

Q: How many perfect matchings does this graph have?

Determining whether a graph has a perfect matching:

- in bipartite graphs: via maximum flow algorithms in O(n^{1/2}m)
- in general graphs:
 - Edmonds (blossom) algorithm in $O(n^2m)$
 - Micali-Vazirani algorithm in $O(n^{1/2}m)$

Determining the number of matchings:

- #P-hard
 - no polynomial-time algorithm unless P = NP.
 - even for bipartite graphs
- in planar graphs: in $O(n^{2.373})$

Q: Define the sign of a permutation π of $\{1, \ldots, n\}$.

Q: Define the sign of a permutation π of $\{1, \ldots, n\}$.

 $\operatorname{sgn}(\pi) = (-1)^{n+\operatorname{number of cycles of } \pi}$

Example: The permutation π given by

has cycles (134), (2), (5), (67) and sign -1.

Determinant of an $n \times n$ matrix *C*:

$$\det(C) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} C_{i,\pi(i)}.$$

Permanent of an $n \times n$ matrix *C*:

$$\operatorname{per}(C) = \sum_{\pi} \prod_{i=1}^{n} C_{i,\pi(i)}.$$

Q: What is the determinant and the permanent of the following matrix?

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Determinant of an $n \times n$ matrix *C*:

$$\det(C) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} C_{i,\pi(i)}.$$

Permanent of an $n \times n$ matrix *C*:

$$\operatorname{per}(C) = \sum_{\pi} \prod_{i=1}^{n} C_{i,\pi(i)}.$$

Q: What is the determinant and the permanent of the following matrix?

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad \begin{array}{c} \det = 0 \\ per = 2 \end{array}$$

For a bipartite graph *G* with parts $A = \{a_1, ..., a_n\}$ and $B = \{b_1, ..., b_n\}$, the bipartite adjacency matrix *C* has

$$C_{i,j} = egin{cases} 1 & ext{if } a_i b_j \in E(G) \ 0 & ext{otherwise} \end{cases}$$

Example: The bipartite adjacency matrix of

Observation

Number of matchings of G = per(C).

Theorem (Bregman-Minc inequality)

Let C be an $n \times n \{0, 1\}$ -matrix, where the i-th row contains r_i ones. Then

$$\operatorname{per}(\boldsymbol{C}) \leq \prod_{i=1}^{n} \sqrt[r_i]{r_i}.$$

Corollary

If G is a d-regular bipartite graph with parts of size n, then G has at most

$$\left(\sqrt[d]{d!}
ight)^n \leq \left(\sqrt[d]{de} \cdot d/e
ight)^n$$

perfect matchings.

Q: Suppose *n* is divisible by *d*. Find a *d*-regular bipartite graph with parts of size *n* that has $(d!)^{n/d}$ perfect matchings.

A matrix is **bistochastic** if it is non-negative and all rows and columns sum to 1.

Theorem (Van der Waerden inequality)

If C is an $n \times n$ bistochastic matrix, then

 $\operatorname{per}(C) \geq n!/n^n$.

Q: Which bistochastic $n \times n$ matrix satisfies $per(C) = n!/n^n$?

Corollary

If G is a d-regular bipartite graph with parts of size n and C is the bipartite adjacency matrix of G, then C/d is bistochastic, and G has

$$\operatorname{per}(C) = d^n \operatorname{per}(C/d) \ge d^n n! / n^n \ge (d/e)^n$$

perfect matchings.

• If *G* is a 3-regular bipartite graph with parts of size *n*, then the number *m* of perfect matchings of *G* satisfies

 $1.1^n \le m \le 2.23^n$.

There exists c > 1 such that every 3-regular
 2-edge-connected graph with n vertices has at least cⁿ perfect matchings.

• Even 2-factor: graph F whose components are even cycles

- 2-cycles are allowed
- *c*(*F*): number of components of *F*.
- $c_2(F)$: number of 2-cycles of F.
- For perfect matchings M_1 and M_2 : their union $M_1 + M_2$ is an even 2-factor.

•
$$M(F) = \{(M_1, M_2) : F = M_1 + M_2\}.$$

• Even 2-factor: graph F whose components are even cycles

- 2-cycles are allowed
- c(F): number of components of F.
- $c_2(F)$: number of 2-cycles of F.
- For perfect matchings M_1 and M_2 : their union $M_1 + M_2$ is an even 2-factor.

•
$$M(F) = \{(M_1, M_2) : F = M_1 + M_2\}.$$

Q: Express |M(F)| in terms of c(F) and $c_2(F)$.

• Even 2-factor: graph F whose components are even cycles

- 2-cycles are allowed
- c(F): number of components of F.
- $c_2(F)$: number of 2-cycles of F.
- For perfect matchings M_1 and M_2 : their union $M_1 + M_2$ is an even 2-factor.

•
$$M(F) = \{(M_1, M_2) : F = M_1 + M_2\}.$$

$$|M(F)| = 2^{c(F)-c_2(F)}$$

- A permutation π is even-cycled if all its cycles have even length.
- For an even 2-factor F, $\Pi(F)$ = permutations with cycles F.

•
$$\operatorname{sgn}(F) = \operatorname{sgn}(\pi)$$
 for $\pi \in \Pi(F) = (-1)^{c(F)}$

- A permutation π is even-cycled if all its cycles have even length.
- For an even 2-factor F, $\Pi(F)$ = permutations with cycles F.

•
$$\operatorname{sgn}(F) = \operatorname{sgn}(\pi)$$
 for $\pi \in \Pi(F) = (-1)^{c(F)}$

Q: Express $|\Pi(F)|$ in terms of c(F) and $c_2(F)$..

- A permutation π is even-cycled if all its cycles have even length.
- For an even 2-factor F, $\Pi(F)$ = permutations with cycles F.

•
$$\operatorname{sgn}(F) = \operatorname{sgn}(\pi)$$
 for $\pi \in \Pi(F) = (-1)^{c(F)}$

$$|\Pi(F)| = 2^{c(F)-c_2(F)}$$

Let *C* be the adjacency matrix of a graph *G* with vertex set $\{1, \ldots, n\}$.

 $\lambda(x, y) = 1$ if x < y and -1 if x > yFor a matching *M* with vertices $\{1, \ldots, n\}$: • Let σ be a permutation such that $\sigma(1)\sigma(2), \sigma(3)\sigma(4), \ldots \in E(M).$ ۲ n/2 $\operatorname{sgn}(M) = \operatorname{sgn}(\sigma) \prod \lambda(\sigma(2i-1), \sigma(2i)).$ i=1• Note: sgn(M) is the same for all choices of Σ . $\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6^{-1} & \downarrow \\ 1-2 & 5-3 & 4-6 \end{array}$,6) S

$$gn(M) = sgn(\sigma) \cdot \lambda(1, 2) \cdot \lambda(5, 3) \cdot \lambda(4, 0)$$
$$= 1 \cdot 1 \cdot (-1) \cdot 1 = -1.$$

$$\lambda(x, y) = 1$$
 if $x < y$ and -1 if $x > y$

For a matching *M* with vertices $\{1, \ldots, n\}$:

• Let σ be a permutation such that $\sigma(1)\sigma(2), \sigma(3)\sigma(4), \ldots \in E(M).$

$$\operatorname{sgn}(\boldsymbol{M}) = \operatorname{sgn}(\sigma) \prod_{i=1} \lambda(\sigma(2i-1), \sigma(2i)).$$

• Note: sgn(M) is the same for all choices of Σ .

Q: What is the sign of this matching?

$$\lambda(x, y) = 1$$
 if $x < y$ and -1 if $x > y$

For a matching *M* with vertices $\{1, \ldots, n\}$:

• Let σ be a permutation such that $\sigma(1)\sigma(2), \sigma(3)\sigma(4), \ldots \in E(M).$

$$\operatorname{sgn}(M) = \operatorname{sgn}(\sigma) \prod_{i=1} \lambda(\sigma(2i-1), \sigma(2i)).$$

• Note: sgn(M) is the same for all choices of Σ .

Q: What is the sign of this matching?

$$\sigma = 1324 \sim (1)(23)(4), \, \mathrm{sgn} = \mathrm{sgn}(\sigma) \cdot \lambda(1,3) \cdot \lambda(2,4) = -1$$

- $C = v_1 \dots v_t$ even cycle: $\lambda(C) = \lambda(v_1, v_2) \cdot \lambda(v_2, v_3) \cdots \lambda(v_t, v_1).$
- *F* even 2-factor: $\lambda(F) = \prod_{C \text{ cycle of } F} \lambda(C)$.

Q: Determine $\lambda(F)$.

- $C = v_1 \dots v_t$ even cycle: $\lambda(C) = \lambda(v_1, v_2) \cdot \lambda(v_2, v_3) \cdots \lambda(v_t, v_1).$
- *F* even 2-factor: $\lambda(F) = \prod_{C \text{ cycle of } F} \lambda(C)$.

$$\lambda(F) = \lambda(C_1) \cdot \lambda(C_2) = (-1) \cdot (-1) = 1$$

Q: Determine $\lambda(F)$.

$$\operatorname{sgn}(M_1)\operatorname{sgn}(M_2) = \operatorname{sgn}(M_1 + M_2)\lambda(M_1 + M_2)$$

 $\operatorname{sgn}(M_1 + M_2) = \operatorname{sgn}(\pi) = \operatorname{sgn}(\sigma_1^{-1}\sigma_2) = \operatorname{sgn}(M_1)\operatorname{sgn}(M_2)\prod_{i=1}^n \lambda(i, \pi(i))$ $= \operatorname{sgn}(M_1)\operatorname{sgn}(M_2)\lambda(M_1 + M_2)$

For $b : E(G) \to \mathbb{R}$, the Pfaffian of (G, b) is

For $b : E(G) \to \mathbb{R}$, the Pfaffian of (G, b) is

$$Pf(G, b) = \sum_{\substack{M \text{ perfect matching of } G}} sgn(M) \prod_{e \in E(M)} b(e).$$
Pfaffian function: $b : E(G) \to \{-1, 1\}$ such that
$$sgn(M) \cdot \prod_{e \in E(M)} b(e)$$

is the same for every perfect matching M of G.

Observation

If b is a Pfaffian function, then

|Pf(G, b)| = number of perfect matchings in G.

Lemma

For any graph G and a function $b : E(G) \to \mathbb{Z}$, |Pf(G, b)| can be computed in polynomial time.

Theorem (Kasteleyn)

For every planar graph G, we can find a Pfaffian function b in polynomial time.

Corollary

Polynomial-time algorithm to find the number of perfect matchings in a planar graph G.