Observation

$$\omega(G) \leq \chi(G) \leq \Delta(G) + 1$$

Lemma

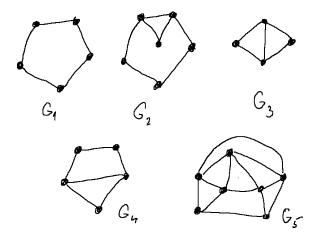
There exist triangle-free graphs ($\omega = 2$) with arbitrarily large chromatic number.

Which graphs satisfy $\chi(G) = \omega(G)$?

• Problem: $\chi(G + K_{|V(G)|}) = \omega(G + K_{|V(G)|}) = |V(G)|$

A graph *G* is perfect if every induced subgraph *H* of *G* satisfies $\chi(H) = \omega(H)$.

Q: Which of the following graphs are perfect?



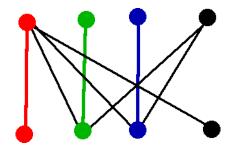
Examples: <u>chordal graphs</u>, bipartite graphs, complements of bipartite graphs, linegraphs of bipartite graphs, comparability graphs, ...

Examples: chordal graphs, <u>bipartite graphs</u>, complements of bipartite graphs, linegraphs of bipartite graphs, comparability graphs, ...

 $\chi({\it G})=\omega({\it G})={\tt 2}$

Examples: chordal graphs, bipartite graphs, <u>complements of</u> <u>bipartite graphs</u>, linegraphs of bipartite graphs, comparability graphs, ...

$$\chi(\overline{G}) = |V(G)| - \beta(G) = \alpha(G) = \omega(\overline{G})$$

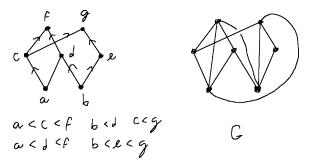


Examples: chordal graphs, bipartite graphs, complements of bipartite graphs, <u>linegraphs of bipartite graphs</u>, comparability graphs, ...

 $\chi(L(G)) = \chi'(G) = \Delta(G) = \omega(L(G))$

Examples: chordal graphs, bipartite graphs, complements of bipartite graphs, linegraphs of bipartite graphs, <u>comparability</u> graphs, ...

Comparability graph: For a partial ordering \prec , $uv \in E(G)$ iff $u \prec v$ or $v \prec u$.

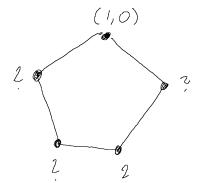


 $\omega(G) = \text{longest chain}, \chi(G) = \text{partition to min. # of antichains.}$

For $r \ge 2$, a vector *r*-coloring is a function $\varphi: V(G) \rightarrow$ unit vectors such that for every $uv \in E(G)$,

$$\langle \varphi(u), \varphi(v) \rangle \leq -1/(r-1).$$

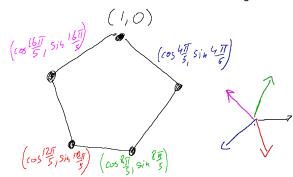
Vector $\sqrt{5}$ -coloring of C_5 ; $-1/(\sqrt{5}-1) = \cos \frac{4\pi}{5}$:



For $r \ge 2$, a vector *r*-coloring is a function $\varphi: V(G) \rightarrow$ unit vectors such that for every $uv \in E(G)$,

 $\langle \varphi(u), \varphi(v) \rangle \leq -1/(r-1).$

Vector $\sqrt{5}$ -coloring of C_5 ; $-1/(\sqrt{5}-1) = \cos \frac{4\pi}{5}$:



For $r \ge 2$, a vector *r*-coloring is a function $\varphi: V(G) \rightarrow$ unit vectors such that for every $uv \in E(G)$,

$$\langle \varphi(u), \varphi(v) \rangle \leq -1/(r-1).$$

Definition

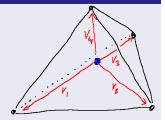
Vector chromatic number

$$\chi_{v}(G) = \inf\{r \geq 2 : G \text{ has a vector } r \text{-coloring}\}.$$

For G with
$$E(G) \neq \emptyset$$
, $\chi_v(G) \leq \chi(G)$.

Proof.

 v_1, \ldots, v_c : unit vectors forming a regular simplex, $\langle v_i, v_j \rangle = s$.



$$0 = \Big|\sum_{i=1}^{c} v_i\Big|^2 = \sum_{i=1}^{c} |v_i|^2 + \sum_{i \neq j} \langle v_i, v_j \rangle = c + c(c-1)s$$

s = -1/(c-1)

Vertices of color $i \rightarrow v_i$.

 $\chi_{v}(G) \geq \omega(G)$

Proof.

 v_1, \ldots, v_k : Vectors on a clique in a vector *r*-coloring.

$$0 \le \left|\sum_{i=1}^{k} v_i\right|^2 = \sum_{i=1}^{k} |v_i|^2 + \sum_{i \ne j} \langle v_i, v_j \rangle$$
$$\le k - k(k-1)/(r-1)$$
$$k \le r$$

•
$$\omega(G) \leq \chi_v(G) \leq \chi(G)$$

•
$$\omega(G) = \chi(G) \Rightarrow$$
 equal to $\chi_{v}(G)$.

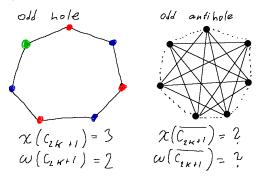
• $\chi_{v}(G)$ can be computed by semidefinite programming.

$$\chi_{\mathbf{v}}(\mathbf{G})=\mathbf{1}-\mathbf{1}/t,$$

where *t* is minimum s.t. there exist vectors $\{v_z : z \in V(G)\}$ satisfying

$$egin{array}{lll} \langle v_z, v_z
angle = 1 & ext{for every } z \in V(G) \ \langle v_y, v_z
angle \leq t & ext{for every } yz \in E(G) \end{array}$$

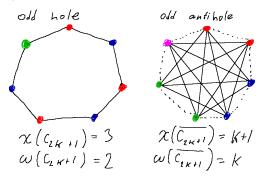
- Hole: induced (≥4)-cycle
- Antihole: induced subgraph isomorphic to the complement of a (≥4)-cycle



Theorem (Strong Perfect Graph Theorem)

A graph is perfect if and only if it contains no odd holes and antiholes.

- Hole: induced (≥4)-cycle
- Antihole: induced subgraph isomorphic to the complement of a (≥4)-cycle



Theorem (Strong Perfect Graph Theorem)

A graph is perfect if and only if it contains no odd holes and antiholes.

Corollary (Weak Perfect Graph Theorem)

A graph is perfect if and only if its complement is perfect.

*A*₁,..., *A*_k, *K*₁,..., *K*_k ⊆ {1,..., *n*}. If
• *A*_i ∩ *K*_i =
$$\emptyset$$
 for *i* ∈ {1,..., *k*} and
• |*A*_i ∩ *K*_j| = 1 for *i*, *j* ∈ {1,..., *k*}, *i* ≠ *j*,
then *k* ≤ *n*.

Proof.

- WLOG k ≥ 2.
- $S k \times n$ matrix, $S_{i,j} = 1$ if $j \in A_i$, 0 otherwise.
- $T n \times k$ matrix, $T_{i,j} = 1$ if $i \in K_j$, 0 otherwise.
- $(ST)_{i,j} = |A_i \cap K_j|$: 0 on the diagonal, 1 elsewhere.
- $k = \operatorname{rank}(ST) \le \operatorname{rank}(S) \le n$.

G is perfect if and only if for every induced subgraph H of G, there exists an independent set intersecting all cliques of size $\omega(H)$.

Proof.

- ⇒ Clique of size $\omega(H)$ intersects all color classes of $\omega(H)$ -coloring.
- \leftarrow Induction on |V(G)|.
 - A intersects all cliques of size ω(G):
 - $\omega(G-A)=\omega(G)-1.$
 - Induction hypothesis:
 - $\chi(G-A) = \omega(G-A) = \omega(G) 1.$
 - Color A using a new color: $\chi(G) = \omega(G)$.

G is perfect if and only if for every induced subgraph H of G,

 $\alpha(H)\omega(H) \ge |V(H)|.$

G perfect: $\omega(H) = \chi(H) \ge |V(H)|/\alpha(H)$.

G is perfect if and only if for every induced subgraph H of G,

 $\alpha(H)\omega(H) \ge |V(H)|.$

- For every independent set A, there exists a disjoint ω(G)-clique K(A)
- $A_0 = \{v_1, \ldots, v_\alpha\}$ an independent set.
- Induction: $\chi(G v_i) \leq \omega$; color classes $A_{i,1}, \ldots, A_{i,\omega}$.
 - $K(A_0)$ intersects all of them.
 - $K(A_{i,j})$ intersects all but $A_{i,j}$.
 - $K(A_{i',j})$ for $i' \neq i$ intersects all of them.

• $K(A_{i',j}) \cap A_0 = \{v_{i'}\} \Rightarrow K(A_{i',j}) \subseteq V(G - v_i)$

• Lemma for sets A_{\star} and $K(A_{\star})$: $\alpha \omega + 1 \leq |V(G)| \not$

G is perfect if and only if for every induced subgraph H of G,

 $\alpha(H)\omega(H) \ge |V(H)|.$

If $\alpha(H)\omega(H) \geq |V(H)|$, then

$$\alpha(\overline{H})\omega(\overline{H}) = \omega(H)\alpha(H) \ge |V(H)|.$$

Corollary (Weak Perfect Graph Theorem)

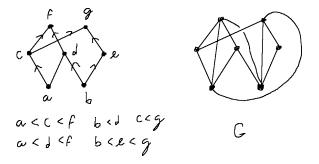
If G is perfect, then \overline{G} is perfect.

G: the comparability graph of \prec

• $\omega(\overline{G}) = \alpha(G) = \text{largest antichain in } \prec$

The width of ≺.

• $\chi(\overline{G}) =$ partition of elements to smallest number of chains



Corollary (Dilworth's theorem)

Every finite partially ordered set of width k has a partition into k chains.