Theorem (Vizing)

For any simple graph G,

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Corollary

For any simple graph G,

$$
\chi^{\prime}(G) \in\{\Delta(G), \Delta(G)+1\} .
$$

A color c is missing at v if no edge incident with v has color c.

Observation

In an edge coloring by $\Delta(G)+1$ colors, at least one color is missing at each vertex.

A Kempe chain in colors $\{a, b\}$ is a maximal connected subgraph with edges colored by a or b.

- Alternating path or cycle.
- Path: one of $\{a, b\}$ is missing at each end.
- Switching the chain: Exchanging colors a and b on its edges.
- Missing colors stay the same, except for the ends of the chain.

Lemma

$\chi^{\prime}(G) \leq \Delta(G)+1, u v \notin E(G) \Rightarrow$ there exists an edge coloring by $\Delta(G)+1$ colors s.t. the same color is missing at u and v.

- c_{1} : A color missing at u.
- b: A color missing at v.
- WLOG c_{1} is not missing at v, b is not missing at u.

For $i=1,2, \ldots$:

- $e_{i}=v x_{i}$ an edge of color $c_{i}, c_{i+1}=$ a color missing at x_{i}
- If c_{i+1} is missing at v or $c_{i+1} \in\left\{c_{1}, \ldots, c_{i-1}\right\}$:
- stop and let $k=i$.

(\star) If c_{k+1} is missing at v :
- For $i=k, k-1, \ldots, 1$, recolor e_{i} to c_{i+1}.
- c_{1} is missing at both u and v.

Otherwise: $c_{k+1}=c_{s}$ for some $s \in\{1, \ldots, k-1\}$.
K : Kempe chain in colors $\left\{c_{s}, b\right\}$ containing x_{k}

Case 1: K ends at $z \notin\left\{u, v, x_{s-1}\right\}$

- Switch K to make b missing at x_{k}.
- c_{i+1} still missing at x_{i} for $i=1, \ldots, k-1$.
- The case (\star) with $c_{k+1}=b$.

Case 2: K ends at x_{s-1}

- Switch K to make b missing at x_{s-1}.
- The case (\star) with $k=s-1, c_{k+1}=b$.

Case 3: K ends at u

- Switch K to make b missing at u.
- b is missing at both u and v.

Case 4: K ends at v

- K ends by $e_{s}=v x_{s}$.
- Switch K to make c_{s} missing at v.
- The case (\star) with $k=s-1, c_{k+1}=c_{s}$

Theorem (Vizing)

For any simple graph G,

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

By induction on $|E(G)|$:

- $\chi^{\prime}(G-u v) \leq \Delta(G-u v)+1 \leq \Delta(G)+1$.
- An edge coloring by $\Delta(G)+1$ colors s.t. c is missing at u and v.
- Color uv by c.

Definition

A graph is chordal if it does not contain any induced cycle of length at least four.

Equivalently, every (≥ 4)-cycle has a chord.

Hole $=$ induced (≥ 4)-cycle; graph is chordal iff it has no hole.

Definition

A graph is chordal if it does not contain any induced cycle of length at least four.

Q: Which of the following graphs are chordal?

Example: Interval graphs are chordal.

- $V=$ a set of intervals
- $I_{1}, I_{2} \in V$ adjacent iff $I_{1} \cap I_{2} \neq \emptyset$.

Minimal cut: $G-Z$ not connected, $G-X$ connected for every $X \subsetneq Z$

Lemma

If G is chordal, then every minimal cut is a clique.

A vertex is simplicial if its neighborhood is a clique.
Q: Find simplicial vertices.

Lemma

G chordal, not a clique \Rightarrow contains two non-adjacent simplicial vertices.

- G not a clique \Rightarrow contains a minimal cut.
- Induction for the sides of the cut.

Corollary

A graph G is chordal if and only if every induced subgraph of G contains a simplicial vertex.

- Induced subgraphs of chordal graphs are chordal.
- (≥ 4)-cycle does not have a simplicial vertex.

If $v \in V(G)$ is simplicial, then

- $\chi(G)=\max (\chi(G-v), \operatorname{deg} v+1)$
- $\omega(G)=\max (\omega(G-v), \operatorname{deg} v+1)$
- $\alpha(\boldsymbol{G})=\alpha(\boldsymbol{G}-\boldsymbol{N}[\boldsymbol{V}])+1$

Corollary

If G is chordal, then

- $\chi(G)=\omega(G)$
- $\chi(G), \omega(G)$ and $\alpha(G)$ can be computed in polynomial time.

An elimination ordering is an ordering v_{1}, \ldots, v_{n} of vertices of G such that for $i=1, \ldots, n$,

$$
\left\{v_{j}: j<i, v_{j} v_{i} \in E(G)\right\} \text { is a clique. }
$$

Q: Show that every chordal graph has an elimination ordering.

Lemma

If G has an elimination ordering, then G is chordal.

- Every induced subgraph of G has an elimination ordering.
- The last vertex of an elimination ordering is simplicial.

Corollary

To test whether G is chordal, delete simplicial vertices in any order, until we obtain either

- an elimination ordering of G, or
- an induced subgraph with no simplicial vertex.

Corollary

A graph is chordal iff it is obtained from a single-vertex graph by repeatedly adding simplicial vertices.

