Definition

For a surface Σ,

$$
\begin{aligned}
& \chi(\Sigma)=\max \{\chi(G): G \text { can be drawn in } \Sigma\} \\
& \omega(\Sigma)=\max \{\omega(G): G \text { can be drawn in } \Sigma\}
\end{aligned}
$$

Q: Determine χ (sphere) and ω (sphere).

Observation

$\chi(\Sigma) \geq \omega(\Sigma)$

Observation

If G is drawn in Σ, then $K_{\omega(\Sigma)+1} \npreceq m G$.
If Hadwiger's conjecture is true, then this implies

- $\chi(G) \leq \omega(\Sigma)$
- $\chi(\Sigma)=\omega(\Sigma)$

Goal: Prove $\chi(\Sigma)=\omega(\Sigma)$ without Hadwiger's conjecture.

Lemma (A)

If G is an n-vertex graph $(n \geq 3)$ drawn in a surface of Euler genus g, then $\delta(G) \leq \min (n-1,6+6(g-2) / n)$.

Proof.

- Last time, we proved $|E(G)| \leq 3 n+3 g-6$.
- G has average degree $\frac{2|E(G)|}{n} \leq 6+6(g-2) / n$.

Lemma (B)

If $g \geq 2$, then for every n,

$$
\min (n-1,6+6(g-2) / n) \leq \frac{5+\sqrt{24 g+1}}{2}
$$

Lemma (B)

If $g \geq 2$, then for every n,

$$
\min (n-1,6+6(g-2) / n) \leq \frac{5+\sqrt{24 g+1}}{2}
$$

Proof.

The expression is maximized when

$$
\begin{aligned}
n-1 & =6+6(g-2) / n \\
n^{2}-7 n-6(g-2) & =0 \\
n & =\frac{7+\sqrt{24 g+1}}{2} .
\end{aligned}
$$

Let

$$
H(g)=\left\lfloor\frac{7+\sqrt{24 g+1}}{2}\right\rfloor
$$

Lemma

If G is drawn in a surface of Euler genus $g>0$, then $\delta(G)<H(g)$.

Proof.

- $g \geq 2$:

$$
\delta(G) \leq \frac{5+\sqrt{24 g+1}}{2}<H(g)
$$

by Lemmas (A) and (B).

- $g=1: \delta(G)<6=H(1)$ by Lemma (A).

Theorem

If G is drawn in a surface of Euler genus g, then $\chi(G) \leq H(g)$.

Proof.

- $g=0: \chi(G) \leq 4=H(0)$ by the Four Color Theorem.
- $g>0$: By induction;
- $v \in V(G)$ s.t. $\operatorname{deg} v<H(g)$
- Color $G-v$ by $H(g)$ colors by the induction hypothesis.
- Extend the coloring to v.

Theorem (Ringel and Youngs)

If $\Sigma \neq$ Klein bottle is a surface of Euler genus g, then $K_{H(g)}$ can be drawn in Σ.

Corollary

For every surface $\Sigma \neq$ Klein bottle,

$$
\chi(\Sigma)=H(g)=\omega(\Sigma)
$$

Lemma

$\omega($ Klein bottle $)=6$.

Observation

Every graph G drawn in the Klein bottle has average degree at most 6. Hence, either

- $\delta(G) \leq 5$, or
- G is 6-regular.

Observation

If G is a graph of maximum degree Δ, then $\chi(G) \leq \Delta+1$.

Q: Find a graph of maximum degree Δ that cannot be colored by Δ colors.

Theorem (Brooks)

If G is a connected graph of maximum degree Δ and G is neither a clique nor an odd cycle, then $\chi(G) \leq \Delta$.

Corollary

Every graph drawn G in the Klein bottle is 6-colorable.

- $\operatorname{deg} v \leq 5$:
- Color $G-v$ by induction hypothesis, extend to v.
- G 6-regular:
- $G \neq K_{7}$, since it is drawn in the Klein bottle.
- 6-colorable by Brooks theorem.

Corollary

For a surface Σ of Euler genus g :

- If $\Sigma \neq$ Klein bottle, then

$$
\chi(\Sigma)=\omega(\Sigma)=H(g)
$$

- If $\Sigma=$ Klein bottle, then

$$
\chi(\Sigma)=\omega(\Sigma)=6=H(g)-1
$$

- Proof of Brooks theorem:
- $\Delta \leq 2$: Simple.
- $\Delta \geq 3$: By induction on $|V(G)|$.

Case 1: G is not 2-connected:

Case 2: G is 2-connected but not 3-connected:
(a) $G_{1}+u v, G_{2}+u v \neq K_{\Delta+1}:$

Case 2: G is 2-connected but not 3-connected:
(b) $G_{1}+u v=K_{\Delta+1}$:

Case 3: G is 3 -connected:

- x and y : vertices at distance 2
- z: Common neighbor of x and y
- T : Spanning tree of $G-\{x, y\}$ plus edges $x z, y z$

Case 3: G is 3 -connected:

- Root T in z.
- Give x and y color 1 .
- Color in T from leaves up.

Definition

$\varphi: E(G) \rightarrow\{1, \ldots, k\}$ is an edge k-coloring if $\varphi\left(e_{1}\right) \neq \varphi\left(e_{2}\right)$ for distinct $e_{1}, e_{2} \in E(G)$ incident with the same vertex.

Definition

The chromatic index $\chi^{\prime}(G)$: the minimum k such that G has an edge k-coloring.

Q: What is the chromatic index of the following graph?

Example:

- Tournament with n players.
- Each two need to play a match.
- Any number of matches can be played in parallel.
- A player can only play one match in a round.
min. \# of rounds $=\chi^{\prime}\left(K_{n}\right)= \begin{cases}n-1 & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd. }\end{cases}$

Observation

$$
\chi^{\prime}(G) \geq \Delta(G)
$$

Observation

$$
\chi^{\prime}(G) \geq \frac{|E(G)|}{\text { size of maximum matching in } G}
$$

Definition

The linegraph $L(G)$ of G has

- $V(L(G))=E(G)$
- $e_{1} e_{2} \in E(L(G))$ iff e_{1} and e_{2} are incident with the same vertex.

Observation

$\chi^{\prime}(G)=\chi(L(G))$
Not every graph is a linegraph!

Claim

There is no G such that $L(G)=K_{1,3}$.

Observation

$$
\Delta(L(G)) \leq 2 \Delta(G)-2
$$

Corollary

- $\chi^{\prime}(G) \leq 2 \Delta(G)-1$
- If G is connected and $L(G)$ is neither a clique nor an odd cycle, then $\chi^{\prime}(G) \leq 2 \Delta(G)-2$.

Theorem (Vizing)

For any simple graph G,

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Corollary

For any simple graph G,

$$
\chi^{\prime}(G) \in\{\Delta(G), \Delta(G)+1\} .
$$

