Theorem (Tutte)

If $G \neq K_4$ is 3-connected, then there exists $e \in E(G)$ such that G/e is 3-connected.

Corollary

Every 3-connected graph can be obtained from K_4 by decontracting edges.

Compare:

Lemma

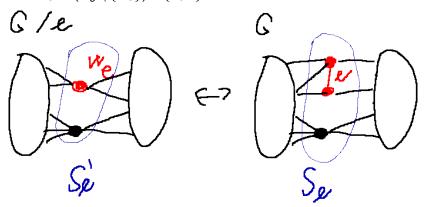
Every 2-connected graph can be obtained from a cycle by adding ears.

By contradiction: Suppose $(\forall e \in E(G))G/e$ is not 3-connected.

- w_e : Vertex created by contracting e = uv.
- *S*'_e: A (≤2)-cut in *G*/*e*.

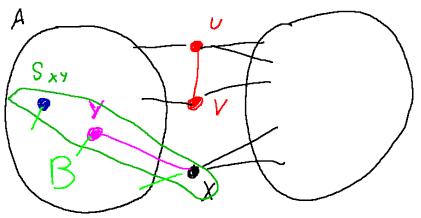
•
$$w_e \in S'_e$$
.

• $S_e = (S'_e \setminus \{w_e\}) \cup \{u, v\}$ is a 3-cut in G.



Choose $e = uv \in E(G)$ and a component A of $G - S_e$ so that |V(A)| is minimum.

- $S_e = \{u, v, x\}.$
- *G* 3-connected \Rightarrow *x* has a neighbor *y* in *A*.
- *B*: The component of $G S_{xy}$ disjoint from $\{u, v\}$.
 - $B \subset G \{x, y, u, v\}$.
- G 3-connected \Rightarrow y has a neighbor in B.
 - All neighbors of y are in $V(A) \cup \{u, v, x\}$: $B \cap A \neq \emptyset$.
- *B* connected, $B \subset G S_e, y \notin V(B) \Rightarrow B \subsetneq A$.



Theorem (Wagner, the hard implication)

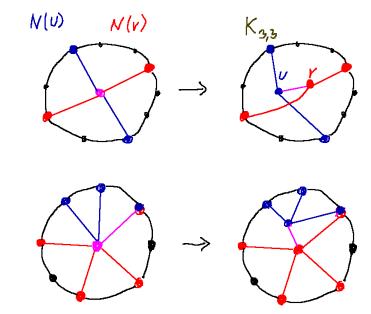
If K_5 , $K_{3,3} \not\preceq_m G$, then G is planar.

Lemma

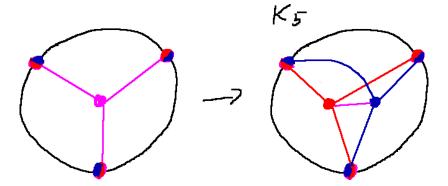
If G is 3-connected and K_5 , $K_{3,3} \not\preceq_m G$, then G is planar.

- Choose uv such that G/uv is 3-connected.
- By the induction hypothesis, G/uv is planar.
- G {u, v} planar, 2-connected ⇒ faces bounded by cycles.
- Transform the drawing of G/uv to a drawing of G.

Case 1: $N(u) \setminus \{v\} \not\subseteq N(v) \setminus \{u\}$, or vice versa.



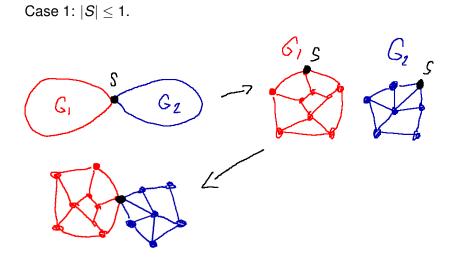
Case 2: $N(u) \setminus \{v\} = N(v) \setminus \{u\}.$

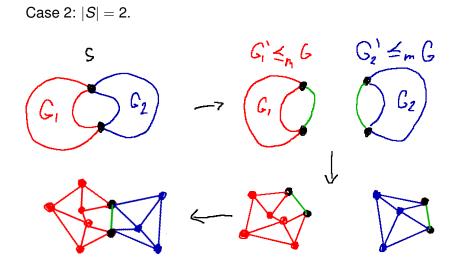


Theorem (Wagner, the hard implication)

If K_5 , $K_{3,3} \not\preceq_m G$, then G is planar.

• S =smallest cut in G, WLOG $|S| \leq 2$.





Q: Define the chromatic number of a graph.

Q: Define the chromatic number of a graph.

Definition

A function $\varphi : V(G) \to \{1, ..., k\}$ is a proper *k*-coloring if for every $uv \in E(G)$, we have $\varphi(u) \neq \varphi(v)$.

Definition

The chromatic number $\chi(G)$ of *G* is the smallest *k* such that *G* has a proper *k*-coloring.

Q: What is the largest possible chromatic number of a graph *G* such that $K_3 \not\preceq_m G$?

Lemma

If G has $n \ge 4$ vertices and $|E(G)| \ge 2n - 2$, then $K_4 \preceq_m G$.

By induction on n + |E(G)|:

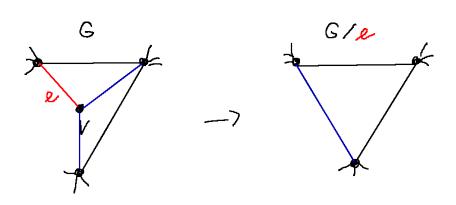
- n = 4, $|E(G)| \ge 6 \Rightarrow G = K_4$.
- |E(G)| > 2n 2 ⇒ for any e ∈ E(G), K₄ ≤_m G e by the induction hypothesis.
- $n \ge 5$, |E(G)| = 2n 2, average degree

$$\frac{2|E(G)|}{|V(G)|} = 4 - \frac{4}{n} < 4.$$

Case 1: $\delta(G) \leq 2$.

If deg(v) \leq 2, then

- $|E(G v)| \ge |E(G)| 2 = (2n 2) 2 = 2(n 1) 2$
- $K_4 \leq_m G v$ by the induction hypothesis.



- $|E(G/e)| \ge |E(G)| 2 = (2n-2) 2 = 2(n-1) 2$
- $K_4 \preceq_m G/e$ by the induction hypothesis.

Case 2: $\delta(G) = 3$.

Q: For every $n \ge 4$, find a graph with *n* vertices and 2n - 3 edges not containing K_4 as a minor.

Lemma

If G has $n \ge 4$ vertices and $K_4 \not\preceq_m G$, then $|E(G)| \le 2n - 3$.

Corollary

If $K_4 \not\preceq_m G$, then G has

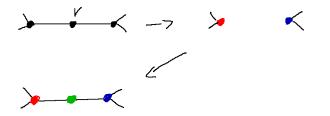
- average degree at most 4 6/n and
- minimum degree at most 3.

Remark: Actually $\delta(G) \leq 2$.

Corollary

If $K_4 \not\preceq_m G$, then $\chi(G) \leq 3$.

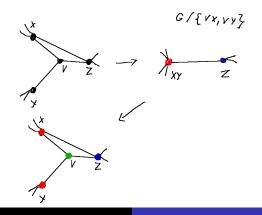
- v a vertex of degree at most 3
- deg(v) \leq 2: 3-color G v and extend to v.



Corollary

If $K_4 \not\preceq_m G$, then $\chi(G) \leq 3$.

- v a vertex of degree at most 3
- deg(v) = 3: x, y non-adjacent neighbors of v
- $G/\{vx, vy\}$ 3-colorable by induction hypothesis.



Q: What is the maximum possible chromatic number of a graph *G* such that K_5 , $K_{3,3} \not \preceq_m G$?

Theorem (Wagner)

$$\max\{\chi(G): K_5 \not\preceq_m G\} = \max\{\chi(G): G \text{ planar}\}$$

Corollary

For $k \leq 5$, if $K_k \not\preceq_m G$, then $\chi(G) \leq k - 1$.

Conjecture (Hadwiger)

For every k, if $K_k \not\preceq_m G$, then $\chi(G) \leq k - 1$.

- True also for k = 6 (Robertson, Seymour, Thomas'93).
- $K_k \not\preceq_m G \Rightarrow \chi(G) = O(k \cdot (\log \log k)^6)$. (Postle'20)