Q: Maximum number of edges of a triangle-free graph with 5 vertices?

Theorem (Mantel)

An n-vertex triangle-free graph G has at most

$$
\left\lfloor\frac{n}{2}\right\rfloor \cdot\left\lceil\frac{n}{2}\right\rceil
$$

edges. Equality iff

$$
G=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil} .
$$

Definition

The r-partite Turán graph $T_{r}(n)$: the complete r-partite n-vertex graph with parts of sizes $\left\lfloor\frac{n}{r}\right\rfloor$ and $\left\lceil\frac{n}{2}\right\rceil$

$$
T_{4}(10)
$$

$$
t_{r}(n)=\mid E\left(T_{r}(n) \mid\right.
$$

Observation

$$
t_{r}(n) \leq(1-1 / r) \frac{n^{2}}{2}
$$

Theorem (Turán)

An n-vertex graph G with $\omega(G) \leq r$ has at most $t_{r}(n)$ edges. Equality iff $G=T_{r}(n)$.

Corollary

An n-vertex graph H of average degree at most d contains an independent set of size at least $n /(d+1)$.

Proof.

$$
|E(\bar{H})| \geq \frac{(n-d-1) n}{2}=\left(1-\frac{d+1}{n}\right) \frac{n^{2}}{2}>\left(1-\frac{1}{\left\lfloor\frac{n}{d+1}\right\rfloor-1}\right) \frac{n^{2}}{2}
$$

Turán: $\omega(\bar{H})>\left\lfloor\frac{n}{d+1}\right\rfloor-1$
n-vertex graph G such that

- $\omega(G) \leq r$
- $|E(G)|$ is maximum

If $v_{1} v_{2} \notin E(G)$, then $\operatorname{deg} v_{1}=\operatorname{deg} v_{2}$

n-vertex graph G such that

- $\omega(G) \leq r$
- $|E(G)|$ is maximum

If $v_{1} v_{2}, v_{2} v_{3} \notin E(G)$, then $v_{1} v_{3} \notin E(G)$

$G \quad G^{\prime}$
n-vertex graph G such that

- $\omega(G) \leq r$
- $|E(G)|$ is maximum
G is a complete r-partite graph, sizes of parts differ by ≤ 1.

n-vertex graph G such that

- $\omega(G) \leq r$
- $|E(G)|$ is maximum

$$
G=T_{r}(n)
$$

Observation
If $\chi(F)>r$, then $F \nsubseteq T_{r}(n)$.

Theorem (Erdős-Stone)

Suppose $\chi(F)=r+1$. For every $\varepsilon>0$, there exists n_{0} such that:
Every graph with $n \geq n_{0}$ vertices and at least $(1-1 / r+\varepsilon) \frac{n^{2}}{2}$ edges contains F as a subgraph.

Better bounds if F is bipartite:

Theorem

Every n-vertex graph without 4-cycles has $O\left(n^{3 / 2}\right)$ edges.

Lemma

For F is bipartite with one of its parts of size a: Every n-vertex graph without F as a subgraph has $O\left(n^{2-1 / a}\right)$ edges.

Q: How many 2 -element subsets of $\{1, \ldots, 5\}$ can you choose so that every two intersect?

Theorem (Erdős-Ko-Rado)

For $n \geq 2 r$: The largest system of pairwise intersecting r-element subsets of $\{1, \ldots, n\}$ has size

$$
\binom{n-1}{r-1}
$$

- $\binom{n-1}{r-1}$ subsets containing n.
- If $n<2 r$: We can take all $\binom{n}{r}$ subsets.
$A_{1}, A_{2}, \ldots, A_{m}$ pairwise intersecting r-element subsets of $\{1, \ldots, n\}$.
$c=\#$ of pairs (C, A), where
- C directed cycle with $V(C)=\{1, \ldots, n\}$.
- A subpath of C with $V(A) \in\left\{A_{1}, \ldots, A_{m}\right\}$.

$$
c=m r!\cdot(n-r)!
$$

Observation

C has at most r pairwise intersecting r-vertex subpaths.

$$
\begin{aligned}
m r!\cdot(n-r)! & =c \leq(n-1)!\cdot r \\
m & \leq \frac{(n-1)!r}{r!(n-r)!}=\binom{n-1}{r-1}
\end{aligned}
$$

Observation

Among any 5 points in general position, one can choose 4 in convex position.

$f(a, b)=$ minimum number such that any $f(a, b)$ points in general position contain an a-cup or a b-cap.
$f(2, b)=f(a, 2)=2$.

$$
f(a, b) \leq f(a-1, b)+f(a, b-1)-1
$$

X : A set of $f(a-1, b)+f(a, b-1)-1$ points

$A=$ rightmost points of $(a-1)$-cups in X.

- $X \backslash A$ contains a b-cap: Win.
- $X \backslash A$ contains neither an ($a-1$)-cup nor a b-cap.

$$
|X \backslash A| \leq f(a-1, b)-1
$$

X : A set of $f(a-1, b)+f(a, b-1)-1$ points
$A=$ rightmost points of $(a-1)$-cups in X.
$B=$ leftmost points of $(b-1)$-caps in X.

$$
\begin{aligned}
|X \backslash A| & \leq f(a-1, b)-1 \\
|X \backslash B| & \leq f(a, b-1)-1 \\
|X \backslash A|+|X \backslash B| & \leq f(a-1, b)+f(a, b-1)-2<|X|
\end{aligned}
$$

-

$$
\begin{aligned}
& f(2, b)=f(a, 2)=2 \\
& f(a, b) \leq f(a-1, b)+f(a, b-1)-1 \\
& f(a, b) \leq\binom{ a+b-4}{a-2}+1
\end{aligned}
$$

Corollary

Any set of $\binom{a+b-4}{a-2}+1$ points in general position contains an a-cup or a b-cap.

Corollary (Erdős-Szekeres)

Any set of $\binom{2 n-4}{n-2}+1$ points in general position contains n points on convex position.

