

Q: How many perfect matchings does this graph have?

Determining whether a graph has a perfect matching:

- in bipartite graphs: via maximum flow algorithms in $O\left(n^{1 / 2} m\right)$
- in general graphs:
- Edmonds (blossom) algorithm in $O\left(n^{2} m\right)$
- Micali-Vazirani algorithm in $O\left(n^{1 / 2} m\right)$

Determining the number of matchings:

- \#P-hard
- no polynomial-time algorithm unless $\mathrm{P}=\mathrm{NP}$.
- even for bipartite graphs
- in planar graphs: in $O\left(n^{2.373}\right)$

Q: Define the sign of a permutation π of $\{1, \ldots, n\}$.

Q: Define the sign of a permutation π of $\{1, \ldots, n\}$.

$$
\operatorname{sgn}(\pi)=(-1)^{n+\text { number of cycles of } \pi}
$$

Example: The permutation π given by

x	1	2	3	4	5	6	7
$\pi(x)$	3	2	4	1	5	7	6

has cycles (134), (2), (5), (67) and sign -1.

Determinant of an $n \times n$ matrix C :

$$
\operatorname{det}(C)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} C_{i, \pi(i)}
$$

Permanent of an $n \times n$ matrix C :

$$
\operatorname{per}(C)=\sum_{\pi} \prod_{i=1}^{n} C_{i, \pi(i)}
$$

Q: What is the determinant and the permanent of the following matrix?

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Determinant of an $n \times n$ matrix C :

$$
\operatorname{det}(C)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} C_{i, \pi(i)}
$$

Permanent of an $n \times n$ matrix C :

$$
\operatorname{per}(C)=\sum_{\pi} \prod_{i=1}^{n} C_{i, \pi(i)}
$$

Q: What is the determinant and the permanent of the following matrix?

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \text { det }=0 \\
& \text { per }=2
\end{aligned}
$$

For a bipartite graph G with parts $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$, the bipartite adjacency matrix C has

$$
C_{i, j}= \begin{cases}1 & \text { if } a_{i} b_{j} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Example: The bipartite adjacency matrix of

Observation
Number of matchings of $G=\operatorname{per}(C)$.

Theorem (Bregman-Minc inequality)

Let C be an $n \times n\{0,1\}$-matrix, where the i-th row contains r_{i} ones. Then

$$
\operatorname{per}(C) \leq \prod_{i=1}^{n} \sqrt[r_{i}]{r_{i}!}
$$

Corollary

If G is a d-regular bipartite graph with parts of size n, then G has at most

$$
(\sqrt[d]{d!})^{n} \leq(\sqrt[d]{d e} \cdot d / e)^{n}
$$

perfect matchings.
Q: Suppose n is divisible by d. Find a d-regular bipartite graph with parts of size n that has $(d!)^{n / d}$ perfect matchings.

A matrix is bistochastic if it is non-negative and all rows and columns sum to 1 .

Theorem (Van der Waerden inequality)

If C is an $n \times n$ bistochastic matrix, then

$$
\operatorname{per}(C) \geq n!/ n^{n}
$$

Q: Which bistochastic $n \times n$ matrix satisfies $\operatorname{per}(C)=n!/ n^{n}$?

Corollary

If G is a d-regular bipartite graph with parts of size n and C is the bipartite adjacency matrix of G, then C / d is bistochastic, and G has

$$
\operatorname{per}(C)=d^{n} \operatorname{per}(C / d) \geq d^{n} n!/ n^{n} \geq(d / e)^{n}
$$

perfect matchings.

- If G is a 3-regular bipartite graph with parts of size n, then the number m of perfect matchings of G satisfies

$$
1.1^{n} \leq m \leq 2.23^{n}
$$

- There exists $c>1$ such that every 3-regular 2 -edge-connected graph with n vertices has at least c^{n} perfect matchings.
- Even 2-factor: graph F whose components are even cycles
- 2-cycles are allowed
- $c(F)$: number of components of F.
- $c_{2}(F)$: number of 2-cycles of F.
- For perfect matchings M_{1} and M_{2} : their union $M_{1}+M_{2}$ is an even 2-factor.
- $M(F)=\left\{\left(M_{1}, M_{2}\right): F=M_{1}+M_{2}\right\}$.

- Even 2-factor: graph F whose components are even cycles
- 2-cycles are allowed
- $c(F)$: number of components of F.
- $c_{2}(F)$: number of 2-cycles of F.
- For perfect matchings M_{1} and M_{2} : their union $M_{1}+M_{2}$ is an even 2-factor.
- $M(F)=\left\{\left(M_{1}, M_{2}\right): F=M_{1}+M_{2}\right\}$.

Q: Express $|M(F)|$ in terms of $c(F)$ and $c_{2}(F)$.

- Even 2-factor: graph F whose components are even cycles
- 2-cycles are allowed
- $c(F)$: number of components of F.
- $c_{2}(F)$: number of 2-cycles of F.
- For perfect matchings M_{1} and M_{2} : their union $M_{1}+M_{2}$ is an even 2-factor.
- $M(F)=\left\{\left(M_{1}, M_{2}\right): F=M_{1}+M_{2}\right\}$.

$$
|M(F)|=2^{c(F)-c_{2}(F)}
$$

- A permutation π is even-cycled if all its cycles have even length.
- For an even 2-factor $F, \Pi(F)=$ permutations with cycles F.
- $\operatorname{sgn}(F)=\operatorname{sgn}(\pi)$ for $\pi \in \Pi(F)=(-1)^{c(F)}$
π
F

0

$\operatorname{sgn} n=+1$

- A permutation π is even-cycled if all its cycles have even length.
- For an even 2-factor $F, \Pi(F)=$ permutations with cycles F.
- $\operatorname{sgn}(F)=\operatorname{sgn}(\pi)$ for $\pi \in \Pi(F)=(-1)^{c(F)}$

Q: Express $|\Pi(F)|$ in terms of $c(F)$ and $c_{2}(F)$..

- A permutation π is even-cycled if all its cycles have even length.
- For an even 2-factor $F, \Pi(F)=$ permutations with cycles F.
- $\operatorname{sgn}(F)=\operatorname{sgn}(\pi)$ for $\pi \in \Pi(F)=(-1)^{c(F)}$

$$
|\Pi(F)|=2^{c(F)-c_{2}(F)}
$$

Let C be the adjacency matrix of a graph G with vertex set $\{1, \ldots, n\}$.

$$
\begin{aligned}
\sum_{\pi \text { even-cycled }} \prod_{i=1}^{n} C_{i, \pi(i)} & =\sum_{F \text { even 2-factor in } G} 2^{c(F)-c_{2}(F)} \\
& =\sum_{M_{1}, M_{2} \text { perfect matchings in } G}^{1} \\
& =(\text { number of perfect matchings in } G)^{2}
\end{aligned}
$$

$$
\lambda(x, y)=1 \text { if } x<y \text { and }-1 \text { if } x>y
$$

For a matching M with vertices $\{1, \ldots, n\}$:

- Let σ be a permutation such that

$$
\sigma(1) \sigma(2), \sigma(3) \sigma(4), \ldots \in E(M) .
$$

$$
\operatorname{sgn}(M)=\operatorname{sgn}(\sigma) \prod_{i=1}^{n / 2} \lambda(\sigma(2 i-1), \sigma(2 i))
$$

- Note: $\operatorname{sgn}(M)$ is the same for all choices of Σ.

$$
\begin{aligned}
& \operatorname{sgn}(M)=\operatorname{sgn}(\sigma) \cdot \lambda(1,2) \cdot \lambda(5,3) \cdot \lambda(4,6) \\
& =1 \cdot 1 \cdot(-1) \cdot 1=-1 \text {. }
\end{aligned}
$$

$\lambda(x, y)=1$ if $x<y$ and -1 if $x>y$

For a matching M with vertices $\{1, \ldots, n\}$:

- Let σ be a permutation such that

$$
\sigma(1) \sigma(2), \sigma(3) \sigma(4), \ldots \in E(M) .
$$

-

$$
\operatorname{sgn}(M)=\operatorname{sgn}(\sigma) \prod_{i=1}^{n / 2} \lambda(\sigma(2 i-1), \sigma(2 i)) .
$$

- Note: $\operatorname{sgn}(M)$ is the same for all choices of Σ.

Q: What is the sign of this matching?

$$
\lambda(x, y)=1 \text { if } x<y \text { and }-1 \text { if } x>y
$$

For a matching M with vertices $\{1, \ldots, n\}$:

- Let σ be a permutation such that

$$
\sigma(1) \sigma(2), \sigma(3) \sigma(4), \ldots \in E(M) .
$$

-

$$
\operatorname{sgn}(M)=\operatorname{sgn}(\sigma) \prod_{i=1}^{n / 2} \lambda(\sigma(2 i-1), \sigma(2 i))
$$

- Note: $\operatorname{sgn}(M)$ is the same for all choices of Σ.

Q: What is the sign of this matching?

$$
\sigma=1324 \sim(1)(23)(4), \operatorname{sgn}=\operatorname{sgn}(\sigma) \cdot \lambda(1,3) \cdot \lambda(2,4)=-1
$$

- $C=v_{1} \ldots v_{t}$ even cycle: $\lambda(C)=\lambda\left(v_{1}, v_{2}\right) \cdot \lambda\left(v_{2}, v_{3}\right) \cdots \lambda\left(v_{t}, v_{1}\right)$.
- F even 2-factor: $\lambda(F)=\prod_{C \text { cycle of } F} \lambda(C)$.

Q: Determine $\lambda(F)$.

- $C=v_{1} \ldots v_{t}$ even cycle: $\lambda(C)=\lambda\left(v_{1}, v_{2}\right) \cdot \lambda\left(v_{2}, v_{3}\right) \cdots \lambda\left(v_{t}, v_{1}\right)$.
- F even 2-factor: $\lambda(F)=\prod_{C \text { cycle of } F} \lambda(C)$.

$\lambda(F)=\lambda\left(C_{1}\right) \cdot \lambda\left(C_{2}\right)=(-1) \cdot(-1)=1$
Q: Determine $\lambda(F)$.

Lemma

$$
\operatorname{sgn}\left(M_{1}\right) \operatorname{sgn}\left(M_{2}\right)=\operatorname{sgn}\left(M_{1}+M_{2}\right) \lambda\left(M_{1}+M_{2}\right)
$$

For $\pi=$ permutation with cycles $M_{1}+M_{2}$:

$$
\begin{aligned}
& \pi=10 \begin{array}{l}
\sigma_{1}=12345678 \\
1-32-56-74-8 \\
12345678 \\
3-25-67-18-4
\end{array} \pi=\sigma_{1}^{-1} \circ \sigma_{2} \\
& \operatorname{sgn}\left(M_{1}+M_{2}\right)=\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\sigma_{1}^{-1} \sigma_{2}\right)=\operatorname{sgn}\left(M_{1}\right) \operatorname{sgn}\left(M_{2}\right) \prod_{i=1}^{n} \lambda(i, \pi(i)) \\
& =\operatorname{sgn}\left(M_{1}\right) \operatorname{sgn}\left(M_{2}\right) \lambda\left(M_{1}+M_{2}\right)
\end{aligned}
$$

For $b: E(G) \rightarrow \mathbb{R}$, the Pfaffian of (G, b) is

$$
\operatorname{Pf}(G, b)=\sum_{M \text { perfect matching of } G} \operatorname{sgn}(M) \prod_{e \in E(M)} b(e) .
$$

Example:

For $b: E(G) \rightarrow \mathbb{R}$, the Pfaffian of (G, b) is

$$
\operatorname{Pf}(G, b)=\sum_{M \text { perfect matching of } G} \operatorname{sgn}(M) \prod_{e \in E(M)} b(e) .
$$

Pfaffian function: $b: E(G) \rightarrow\{-1,1\}$ such that

$$
\operatorname{sgn}(M) \cdot \prod_{e \in E(M)} b(e)
$$

is the same for every perfect matching M of G.

Observation

If b is a Pfaffian function, then
$|\operatorname{Pf}(G, b)|=$ number of perfect matchings in G.

Lemma

For any graph G and a function $b: E(G) \rightarrow \mathbb{Z},|\operatorname{Pf}(G, b)|$ can be computed in polynomial time.

Theorem (Kasteleyn)

For every planar graph G, we can find a Pfaffian function b in polynomial time.

Corollary
Polynomial-time algorithm to find the number of perfect matchings in a planar graph G.

