Definition

For a surface Σ ,

$$\chi(\Sigma) = \max{\chi(G) : G \text{ can be drawn in } \Sigma}$$

 $\omega(\Sigma) = \max\{\omega(G) : G \text{ can be drawn in } \Sigma\}$

Q: Determine χ (sphere) and ω (sphere).

Observation

 $\chi(\Sigma) \ge \omega(\Sigma)$

Observation

If G is drawn in Σ , then $K_{\omega(\Sigma)+1} \not\preceq_m G$.

If Hadwiger's conjecture is true, then this implies

•
$$\chi(G) \leq \omega(\Sigma)$$

•
$$\chi(\Sigma) = \omega(\Sigma)$$

Goal: Prove $\chi(\Sigma) = \omega(\Sigma)$ without Hadwiger's conjecture.

Lemma (A)

If G is an n-vertex graph ($n \ge 3$) drawn in a surface of Euler genus g, then $\delta(G) \le \min(n-1, 6+6(g-2)/n)$.

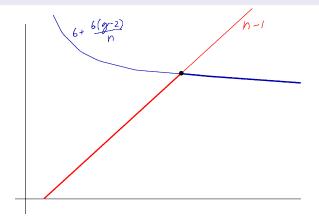
Proof.

- Last time, we proved $|E(G)| \leq 3n + 3g 6$.
- G has average degree $\frac{2|E(G)|}{n} \le 6 + 6(g-2)/n$.

Lemma (B)

If $g \ge 2$, then for every n,

$$\min(n-1, 6+6(g-2)/n) \leq \frac{5+\sqrt{24g+1}}{2}$$



Lemma (B)

If $g \ge 2$, then for every n,

$$\min(n-1, 6+6(g-2)/n) \leq \frac{5+\sqrt{24g+1}}{2}$$

Proof.

The expression is maximized when

$$n-1 = 6 + 6(g-2)/n$$

 $n^2 - 7n - 6(g-2) = 0$
 $n = \frac{7 + \sqrt{24g+1}}{2}.$

Let

$$H(g) = \left\lfloor \frac{7 + \sqrt{24g + 1}}{2} \right\rfloor.$$

Lemma

If G is drawn in a surface of Euler genus g > 0, then $\delta(G) < H(g)$.

Proof.

● g ≥ 2:

$$\delta(G) \leq \frac{5 + \sqrt{24g + 1}}{2} < H(g)$$

by Lemmas (A) and (B).

• $g = 1: \delta(G) < 6 = H(1)$ by Lemma (A).

Theorem

If G is drawn in a surface of Euler genus g, then $\chi(G) \leq H(g)$.

Proof.

- g = 0: $\chi(G) \le 4 = H(0)$ by the Four Color Theorem.
- *g* > 0: By induction;
 - $v \in V(G)$ s.t. deg v < H(g)
 - Color G v by H(g) colors by the induction hypothesis.
 - Extend the coloring to v.

Theorem (Ringel and Youngs)

If $\Sigma \neq K$ lein bottle is a surface of Euler genus g, then $K_{H(g)}$ can be drawn in Σ .

Corollary

For every surface $\Sigma \neq Klein$ bottle,

$$\chi(\Sigma) = H(g) = \omega(\Sigma).$$

Lemma

 ω (Klein bottle) = 6.

Observation

Every graph G drawn in the Klein bottle has average degree at most 6. Hence, either

•
$$\delta({\it G}) \leq$$
 5, or

G is 6-regular.

Observation

If G is a graph of maximum degree Δ , then $\chi(G) \leq \Delta + 1$.

Q: Find a graph of maximum degree Δ that cannot be colored by Δ colors.

Theorem (Brooks)

If G is a connected graph of maximum degree Δ and G is neither a <u>clique</u> nor an <u>odd cycle</u>, then $\chi(G) \leq \Delta$.

Corollary

Every graph drawn G in the Klein bottle is 6-colorable.

- deg $v \leq 5$:
 - Color G v by induction hypothesis, extend to v.
- G 6-regular:
 - $G \neq K_7$, since it is drawn in the Klein bottle.
 - 6-colorable by Brooks theorem.

Corollary

For a surface Σ of Euler genus g:

• If $\Sigma \neq K$ lein bottle, then

$$\chi(\Sigma) = \omega(\Sigma) = H(g).$$

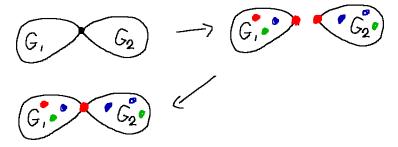
• If $\Sigma = Klein$ bottle, then

$$\chi(\Sigma) = \omega(\Sigma) = 6 = H(g) - 1.$$

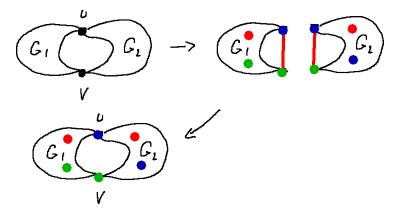
Proof of Brooks theorem:

- $\Delta \leq$ 2: Simple.
- $\Delta \geq 3$: By induction on |V(G)|.

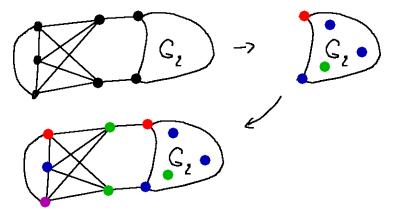
Case 1: G is not 2-connected:



Case 2: *G* is 2-connected but not 3-connected: (a) $G_1 + uv, G_2 + uv \neq K_{\Delta+1}$:

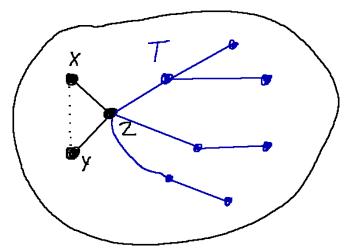


Case 2: *G* is 2-connected but not 3-connected: (b) $G_1 + uv = K_{\Delta+1}$:



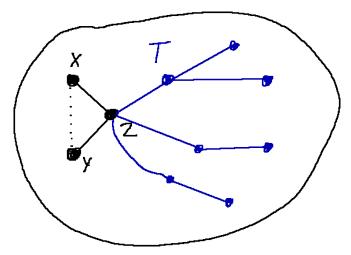
Case 3: *G* is 3-connected:

- x and y: vertices at distance 2
- *z*: Common neighbor of *x* and *y*
- *T*: Spanning tree of $G \{x, y\}$ plus edges *xz*, *yz*



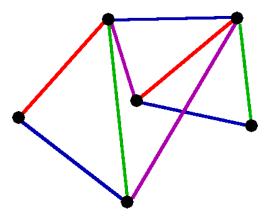
Case 3: G is 3-connected:

- Root T in z.
- Give x and y color 1.
- Color in T from leaves up.



Definition

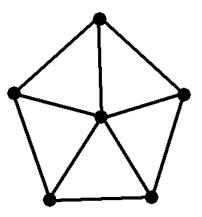
 $\varphi : E(G) \to \{1, \ldots, k\}$ is an edge *k*-coloring if $\varphi(e_1) \neq \varphi(e_2)$ for distinct $e_1, e_2 \in E(G)$ incident with the same vertex.



Definition

The chromatic index $\chi'(G)$: the minimum *k* such that *G* has an edge *k*-coloring.

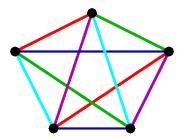
Q: What is the chromatic index of the following graph?



Example:

- Tournament with *n* players.
- Each two need to play a match.
- Any number of matches can be played in parallel.
- A player can only play one match in a round.

min. # of rounds =
$$\chi'(K_n) = \begin{cases} n-1 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd.} \end{cases}$$



Observation

$$\chi'(G) \ge \Delta(G)$$

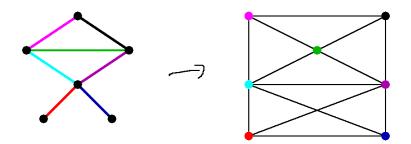
Observation

$$\chi'(G) \geq rac{|E(G)|}{\textit{size of maximum matching in G}}$$

Definition

The linegraph L(G) of G has

- V(L(G)) = E(G)
- *e*₁*e*₂ ∈ *E*(*L*(*G*)) iff *e*₁ and *e*₂ are incident with the same vertex.



Observation

 $\chi'(G) = \chi(L(G))$

Not every graph is a linegraph!

Claim

There is no G such that $L(G) = K_{1,3}$.

Observation

$$\Delta(L(G)) \leq 2\Delta(G) - 2$$

Corollary

•
$$\chi'(G) \leq 2\Delta(G) - 1$$

 If G is connected and L(G) is neither a clique nor an odd cycle, then χ'(G) ≤ 2Δ(G) − 2.

Theorem (Vizing)

For any simple graph G,

 $\chi'(G) \leq \Delta(G) + 1.$

Corollary

For any simple graph G,

 $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}.$