Theorem (Tutte)

If $G \neq K_{4}$ is 3-connected, then there exists $e \in E(G)$ such that G / e is 3-connected.

Corollary

Every 3-connected graph can be obtained from K_{4} by decontracting edges.

Compare:

Lemma

Every 2-connected graph can be obtained from a cycle by adding ears.

By contradiction: Suppose $(\forall e \in E(G)) G / e$ is not 3-connected.

- w_{e} : Vertex created by contracting $e=u v$.
- $S_{e}^{\prime}: \mathrm{A}(\leq 2)$-cut in G / e.

$$
w_{e} \in S_{e}^{\prime}
$$

- $S_{e}=\left(S_{e}^{\prime} \backslash\left\{w_{e}\right\}\right) \cup\{u, v\}$ is a 3-cut in G.

G/e

Choose $e=u v \in E(G)$ and a component A of $G-S_{e}$ so that $|V(A)|$ is minimum.

- $S_{e}=\{u, v, x\}$.
- G 3-connected $\Rightarrow x$ has a neighbor y in A.
- B: The component of $G-S_{x y}$ disjoint from $\{u, v\}$.

$$
\text { - } B \subset G-\{x, y, u, v\} .
$$

- G 3-connected $\Rightarrow y$ has a neighbor in B.
- All neighbors of y are in $V(A) \cup\{u, v, x\}: B \cap A \neq \emptyset$.
- B connected, $B \subset G-S_{e}, y \notin V(B) \Rightarrow B \subsetneq A$.

Theorem (Wagner, the hard implication)

If $K_{5}, K_{3,3} \npreceq m G$, then G is planar.

Lemma

If G is 3-connected and $K_{5}, K_{3,3} \npreceq m ~ G$, then G is planar.

- Choose uv such that $G / u v$ is 3-connected.
- By the induction hypothesis, $G / u v$ is planar.
- $G-\{u, v\}$ planar, 2-connected \Rightarrow faces bounded by cycles.
- Transform the drawing of $G / u v$ to a drawing of G.

Case 1: $N(u) \backslash\{v\} \nsubseteq N(v) \backslash\{u\}$, or vice versa.

Case 2: $N(u) \backslash\{v\}=N(v) \backslash\{u\}$.

Theorem (Wagner, the hard implication)
 If $K_{5}, K_{3,3} \not \AA_{m} G$, then G is planar.

- $S=$ smallest cut in G, WLOG $|S| \leq 2$.

Case 1: $|S| \leq 1$.

Case 2: $|S|=2$.

Q: Define the chromatic number of a graph.

Q: Define the chromatic number of a graph.

Definition

A function $\varphi: V(G) \rightarrow\{1, \ldots, k\}$ is a proper k-coloring if for every $u v \in E(G)$, we have $\varphi(u) \neq \varphi(v)$.

Definition

The chromatic number $\chi(G)$ of G is the smallest k such that G has a proper k-coloring.

Q: What is the largest possible chromatic number of a graph G such that $K_{3} \preceq_{m} G$?

Lemma

If G has $n \geq 4$ vertices and $|E(G)| \geq 2 n-2$, then $K_{4} \preceq_{m} G$.
By induction on $n+|E(G)|$:

- $n=4,|E(G)| \geq 6 \Rightarrow G=K_{4}$.
- $|E(G)|>2 n-2 \Rightarrow$ for any $e \in E(G), K_{4} \preceq_{m} G-e$ by the induction hypothesis.
- $n \geq 5,|E(G)|=2 n-2$, average degree

$$
\frac{2|E(G)|}{|V(G)|}=4-\frac{4}{n}<4
$$

Case 1: $\delta(G) \leq 2$.
If $\operatorname{deg}(v) \leq 2$, then

- $|E(G-v)| \geq|E(G)|-2=(2 n-2)-2=2(n-1)-2$
- $K_{4} \preceq_{m} G-v$ by the induction hypothesis.

Case 2: $\delta(G)=3$.

- $|E(G / e)| \geq|E(G)|-2=(2 n-2)-2=2(n-1)-2$
- $K_{4} \preceq_{m} G / e$ by the induction hypothesis.

Q: For every $n \geq 4$, find a graph with n vertices and $2 n-3$ edges not containing K_{4} as a minor.

Lemma

If G has $n \geq 4$ vertices and $K_{4} \npreceq_{m} G$, then $|E(G)| \leq 2 n-3$.

Corollary

If $K_{4} \not \varliminf_{m} G$, then G has

- average degree at most $4-6 / n$ and
- minimum degree at most 3 .

Remark: Actually $\delta(G) \leq 2$.

Corollary

If $K_{4} \not \nwarrow_{m} G$, then $\chi(G) \leq 3$.

- v a vertex of degree at most 3
- $\operatorname{deg}(v) \leq 2$: 3-color $G-v$ and extend to v.

Corollary

If $K_{4} \not \nwarrow_{m} G$, then $\chi(G) \leq 3$.

- v a vertex of degree at most 3
- $\operatorname{deg}(v)=3$: x, y non-adjacent neighbors of v
- $G /\{v x, v y\}$ 3-colorable by induction hypothesis.

Q: What is the maximum possible chromatic number of a graph G such that $K_{5}, K_{3,3} \not \AA_{m} G$?

Theorem (Wagner)

$$
\max \left\{\chi(G): K_{5} \nwarrow_{m} G\right\}=\max \{\chi(G): G \text { planar }\}
$$

Corollary

For $k \leq 5$, if $K_{k} \not \varliminf_{m} G$, then $\chi(G) \leq k-1$.
Conjecture (Hadwiger)
For every k, if $K_{k} \not_{m} G$, then $\chi(G) \leq k-1$.

- True also for $k=6$ (Robertson, Seymour, Thomas'93).
- $K_{k} \not \nwarrow_{m} G \Rightarrow \chi(G)=O\left(k \cdot(\log \log k)^{6}\right)$. (Postle'20)

