Ai, Bj) =
∑

u∈A,v∈B

d2(u, v)

=
∑

u∈A,v∈B

(d+ δ(u, v))2 =
∑

u∈A,v∈B

(d2 + 2dδ(u, v) + δ2(u, v))

= |A||B|d2 + 2d
∑

u∈A,v∈B

δ(u, v) +
∑

u∈A,v∈B

δ2(u, v)

= q(A,B) +
∑

u∈A,v∈B

δ2(u, v) ≥ q(A,B) +
∑

u∈A1,v∈B1

δ2(u, v)

> q(A,B) + |A1||B1|ε2 ≥ q(A,B) + ε4|A||B|.

Let P = {V1, . . . , Vs, Vs+1, . . . , Vs+t} be a partition of V (G) such that
t ≤ εn, |Vi| = 1 for i ≥ s + 1 and |V1| = . . . = |Vs| = N . Note that
sN = n− t ≥ (1− ε)n ≥ n/2. Suppose that P is not an ε-regular partition
of order s, i.e., that it does not satisfy (ii). Let X be the set of pairs (i, j)
such that 1 ≤ i < j ≤ s and (Vi, Vj) is not ε-regular; we have |X| ≥ εs2.
For each (i, j) ∈ X, let Pij = {Vi,j,1, Vi,j,2, Vj,i,1, Vj,i,2, V (G) \ (Vi∪Vj)} be the
partition of V (G) where

Vi = Vi,j,1 ∪ Vi,j,2, Vj = Vj,i,1 ∪ Vj,i,2,
|Vi,j,1| ≥ ε|Vi|, |Vj,i,1| ≥ ε|Vj|, and

|d(Vi,j,1, Vj,i,1)− d(Vi, Vj)| > ε.

Let P ′ be the common refinememt of P and all partitions Pij for (i, j) ∈ X.
Let Vi = {A ∈ P ′ : A ⊆ Vi}. We have

q(P ′) ≥
∑
i<j

∑
A∈Vi,B∈Vj

q(A,B).

Lemma 3 implies ∑
A∈Vi,B∈Vj

q(A,B) ≥ q(Vi, Vj)

for every i < j. Moreover, if (i, j) ∈ X, then∑
A∈Vi,B∈Vj

q(A,B) ≥
∑

1≤o,p≤2

q(Vi,j,o, Vj,i,p) > q(Vi, Vj) + ε4|Vi||Vj|
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by Lemma 5. We conclude that

q(P ′) >

(∑
i<j

q(Vi, Vj)

)
+ |X|ε4N2 ≥ q(P) + ε5s2N2 ≥ q(P) +

ε5

4
n2.

The partition P ′ has at most s2s non-singleton parts (each of the parts
V1, . . . , Vs is contained in less than s pairs of X, and thus it is divided less
than s times). However, the non-singleton parts can have different sizes. Let
f(s) = s4s. We divide every non-singleton part of P ′ into as many parts of
size

⌈
N
4s

⌉
as possible, and their remainders to singleton parts. This gives a

refinement P ′′ of P ′ such that

• every non-singleton part of P ′′ has size exactly
⌈
N
4s

⌉
,

• the number of non-singleton parts of P ′′ is at most f(s), since P has s
non-singleton parts of size N and at most 4s parts of size

⌈
N
4s

⌉
fit into

each of them, and

• the number of singleton parts of P ′′ is by at most s2s N
4s
≤ sn/s

2s
= n

2s

larger than the number of singleton parts of P .

Moreover, q(P ′′) ≥ q(P ′) > q(P) + ε5

4
n2.

Proof of Regularity Lemma. Let

s0 = max

(
2m0,

⌈
log

8

ε6

⌉)
, and

M = max

(⌈
2

ε
s0

⌉
, f(f(. . . f(s0) . . .))

)
,

where f is iterated
⌊

4
ε5

⌋
-times.

If G has at most M vertices, then G has an ε-regular partition to |V (G)| ≤
M singleton parts. Otherwise, let us start with an arbitrary partition of V (G)
to s0 parts of the same size and less than s0 ≤ ε

2
n singleton parts. We repeat

the refinement procedure described until we reach an ε-regular partition P .
Since 0 ≤ q(Q) ≤ n2 for every partition Q of V (G) and each iteration of
the procedure increases the value of q by more than ε5

4
n2, the number of

iterations is at most 4
ε5

, and thus P has at most M non-singleton parts.
We need to verify that the number of singleton parts does not increase

over εn. Each iteration increases the number of singleton parts by at most
n
2s
≤ n

2s0
. Therefore, after

⌊
4
ε5

⌋
iterations, there are at most 4

ε52s0
n+ ε

2
n ≤ εn

singleton parts.
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Since the initial partition consists of parts of size at most n/s0, this is
also an upper bound on the size of the parts in P . Consequently, the order
of P is at least (1−ε)n

n/s0
≥ s0/2 ≥ m0.

6


