Proof of Regularity Lemma

Zdeněk Dvořák

January 11, 2024

We are going to use the following well-known inequality.

Lemma 1 (Cauchy-Schwarz inequality). For any real numbers u_1, \ldots, u_n and v_1, \ldots, v_n , we have $\left(\sum_{i=1}^n u_i^2\right) \left(\sum_{i=1}^n v_i^2\right) \ge \left(\sum_{i=1}^n u_i v_i\right)^2$.

Our goal is to prove the Regularity Lemma.

Theorem 2. For any positive integer m_0 and real number $\varepsilon > 0$, there exists an integer $M \ge m_0$ such that the following holds. Every graph G with at least m_0 vertices has an ε -regular partition of order at least m_0 and at most M.

Without loss of generality, we can assume that $\varepsilon < 1/2$. Let $n \ge m_0$ be the number of vertices of G. Let us recall that an ε -regular partition consists of parts V_1, \ldots, V_m of the same size, and an exceptional part V_0 of size at most εn . For the purposes of the proof, it will be more convenient to further break up V_0 to single-element parts. Hence, we say that a partition \mathcal{P} of V(G) is an ε -regular partition of order m if \mathcal{P} contains distinct parts V_1, \ldots, V_m such that

- (i) $|V_1| = |V_2| = \ldots = |V_m|,$
- (ii) for all but at most εm^2 values of $1 \leq i < j \leq m$, the pair (V_i, V_j) is ε -regular, and
- (iii) $\mathcal{P} \setminus \{V_1, \ldots, V_m\}$ consists of at most εn parts of size one.

The proof proceeds by starting with an initial partition of order m_0 satisfying (i) and (iii) and proceeds to refine it, increasing a suitably defined "quality" of the partition, so that the following conditions hold:

• each refinement increases the quality by at least $\frac{\varepsilon^5}{4}n^2$,

- each refinement increases the order of the partition at most exponentially, and
- once further refinement is not possible, (ii) holds.

Moreover, the quality is bounded from above by n^2 , guaranteeing that the process ends after at most $\frac{4}{\varepsilon^5}$ iterations, at which point the order is bounded by the tower function of exponentials of height $\frac{4}{\varepsilon^5}$ and ending in m_0 , i.e., a constant M depending only on ε and m_0 .

Let us now show the details of this argument, starting with the definition of the quality function. For disjoint sets $A, B \subseteq V(G)$, let $q(A, B) = |A||B|d^2(A, B)$. For a partition $\mathcal{P} = \{P_1, \ldots, P_k\}$ of V(G), let

$$q(\mathcal{P}) = \sum_{i < j} q(P_i, P_j).$$

Note that $q(A, B) \leq |A||B|$ and $q(\mathcal{P}) \leq \sum_{i < j} |P_i||P_j| < n^2$. Next, let us show that the quality does not decrease when we refine the partition.

Lemma 3. If $\{A_1, \ldots, A_s\}$ is a partition of A and $\{B_1, \ldots, B_s\}$ is a partition of B, then $\sum_{i,j} q(A_i, B_j) \ge q(A, B)$.

Proof. We have $e(A, B) = \sum_{i,j} e(A_i, B_j)$ and $|A||B| = \sum_{i,j} |A_i||B_j|$. Let $u_{i,j} = \sqrt{|A_i||B_j|}d(A_i, B_j)$ and $v_{i,j} = \sqrt{|A_i||B_j|}$. Therefore,

$$\sum_{i,j} u_{i,j}^2 = \sum_{i,j} q(A_i, B_j)$$

$$\sum_{i,j} v_{i,j}^2 = \sum_{i,j} |A_i| |B_j| = |A| |B|$$

$$\sum_{i,j} u_{i,j} v_{i,j} = \sum_{i,j} d(A_i, B_j) |A_i| |B_j| = \sum_{i,j} e(A_i, B_j) = e(A, B).$$

Cauchy-Schwarz inequality gives

$$|A||B|\sum_{i,j}q(A_i, B_j) \ge e^2(A, B) = |A|^2|B|^2d^2(A, B),$$

and thus

$$\sum_{i,j} q(A_i, B_j) \ge |A| |B| d^2(A, B) = q(A, B).$$

We say that a partition \mathcal{P}' is a *refinement* of a partition \mathcal{P} if every part of \mathcal{P}' is a subset of a part of \mathcal{P} . The *common refinement* of two partitions \mathcal{P}_1 and \mathcal{P}_2 is the partition $\{A \cap B : A \in \mathcal{P}_1, B \in \mathcal{P}_2, A \cap B \neq \emptyset\}$.

Corollary 4. If a partition \mathcal{P}' is a refinement of a partition \mathcal{P} , then $q(\mathcal{P}') \geq q(\mathcal{P})$.

Proof. Let $\mathcal{P} = \{P_1, \ldots, P_s\}$. For $1 \leq i \leq s$, let $\mathcal{P}_i = \{Q \in \mathcal{P}' : Q \subseteq P_i\}$, so that $\mathcal{P}' = \mathcal{P}_1 \cup \ldots \cup \mathcal{P}_s$. Then

$$q(\mathcal{P}') \geq \sum_{1 \leq i < j \leq s} \sum_{Q \in \mathcal{P}_i, R \in \mathcal{P}_j} q(Q, R) \geq \sum_{1 \leq i < j \leq s} q(P_i, P_j) = q(\mathcal{P})$$

by Lemma 3.

We also need to know that if (A, B) is not an ε -pair, then we can partition it with a substantial increase in quality.

Lemma 5. Suppose (A, B) is a non- ε -regular pair of disjoint subsets of vertices of a graph G; i.e., there exist sets $A_1 \subseteq A$ and $B_1 \subseteq B$ such that $|A_1| \ge \varepsilon |A|, |B_1| \ge \varepsilon |B|, \text{ and } |d(A_1, B_1) - d(A, B)| > \varepsilon$. For $A_2 = A \setminus A_1$ and $B_2 = B \setminus B_1$, we have $\sum_{1 \le i, j \le 2} q(A_i, B_j) > q(A, B) + \varepsilon^4 |A| |B|$.

Proof. Let d = d(A, B). For $1 \le i, j \le 2$, $u \in A_i$, and $v \in B_j$, let $d(u, v) = d(A_i, B_j)$ and $\delta(u, v) = d(u, v) - d$. Note that $|\delta(u, v)| > \varepsilon$ for $u \in A_1$ and $v \in B_1$. We have

$$\begin{aligned} d|A||B| &= e(A,B) = \sum_{1 \le i,j \le 2} e(A_i,B_j) \\ &= \sum_{1 \le i,j \le 2} d(A_i,B_j)|A_i||B_j| = \sum_{u \in A, v \in B} d(u,v) \\ &= d|A||B| + \sum_{u \in A, v \in B} \delta(u,v), \end{aligned}$$

and thus

$$\sum_{u \in A, v \in B} \delta(u, v) = 0.$$

Moreover, $q(A, B) = |A||B|d^2$ and

$$\sum_{1 \le i,j \le 2} q(A_i, B_j) = \sum_{1 \le i,j \le 2} |A_i| |B_j| d^2(A_i, B_j) = \sum_{u \in A, v \in B} d^2(u, v)$$

=
$$\sum_{u \in A, v \in B} (d + \delta(u, v))^2 = \sum_{u \in A, v \in B} (d^2 + 2d\delta(u, v) + \delta^2(u, v))$$

=
$$|A| |B| d^2 + 2d \sum_{u \in A, v \in B} \delta(u, v) + \sum_{u \in A, v \in B} \delta^2(u, v)$$

=
$$q(A, B) + \sum_{u \in A, v \in B} \delta^2(u, v) \ge q(A, B) + \sum_{u \in A_1, v \in B_1} \delta^2(u, v)$$

>
$$q(A, B) + |A_1| |B_1| \varepsilon^2 \ge q(A, B) + \varepsilon^4 |A| |B|.$$

Let $\mathcal{P} = \{V_1, \ldots, V_s, V_{s+1}, \ldots, V_{s+t}\}$ be a partition of V(G) such that $t \leq \varepsilon n$, $|V_i| = 1$ for $i \geq s+1$ and $|V_1| = \ldots = |V_s| = N$. Note that $sN = n - t \geq (1 - \varepsilon)n \geq n/2$. Suppose that \mathcal{P} is not an ε -regular partition of order s, i.e., that it does not satisfy (ii). Let X be the set of pairs (i, j) such that $1 \leq i < j \leq s$ and (V_i, V_j) is not ε -regular; we have $|X| \geq \varepsilon s^2$. For each $(i, j) \in X$, let $\mathcal{P}_{ij} = \{V_{i,j,1}, V_{i,j,2}, V_{j,i,1}, V_{j,i,2}, V(G) \setminus (V_i \cup V_j)\}$ be the partition of V(G) where

$$V_{i} = V_{i,j,1} \cup V_{i,j,2}, V_{j} = V_{j,i,1} \cup V_{j,i,2},$$
$$|V_{i,j,1}| \ge \varepsilon |V_{i}|, |V_{j,i,1}| \ge \varepsilon |V_{j}|, \text{ and }$$
$$d(V_{i,j,1}, V_{j,i,1}) - d(V_{i}, V_{j})| > \varepsilon.$$

Let \mathcal{P}' be the common refinement of \mathcal{P} and all partitions \mathcal{P}_{ij} for $(i, j) \in X$. Let $\mathcal{V}_i = \{A \in \mathcal{P}' : A \subseteq V_i\}$. We have

$$q(\mathcal{P}') \ge \sum_{i < j} \sum_{A \in \mathcal{V}_i, B \in \mathcal{V}_j} q(A, B).$$

Lemma 3 implies

$$\sum_{A \in \mathcal{V}_i, B \in \mathcal{V}_j} q(A, B) \ge q(V_i, V_j)$$

for every i < j. Moreover, if $(i, j) \in X$, then

$$\sum_{A \in \mathcal{V}_i, B \in \mathcal{V}_j} q(A, B) \ge \sum_{1 \le o, p \le 2} q(V_{i,j,o}, V_{j,i,p}) > q(V_i, V_j) + \varepsilon^4 |V_i| |V_j|$$

by Lemma 5. We conclude that

$$q(\mathcal{P}') > \left(\sum_{i < j} q(V_i, V_j)\right) + |X|\varepsilon^4 N^2 \ge q(\mathcal{P}) + \varepsilon^5 s^2 N^2 \ge q(\mathcal{P}) + \frac{\varepsilon^5}{4}n^2.$$

The partition \mathcal{P}' has at most $s2^s$ non-singleton parts (each of the parts V_1, \ldots, V_s is contained in less than s pairs of X, and thus it is divided less than s times). However, the non-singleton parts can have different sizes. Let $f(s) = s4^s$. We divide every non-singleton part of \mathcal{P}' into as many parts of size $\left\lceil \frac{N}{4^s} \right\rceil$ as possible, and their remainders to singleton parts. This gives a refinement \mathcal{P}'' of \mathcal{P}' such that

- every non-singleton part of \mathcal{P}'' has size exactly $\left\lceil \frac{N}{4^s} \right\rceil$,
- the number of non-singleton parts of \mathcal{P}'' is at most f(s), since \mathcal{P} has s non-singleton parts of size N and at most 4^s parts of size $\left\lceil \frac{N}{4^s} \right\rceil$ fit into each of them, and
- the number of singleton parts of \mathcal{P}'' is by at most $s2^s \frac{N}{4^s} \leq s\frac{n/s}{2^s} = \frac{n}{2^s}$ larger than the number of singleton parts of \mathcal{P} .

Moreover, $q(\mathcal{P}'') \ge q(\mathcal{P}') > q(\mathcal{P}) + \frac{\varepsilon^5}{4}n^2$.

Proof of Regularity Lemma. Let

$$s_0 = \max\left(2m_0, \left\lceil \log \frac{8}{\varepsilon^6} \right\rceil\right)$$
, and
 $M = \max\left(\left\lceil \frac{2}{\varepsilon}s_0 \right\rceil, f(f(\dots f(s_0)\dots))\right)$,

where f is iterated $\left|\frac{4}{\epsilon^5}\right|$ -times.

If G has at most M vertices, then G has an ε -regular partition to $|V(G)| \leq M$ singleton parts. Otherwise, let us start with an arbitrary partition of V(G) to s_0 parts of the same size and less than $s_0 \leq \frac{\varepsilon}{2}n$ singleton parts. We repeat the refinement procedure described until we reach an ε -regular partition \mathcal{P} . Since $0 \leq q(\mathcal{Q}) \leq n^2$ for every partition \mathcal{Q} of V(G) and each iteration of the procedure increases the value of q by more than $\frac{\varepsilon^5}{4}n^2$, the number of iterations is at most $\frac{4}{\varepsilon^5}$, and thus \mathcal{P} has at most M non-singleton parts.

We need to verify that the number of singleton parts does not increase over εn . Each iteration increases the number of singleton parts by at most $\frac{n}{2^s} \leq \frac{n}{2^{s_0}}$. Therefore, after $\lfloor \frac{4}{\varepsilon^5} \rfloor$ iterations, there are at most $\frac{4}{\varepsilon^5 2^{s_0}}n + \frac{\varepsilon}{2}n \leq \varepsilon n$ singleton parts.

Since the initial partition consists of parts of size at most n/s_0 , this is also an upper bound on the size of the parts of one at most n/s_0 , this is of \mathcal{P} is at least $\frac{(1-\varepsilon)n}{n/s_0} \ge s_0/2 \ge m_0$.