
Tree-width and algorithms

Zdeněk Dvořák

September 14, 2015

1 Algorithmic applications of tree-width

Many problems that are hard in general become easy on trees. For example,
consider the problem of finding the size of the largest independent in a graph
G. This problem is NP-complete for general graphs, but it can be solved in
linear time for trees.

Consider a rooted tree T , and let r denote the root of T . For a vertex n
of T , let Tn denote the subtree of T rooted in n. For every n we compute
two numbers:

• c(n) is the size of the largest independent set in Tn that contains n

• d(n) is the size of the largest independent set in Tn that does not contain
n

We proceed recursively, so that when processing n, we already computed
these numbers for all sons of n. If n is a leaf, then c(n) = 1 and d(n) = 0.
Otherwise,

c(n) = 1 +
∑

n′ son of n

d(n′)

d(n) =
∑

n′ son of n

max(c(n′), d(n′))

The size of the largest independent set in T is min(c(r), d(r)).
Similar algorithms usually work even for graphs with bounded tree-width.

It is useful to first simplify the decomposition. A tree decomposition (T, β)
is canonical if

• T is rooted, and the root r satisfies β(r) = ∅.

• Each leaf n satisfies β(n) = ∅.

1

• Each non-leaf vertex n satisfies one of the following conditions:

– n has exactly one son n′, and β(n) = β(n′) ∪ {v} for some vertex
v.

– n has exactly one son n′, and β(n) = β(n′) \ {v} for some vertex
v.

– n has exactly two sons n1 and n2, and β(n) = β(n1) = β(n2).

Lemma 1. Every graph G of tree-width at most k has a canonical tree de-
composition of width at most k, of polynomial size.

Proof. Insert new vertices and split the original vertices of a tree decompo-
sition of G as necessary.

Suppose that (T, β) is a canonical tree decomposition of a graph G. For

n ∈ V (T), let Gn = G
[⋃

n′∈V (Tn)
β(n′)

]
. For any C ⊆ β(n), we compute

• s(n,C) = size of the larges independent set S ⊆ V (Gn) such that
S ∩ β(n) = C.

When the tree decomposition has width at most k, we compute at most
2k+1 numbers for each vertex of T . We proceed recursively from leaves, so
that when a vertex is processed, we already computed these numbers for its
sons.

• If n is a leaf, then s(n, ∅) = 0.

• If n has exactly one son n′ and β(n) = β(n′) ∪ {v}, then

– s(n,C) = 1 + s(n′, C \ {v}) when v ∈ C and no neighbor of v
belongs to C,

– s(n,C) = −∞ when v ∈ C and a neighbor of v belongs to C,

– s(n,C) = s(n′, C) when v 6∈ C.

• If n has exactly one son n′ and β(n) = β(n′) \ {v}, then s(n,C) =
max(s(n′, C), s(n′, C ∪ {v})).

• If n has exactly two sons n1 and n2, and β(n) = β(n1) = β(n2), then
s(n,C) = s(n1, C) + s(n2, C)− |C|.

2

The size of the largest independent set in G is s(r, ∅). The time complexity
is O(k2k|V (T)|).

As a slightly more involved example, consider the computation of the
size of the smallest dominating set, i.e., the smallest set S ⊆ V (G) such that
every vertex of G either belongs to S or has a neighbor in S. Again, let
(T, β) be is a canonical tree decomposition of a graph G, and for n ∈ V (T),

let Gn = G
[⋃

n′∈V (Tn)
β(n′)

]
.

For any disjoint sets B,C ⊆ β(n), we compute

• s(n,B,C) = size of the smallest set S ⊆ V (Gn) such that S∩β(n) = C,
no vertex of B has a neighbor in S, and every vertex of V (Gn)\B either
belongs to S, or has a neighbor in S.

When the tree decomposition has width at most k, we compute at most 3k+1

numbers for each vertex of T . We proceed recursively from leaves, so that
when a vertex is processed, we already computed these numbers for its sons.

• If n is a leaf, then s(n, ∅, ∅) = 0.

• If n has exactly one son n′ and β(n) = β(n′) ∪ {v}, then

– s(n,B,C) = s(n′, B \ {v}, C) when v ∈ B and no neighbor of v
belongs to C,

– s(n,B,C) =∞ when v ∈ B and a neighbor of v belongs to C,

– s(n,B,C) = 1 + min{s(n′, B′, C \ {v}) : B ⊆ B′ ⊆ B ∪N} when
v ∈ C, N is the set of neighbors of v in β(n′) \C, and N ∩B = ∅,

– s(n,B,C) =∞ when v ∈ C and a neighbor of v belongs to B,

– s(n,B,C) = s(n′, B, C) when v 6∈ B ∪ C and a neighbor of v
belongs to C, and

– s(n,B,C) =∞ when v 6∈ B ∪ C and no neighbor of v belongs to
C.

• If n has exactly one son n′ and β(n) = β(n′) \ {v}, then s(n,B,C) =
min(s(n′, B, C), s(n′, B, C ∪ {v})).

• If n has exactly two sons n1 and n2, and β(n) = β(n1) = β(n2), then
s(n,B,C) = min{s(n1, B1, C) + s(n2, B2, C) − |C| : B1, B2 ⊆ β(n) \
C,B1 ∩B2 = B}.

The size of the smallest dominating set in G is s(r, ∅, ∅). The time complexity
is O(k5k|V (T)|).

3

2 Finding a tree decomposition

We use a variant of a lemma from the last lecture.

Lemma 2. Let G be a graph of tree-width at most k and let f : V (G)→ R+

be an arbitrary function. For a set X ⊆ V (G), let f(X) =
∑

x∈X f(x). Then
G contains a set S ⊆ V (G) of size at most k + 1 such that every component
C of G− S satisfies f(V (C)) ≤ f(V (G))/2.

We say that a graph G is s-fragile if for every G′ ⊆ G and W ⊆ V (G′),
G′ contains a set S ⊆ V (G′) of size at most s such that every component C
of G′ − S contains at most |W |/2 vertices of W .

Lemma 3. Every graph of tree-width at most k is (k + 1)-fragile.

Proof. As every subgraph of G has tree-width at most k, it suffices to prove
the condition of (k + 1)-fragility for G = G′. Let f(v) = 1 for v ∈ W and
f(v) = 0 otherwise, and apply Lemma 2.

Lemma 3 has an approximate converse.

Lemma 4. Every s-fragile graph has tree-width at most 2s.

Proof. We prove a stronger claim.

Let G be an s-fragile graph, and let W ⊆ V (G) have
size at most 2s + 1. Then G has a tree-decomposition
(T, β) of width at most 2s such that W ⊆ β(n) for some
n ∈ V (T).

(1)

We prove (1) by induction on the number of vertices of G (i.e., we assume
that (1) holds for all graphs with less than |V (G)| vertices). If |V (G)| ≤ 2s,
then we can let T be the tree with one vertex n and β(n) = V (G). Hence,
assume that |V (G)| ≥ 2s + 1. By adding vertices to W if necessary, we
can assume that |W | = 2s + 1. Let S ⊆ V (G) be a set of size at most s
such that every component of G− S contains at most (2s+ 1)/2 vertices of
W . Let C1, . . . , Cm be the components of G − S, and for 1 ≤ i ≤ m, let
Gi = G[V (Ci) ∪ S]. Note that Gi contains at most (2s + 1)/2 + s < 2s + 1
vertices of W , hence W 6⊆ V (Gi), and thus |V (Gi)| < |V (G)|. By the
induction hypothesis, Gi has a tree decomposition (Ti, βi) of width at most
2s such that W ∩ V (Gi) ⊆ β(ni) for some ni ∈ V (Ti).

Let T be the tree obtained from the disjoint union of T1, . . . , Tm by adding
a new vertex n adjacent to n1, . . . , nm. Let β(n′) = βi(n

′) for n′ ∈ V (T)\{n},
where i ∈ {1, . . . ,m} satisfies n′ ∈ V (Ti); and let β(n) = W . Then (T, β) is
a tree decomposition of G of width at most 2s and W ⊆ β(n).

4

As a corollary, we have the following.

Theorem 5. For every s ≥ 0, there exists a polynomial-time algorithm that
for a graph G either decides that G has tree-width at least s, or returns a tree
decomposition of G of width at most 2s.

Proof. The proof of Lemma 3 gives an algorithm that either finds a tree
decomposition of G of width 2s, or finds a subgraph G′ ⊆ G and a set
W ⊆ V (G′) showing that G is not s-fragile. In the latter case, Lemma 3
shows that G does not have tree-width at most s− 1.

To execute the algorithm, we need for a given set W and graph G′ to
decide whether there exists a set S of size at most s such that each component
of G′−S contains at most |W |/2 vertices of W . To do so, we can simply test
all such sets S ⊆ V (G′). This results in an algorithm with time complexity
O(|V (G)|s+2).

With a little work, this can be improved to O(f(s)|V (G)|2) for some
function f . The current best approximation algorithms is by Bodlaender,
Drange, Dregi, Fomin, Lokshtanov and Pilipczuk: decides that either the
tree-width is at most 5k − 1, or at least k, in time O(ck|V (G)|).

Let us remark that such an approximation is sufficient for the described
algorithms. E.g., we can find the size of the largest independent set of a
graph with tree-width at most k in time O(ck|V (G)|), even if the tree de-
composition is not given in advance—we find a decomposition of width at
most 5k − 1 using the algorithm of Bodlaender et al., and then apply the
algorithm for independent sets to this approximate decomposition, which has
time complexity O(k25k|V (G)|).

Furthermore, for fixed k, given a tree decomposition of G of width at
most 5k − 1, it is possible to find a tree decomposition of G of width at
most k (when it exists) in linear time, using an algorithm of Bodlaender and
Kloks. Hence, we have the following.

Theorem 6. For every k ≥ 1, there exists a linear-time algorithm which for
given graph G either decides that tw(G) > k, or finds a tree decomposition
of G of width at most k.

5

3 Exercises

1. (?) Modify the algorithm that finds the size of the largest independent
set in a graph G of bounded tree-width so that it also returns one such
largest independent set S ⊆ V (G).

2. (??) Modify the algorithm that finds the size of the smallest dominating
set in a graph G of bounded tree-width so that it returns the number
of all (not necessarily smallest) dominating sets in G.

3. (? ? ?) Design a polynomial-time algorithm that determines whether
a graph of bounded tree-width (given with its tree decomposition) is
3-colorable.

4. (?) Prove Lemma 2.

6

