Tree-width and algorithms

Zdenék Dvorak
September 14, 2015

1 Algorithmic applications of tree-width

Many problems that are hard in general become easy on trees. For example,
consider the problem of finding the size of the largest independent in a graph
G. This problem is NP-complete for general graphs, but it can be solved in
linear time for trees.

Consider a rooted tree T', and let r denote the root of T'. For a vertex n
of T', let T,, denote the subtree of T" rooted in n. For every n we compute
two numbers:

e ¢(n) is the size of the largest independent set in 7, that contains n

e d(n) is the size of the largest independent set in 7T;, that does not contain
n

We proceed recursively, so that when processing n, we already computed
these numbers for all sons of n. If n is a leaf, then ¢(n) = 1 and d(n) = 0.
Otherwise,

c(n)=1+ Z d(n')

n’ son of n

d(n) = Z max(c(n'),d(n’))

n’ son of n

The size of the largest independent set in 7" is min(c(r), d(r)).

Similar algorithms usually work even for graphs with bounded tree-width.
It is useful to first simplify the decomposition. A tree decomposition (7', 3)
is canonical if

e T is rooted, and the root r satisfies 5(r) = ().

e Each leaf n satisfies 5(n) = 0.

e Each non-leaf vertex n satisfies one of the following conditions:
— n has exactly one son n’, and 3(n) = f(n’) U {v} for some vertex
v.

— n has exactly one son n’, and (n) = B(n’) \ {v} for some vertex
v.

— n has exactly two sons n; and ng, and S(n) = B(ny) = f(ng).

Lemma 1. Every graph G of tree-width at most k has a canonical tree de-
composition of width at most k, of polynomial size.

Proof. Insert new vertices and split the original vertices of a tree decompo-
sition of GG as necessary. m

Suppose that (T, 3) is a canonical tree decomposition of a graph G. For
neV(T),let G, =G [Un,GV(Tn) B(n’)] For any C' C f(n), we compute

e s(n,C) = size of the larges independent set S C V(G,) such that
Snpn)=C.

When the tree decomposition has width at most k£, we compute at most
21 numbers for each vertex of 7. We proceed recursively from leaves, so
that when a vertex is processed, we already computed these numbers for its
sons.

e If n is a leaf, then s(n,) = 0.
e If n has exactly one son n’ and 5(n) = g(n’) U {v}, then

- s(n,C) =1+ s(n',C\ {v}) when v € C and no neighbor of v
belongs to C,
— s(n,C) = —oo when v € C' and a neighbor of v belongs to C,

— s(n,C) = s(n,C) when v ¢ C.

If n has exactly one son n’ and f(n) = S(n') \ {v}, then s(n,C) =
max(s(n’,C), s(n’,C' U {v})).

If n has exactly two sons ny and ng, and (n) = 5(ny) = B(na), then
s(n,C) = s(ny,C) + s(ng, C) — |C|.

The size of the largest independent set in G is s(r,0). The time complexity
is O(k2F|V(T))).

As a slightly more involved example, consider the computation of the
size of the smallest dominating set, i.e., the smallest set S C V(@) such that
every vertex of G either belongs to S or has a neighbor in S. Again, let
(T, B) be is a canonical tree decomposition of a graph G, and for n € V(T),

let G =G |Upev, B(n/)]'
For any disjoint sets B,C' C 3(n), we compute

e s(n, B, (') = size of the smallest set S C V(G,,) such that SNG(n) = C,
no vertex of B has a neighbor in S, and every vertex of V(G,,)\ B either
belongs to S, or has a neighbor in S.

When the tree decomposition has width at most k, we compute at most 3+**
numbers for each vertex of T. We proceed recursively from leaves, so that
when a vertex is processed, we already computed these numbers for its sons.

e If n is a leaf, then s(n,0,0) = 0.
e If n has exactly one son n’ and 5(n) = 5(n’) U {v}, then
- s(n,B,C) = s(n',B\ {v},C) when v € B and no neighbor of v
belongs to C,

— s(n, B,C') = co when v € B and a neighbor of v belongs to C,

- s(n,B,C) =1+ min{s(n/,B',C\ {v}): BC B'C BUN} when
v € C, N is the set of neighbors of v in (n’)\ C, and NN B =),

— s(n, B,C') = oo when v € C' and a neighbor of v belongs to B,

— s(n,B,C) = s(n’,B,C) when v ¢ B UC and a neighbor of v
belongs to ', and

— s(n, B,C') = co when v ¢ B U C and no neighbor of v belongs to
C.

e If n has exactly one son n’ and S(n) = 5(n) \ {v}, then s(n, B,C) =
min(s(n’, B,C), s(n’, B,C U {v})).

e If n has exactly two sons ny and ng, and 5(n) = f(n1) = B(ns), then
s(n, B,C") = min{s(ny, B1,C) + s(ng, B2,C) — |C| : By, By C B(n) \
C,B,N By = BY.

The size of the smallest dominating set in G is s(r, 0,). The time complexity
is O(k5*|V(T))).

2 Finding a tree decomposition

We use a variant of a lemma from the last lecture.

Lemma 2. Let G be a graph of tree-width at most k and let f : V(G) — R
be an arbitrary function. For a set X C V(G), let f(X) =", .y [(x). Then
G contains a set S C V(G) of size at most k + 1 such that every component
C of G — S satisfies f(V(C)) < f(V(G))/2.

We say that a graph G is s-fragile if for every G’ C G and W C V(&)
G’ contains a set S C V(G') of size at most s such that every component C
of G' — S contains at most |W|/2 vertices of W.

Lemma 3. Every graph of tree-width at most k is (k + 1)-fragile.

Proof. As every subgraph of G has tree-width at most k, it suffices to prove
the condition of (k + 1)-fragility for G = G’. Let f(v) =1 for v € W and
f(v) = 0 otherwise, and apply Lemma 2.]

Lemma 3 has an approximate converse.
Lemma 4. Fvery s-fragile graph has tree-width at most 2s.

Proof. We prove a stronger claim.

Let G be an s-fragile graph, and let W C V(G) have

size at most 2s + 1. Then G has a tree-decomposition (1)
(T,) of width at most 2s such that W C §(n) for some

n e V(T).

We prove (1) by induction on the number of vertices of G (i.e., we assume
that (1) holds for all graphs with less than |V(G)| vertices). If |[V(G)| < 2s,
then we can let T be the tree with one vertex n and f(n) = V(G). Hence,
assume that |V (G)| > 2s + 1. By adding vertices to W if necessary, we
can assume that |[IW| = 2s + 1. Let S C V(G) be a set of size at most s
such that every component of G — S contains at most (2s + 1)/2 vertices of
W. Let C4, ..., C,, be the components of G — S, and for 1 < i < m, let
G; = G[V(C;) U S]. Note that G; contains at most (2s +1)/2 +s < 2s + 1
vertices of W, hence W ¢ V(G;), and thus |V(G;)| < |V(G)|. By the
induction hypothesis, G; has a tree decomposition (7}, §;) of width at most
2s such that W N V(G;) C 5(n;) for some n; € V(T5).

Let T be the tree obtained from the disjoint union of 77, . .., T}, by adding
anew vertex n adjacent to ny, ..., n,. Let B(n') = B;(n’) for n’ € V(T)\{n},
where ¢ € {1,...,m} satisfies n’ € V(T;); and let 5(n) = W. Then (T, f) is
a tree decomposition of G of width at most 2s and W C S(n). O

4

As a corollary, we have the following.

Theorem 5. For every s > 0, there exists a polynomial-time algorithm that
for a graph G either decides that G has tree-width at least s, or returns a tree
decomposition of G of width at most 2s.

Proof. The proof of Lemma 3 gives an algorithm that either finds a tree
decomposition of G of width 2s, or finds a subgraph G’ C G and a set
W C V(G') showing that G is not s-fragile. In the latter case, Lemma 3
shows that G does not have tree-width at most s — 1.

To execute the algorithm, we need for a given set W and graph G’ to
decide whether there exists a set S of size at most s such that each component
of G’ — S contains at most |W|/2 vertices of W. To do so, we can simply test
all such sets S C V(G’). This results in an algorithm with time complexity
O(IV(G)["*2). O

With a little work, this can be improved to O(f(s)|V(G)|*) for some
function f. The current best approximation algorithms is by Bodlaender,
Drange, Dregi, Fomin, Lokshtanov and Pilipczuk: decides that either the
tree-width is at most 5k — 1, or at least k, in time O(c*|V(G)|).

Let us remark that such an approximation is sufficient for the described
algorithms. E.g., we can find the size of the largest independent set of a
graph with tree-width at most k in time O(c*|V(G)|), even if the tree de-
composition is not given in advance—we find a decomposition of width at
most bk — 1 using the algorithm of Bodlaender et al., and then apply the
algorithm for independent sets to this approximate decomposition, which has
time complexity O(k2%%|V (G)|).

Furthermore, for fixed k, given a tree decomposition of G' of width at
most 5k — 1, it is possible to find a tree decomposition of G of width at
most k (when it exists) in linear time, using an algorithm of Bodlaender and
Kloks. Hence, we have the following.

Theorem 6. For every k > 1, there exists a linear-time algorithm which for
given graph G either decides that tw(G) > k, or finds a tree decomposition
of G of width at most k.

Exercises

. (%) Modify the algorithm that finds the size of the largest independent
set in a graph G of bounded tree-width so that it also returns one such
largest independent set S C V(G).

. (%) Modify the algorithm that finds the size of the smallest dominating
set in a graph G of bounded tree-width so that it returns the number
of all (not necessarily smallest) dominating sets in G.

. (* x x) Design a polynomial-time algorithm that determines whether
a graph of bounded tree-width (given with its tree decomposition) is
3-colorable.

. (x) Prove Lemma 2.

