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1 Chevalley-Warning theorem and regular sub-

graphs

Theorem 1 (Chevalley-Warning theorem). Suppose p is a prime and f1, . . . ,
fr are polynomials over Zp in n variables and of total degrees d1, . . . , and
dr. If

∑r
i=1 di < n, then the number of solutions f1(~x) = 0, . . . , fr(~x) = 0 is

divisible by p.

We did not show the proof (it can be found in the Czech version of the
notes).

Theorem 2. Let G be a multigraph of minimum degree at least four and
maximum degree exactly five (i.e., G is not 4-regular). Then G contains a
3-regular submultigraph.

Proof. Let r = |V (G)|. For v ∈ V (G), let us define

fv =
∑

e incident with v

x2e.

as a polynomial over Z3. The number of variables used in all the polynomials
is |E(G)| = 1

2

∑
v∈V (G) deg v > 2r =

∑
v∈V (G) deg(fv). Theorem 1 implies

that the number of the solutions to the system fv(~x) = 0 for v ∈ V (G) is
divisible 3. The system has a trivial all-zeros solution, and thus it has also (at
least two) non-zero solutions. Let X = {e ∈ E(G) : xe 6= 0} for a non-zero
solution. Since x2 = 1 for every x ∈ Z3 \ {0} and G has maximum degree
five, fv(~x) = 0 is equivalent to the claim that the degree of v in the subgraph
(V (G), X) is 0 or 3.

The assumption that G is not 4-regular is necessary, since the triangle
with doubled edges has no 3-regular subgraph.
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2 List coloring

A list assignment for a graph G is a function L assigning a set of colors (a
list) to each vertex of G. An L-coloring of a graph G is a proper coloring ϕ
of G such that ϕ(v) ∈ L(v) for every v ∈ V (G). The list chromatic number
χl(G) of a graph G is the smallest integer k such that G is L-colorable for
every assignment L of lists of size at least k to vertices of G.

Observation 3.

χl(G) ≥ χ(G)

χl(G) ≤ d+ 1 if G is d-degenerate

χl(Cn) = χ(Cn)

Lemma 4.
χl(Kn,nn) > n.

Proof. Let the vertices of the graph be v1, . . . , vn, and wi1,...,in for i1, . . . , in ∈
{1, . . . , n}. Let L(vk) = {ck,1, . . . , ck,n}. The vertices w? are assigned all n-
element lists which intersect each of L(v1), . . . , L(vn) in exactly one element;
i.e., L(wi1,...,in) = {c1,i1 , c2,i2 , . . . , cn,in}. Consider any L-coloring of v1, . . . ,
vn, by some colors barvami c1,i1 , . . . , cn,in . Then it is not possible to color
the vertex wi1,...,in from its lists, as all the colors from L(wi1,...,in) are already
used on v1, . . . , vn. Hence, Kn,nn is not L-colorable.

3 List-colorablity of planar graphs

Every planar graph has list chromatic number at most 5, and there are pla-
nar graphs of list chromatic number exactly five. We did not do detailed
arguments in the class (though they are shown in the Czech version of the
notes). The graph K2,4 is planar, bipartite, and by Lemma 4 has list chro-
matic number three. As another example of the polynomial method, we are
going to show that every planar bipartite graph has list chromatic number
at most three.

4 Nullstellensatz

We need the following algebraic statement, which is easy to prove by induc-
tion on the number of variables.
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Lemma 5. Let p(x1, . . . , xn) be a polynomial in n variables and for i ∈
{1, . . . , n}, let di be the maximum degree of the variable xi in p. For i ∈
{1, . . . , n}, let Si be a set of more than di complex numbers. If p 6= 0, then
there exist s1 ∈ S1, . . . , sn ∈ Sn such that p(s1, . . . , sn) 6= 0.

Let G be a graph with vertices {v1, . . . , vn} and let ~G be any orientation
of G. The graph polynomial P ~G is defined as

P ~G(x1, . . . , xn) =
∏

(vi,vj)∈E( ~G)

(xj − xi).

Note that P ~G(c1, . . . , cn) 6= 0 if and only if c1, . . . , cn is a proper coloring of
the vertices of G.

Theorem 6. Let G be a graph with vertices {v1, . . . , vn} and let ~G be an
orientation of G. Let d1, . . . , dn be integers and L a list assignment for G
such that |L(vi)| > di for 1 ≤ i ≤ n. If the coefficient at xd11 . . . xdnn in P ~G is
non-zero, then G is L-colorable.

Proof. Without loss of generality, we can assume that |L(vi)| = di + 1 and
the elements of L(vi) are complex numbers. Let pi(x) =

∏
c∈L(vi)(x − c) for

i = 1, . . . , n. Then pi(c) = 0 for every c ∈ L(vi). Let qi = xdi+1 − pi; then
qi is a polynomial of degree at most di and qi(c) = cdi+1 for every c ∈ L(vi).
Let P be the polynomial obtained from P ~G by repeatedly substituting qi for
xdi+1, for each i ∈ {1, . . . , n}. Then P (c1, . . . , cn) = P ~G(c1, . . . , cn) for every
c1 ∈ L(v1), . . . , cn ∈ L(vn), and for each i, the degree of xi in P is at most
di. Moreover, the coefficient at xd11 . . . xdnn is the same in P and in P ~G, since
every monomial of P ~G has the same total degree (equal to |E(G)|) and the
substitutions only result in monomials of smaller total degree. It follows that
P 6= 0, and Lemma 5 implies that there exist c1 ∈ L(v1), . . . , and cn ∈ L(vn)
such that P ~G(c1, . . . , cn) = P (c1, . . . , cn) 6= 0. Then c1, . . . , cn is a proper
L-coloring of G.

Let ~G be a fixed orientation of G. If ~G′ is another orientation of G
differing from ~G on exactly p edges, then let sgn(~G′) = (−1)p.

Observation 7. Let G be a graph with vertices {v1, . . . , vn} and let ~G be an
orientation of G. Let Od1,...,dn be the set of all orientations of G in which vi
has indegree di for i = 1, . . . , n. The absolute value of the coefficient at the
monomial xd11 . . . xdnn in P ~G is∣∣∣ ∑

~G′∈Od1,...,dn

sgn(~G′)
∣∣∣.
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Any two orientations with the same indegrees differ only by reversing the
edges of an Eulerian subgraph. Hence:

Corollary 8. Let G be a graph with vertices {v1, . . . , vn}, let ~G be an orien-
tation of G, and for 1 ≤ i ≤ n, let di be the indegree of vi. Let E consist of
all subsets of edges of ~G forming an Eulerian subgraph. The absolute value
of the coefficient at the monomial xd11 . . . xdnn in P ~G is equal to∣∣∣∑

X∈E

(−1)|X|
∣∣∣.

If G is bipartite, then every Eulerian subgraph of an orientation of G has
even number of edges (and there is at least one, the empty one). Combining
these results, we get the following claim.

Corollary 9. Let G be a bipartite graph with vertices {v1, . . . , vn}, let ~G be
an orientation of G, and for 1 ≤ i ≤ n, let di be the indegree of vi. Then G
is L-colorable for every list assignment L such hat |L(vi)| > di.

Hall’s theorem implies that every bipartite planar graph has an orienta-
tion with maximum indegree at most two, and thus every bipartite planar
graph has list chromatic number at most three.
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