Q: State the Kuratowski's theorem about planar graphs.

Q: State the Kuratowski's theorem about planar graphs.

G contains a subdivision of a graph H as a subgraph:

- *H* is a topological minor of *G*
- $H \preceq_t G$

Theorem (Kuratowski)

A graph G is planar if and only if $K_5, K_{3,3} \not\preceq_t G$.

Contraction of an edge uv in a graph G, gives the graph G/uv:

 $(N(u) \cup N(v)) \setminus \{v_i\}$

H is a minor of *G* if *H* is obtained from *G* by edge contractions and edge and vertex deletions. We write $H \leq_m G$.

H is a minor of *G* if *H* is obtained from *G* by edge contractions and edge and vertex deletions. We write $H \leq_m G$.

Q: Which of the following graphs contain H as a minor?

Observation

- If $A \leq_t G$, then $A \leq_m G$.
- If $A \subseteq G$, then $A \preceq_m G$.
- If $F \leq_m H$ and $H \leq_m G$, then $F \leq_m G$.
- $A \leq_m G$ does not imply $A \leq_t G$.

Observation

If G is planar, then all minors of G are planar, and in particular $K_5, K_{3,3} \not\preceq_m G$.

Theorem (Wagner)

A graph G is planar if and only if K_5 , $K_{3,3} \not\preceq_m G$.

- μ is a <u>model</u> of *H* in *G* if
 - $\forall v \in V(H)$: $\mu(v)$ is a connected subgraph of *G*
 - $u \neq v \Rightarrow V(\mu(u)) \cap V(\mu(v)) = \emptyset$
 - $\forall uv \in E(H): \mu(uv) = xy \in E(G)$ such that $x \in V(\mu(u))$ and $y \in V(\mu(v))$.

- μ is a <u>model</u> of *H* in *G* if
 - $\forall v \in V(H)$: $\mu(v)$ is a connected subgraph of *G*
 - $u \neq v \Rightarrow V(\mu(u)) \cap V(\mu(v)) = \emptyset$
 - $\forall uv \in E(H): \mu(uv) = xy \in E(G)$ such that $x \in V(\mu(u))$ and $y \in V(\mu(v))$.

Q: Describe a model of H in G:

$H \leq_m G$ iff there exists a model of H in G.

$H \preceq_m G$ iff $H \preceq_t G$.

$H \preceq_m G$ iff $H \preceq_t G$.

When $\Delta(H) \leq 3$:

$H \preceq_m G$ iff $H \preceq_t G$.

Q: Which graphs do not contain K_3 as a minor?

If $K_5 \leq_m G$, then $K_5 \leq_t G$ or $K_{3,3} \leq_t G$.

If $K_5 \leq_m G$, then $K_5 \leq_t G$ or $K_{3,3} \leq_t G$.

Wagner's theorem implies Kuratowski's theorem.

Proof.

- Suppose K_5 , $K_{3,3} \not\leq_t G$.
- Then $K_5, K_{3,3} \not\preceq_m G$.
- *G* planar by Wagner's theorem.

Wagner's theorem, proof idea (by induction on |V(G)|):

- Choose $uv \in E(G)$.
- Since K_5 , $K_{3,3} \not\preceq_m G$, we have K_5 , $K_{3,3} \not\preceq_m G/uv$
- By the induction hypothesis, G/uv is planar.
- Decontract the edge uv in the drawing of G/uv.

A function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a homeomorphism if it is bijective, continuous, and f^{-1} is continuous.

Q: Give an example of a homeomorphism of the plane.

Theorem

If G is planar and 3-connected, then any two drawings of G in the plane differ only by a homeomorphism.

- Fix: First prove Wagner's theorem for 3-connected graphs, then deal with (≤2)-cuts.
- Problem: We need to ensure G/uv is 3-connected.

Theorem (Tutte)

If $G \neq K_4$ is 3-connected, then there exists $e \in E(G)$ such that G/e is 3-connected.

Corollary

Every 3-connected graph can be obtained from K_4 by decontracting edges.

Compare:

Lemma

Every 2-connected graph can be obtained from a cycle by adding ears.