- \# of ways how to color faces of a cube by k colors, when colorings differing only by a rotation are considered to be the same?
- \# of pairwise non-isomorphic graphs on n vertices?

Counting objects from some set X

- k-colorings of cube faces
- graphs with vertex set $\{1, \ldots, n\}$
subject to some symmetries
- rotations
- permutations of vertices

Definition

A group G is a set with a binary associative operation \circ, the identity element 1 , and the inverse x^{-1} :

- $x \circ(y \circ z)=(x \circ y) \circ z$
- $x \circ 1=1 \circ x=x$
- $x \circ x^{-1}=x^{-1} \circ x=1$
- $R_{\text {cube }}$: rotations that map the cube to itself, with composition of the rotations.
- Sym_{n} : all permutations of $\{1, \ldots, n\}$, with composition of the permutations.

Definition

An action of a group G on a set X : a function : $G \times X \rightarrow X$ s.t.

- $1 \cdot x=x$
- $(g \circ h) \cdot x=h \cdot(g \cdot x)$
- r rotation of a cube, x k-coloring: $r \cdot x=x$ rotated by r.
- π permutation of vertices of a graph $H: \pi \cdot H=$ graph with edges $\{\pi(u) \pi(v): u v \in E(H)\}$.

Definition

An action of a group G on a set X : a function : $G \times X \rightarrow X$ s.t.

- $1 \cdot x=x$
- $(g \circ h) \cdot x=h \cdot(g \cdot x)$

Observation

For $a_{g}: X \rightarrow X$ defined by $a_{g}(x)=g \cdot x:$

- a_{g} is a permutation of X
- $a_{g^{-1}}$ is the inverse permutation to a_{g}

For a group G with an action . on X :

- $x \sim y$ if there exists $g \in G$ such that $g \cdot x=y$
- \sim is an equivalence

Definition

The classes of equivalence of \sim are orbits.

- colorings of cube faces obtainable from x by rotations
- graphs obtainable from H by permuting vertices

Problem

How many orbits does the action have?

For a group G with action . on X :

- $\operatorname{Fix}(g)=\{x \in X: g \cdot x=x\}$
- $\operatorname{Map}(x, y)=\{g \in G: g \cdot x=y\}$

Lemma

Let O be the orbit containing x :

- $G=\dot{U}_{y \in O} \operatorname{Map}(x, y)$.
- If $h \cdot y=z$, then $\operatorname{Map}(x, z)=\{g \circ h: g \in \operatorname{Map}(x, y)\}$.
- $|\operatorname{Map}(x, x)|=|G| /|O|$

Theorem (Burnside's lemma)

$$
\text { \# of orbits }=\frac{1}{|G|} \sum_{g \in G} \operatorname{Fix}(g)
$$

Proof.

Let the orbits be O_{1}, \ldots, O_{m} :

$$
\begin{aligned}
\sum_{g \in G} \operatorname{Fix}(g) & =|\{(g, x): g \cdot x=x\}|=\sum_{x \in X}|\operatorname{Map}(x, x)| \\
& =\sum_{i=1}^{m} \sum_{x \in O_{i}}|\operatorname{Map}(x, x)|=\sum_{i=1}^{m} \sum_{x \in O_{i}}|G| /\left|O_{i}\right| \\
& =\sum_{i=1}^{m}|G|=|G| m
\end{aligned}
$$

Cube rotations:
The identity: k^{6} fixed points.

$$
\frac{1}{24}\left(k^{6}\right.
$$

Cube rotations:
Axis through face centers, $\pm 90^{\circ}: k^{3}$ fixed points.

Cube rotations:
Axis through face centers, $180^{\circ}: k^{4}$ fixed points.

Cube rotations:
Axis through edge centers, $180^{\circ}: k^{3}$ fixed points.

$$
\frac{1}{24}\left(k^{6}+3 k^{4}+12 k^{3}\right)
$$

Cube rotations:
Axis through vertices, $\pm 120^{\circ}: k^{2}$ fixed points.

$$
\frac{1}{24}\left(k^{6}+3 k^{4}+12 k^{3}+8 k^{2}\right)
$$

Vertex permutations:

The identity: 2^{6} fixed points.

$$
\frac{1}{24}\left(2^{6}\right.
$$

Vertex permutations:

$(a b): 2^{4}$ fixed points.

$$
\frac{1}{24}\left(2^{6}+6 \cdot 2^{4}\right.
$$

Vertex permutations:

$(a b)(c d): 2^{4}$ fixed points.

$$
\frac{1}{24}\left(2^{6}+6 \cdot 2^{4}+3 \cdot 2^{4}\right.
$$

Vertex permutations:

(abc): 2^{2} fixed points.

Vertex permutations:

($a b c d$): 2^{2} fixed points.

Is it faster than a direct enumeration?

- $2^{\binom{n}{2}}=2^{\Theta\left(n^{2}\right)}$ graphs.
- $>2^{\binom{n}{2}} / n!=2^{\Theta\left(n^{2}\right)} / 2^{\Theta(n \log n)}=2^{\Theta\left(n^{2}\right)}$ non-isomorphic graphs.
- $n!=2^{\Theta(n \log n)}$ permutations.
- $2^{\Theta(\sqrt{n})}$ cycle structures.

Pólya enumeration:

- k boxes, G : a group of some of their permutations
- For $i=0,1,2, \ldots . a_{i}$ kinds of objects of size i

Problem (Pólya enumeration problem)

\# of ways to put an object to each box s.t. the total size is m :

- the same kind can be used multiple times
- arrangements differing only by permutations in G are considered to be the same.

For a permutation π :

- $c_{\ell}(\pi)=$ number of cycles of π of length ℓ.

Definition

The cycle index of a group G of permutations is

$$
Z_{G}\left(x_{1}, x_{2}, \ldots\right)=\frac{1}{|G|} \sum_{\pi \in G} \prod_{\ell \geq 1} x_{\ell}^{c_{\ell}(\pi)}
$$

Boxes=pairs, $G=$ their permutations induced by vertex permutations.

The identity: 6×1-cycle

$\frac{1}{24}\left(x_{1}^{6}\right.$
).

Boxes=pairs, $G=$ their permutations induced by vertex permutations.
(ab): 2×1-cycle, 2×2-cycle

$$
\frac{1}{24}\left(x_{1}^{6}+6 x_{1}^{2} x_{2}^{2} \quad\right)
$$

Boxes=pairs, $G=$ their permutations induced by vertex permutations.
$(a b)(c d): 2 \times 1$-cycle, 2×2-cycle

$\mathrm{Cl}-7$

$$
\frac{1}{24}\left(x_{1}^{6}+9 x_{1}^{2} x_{2}^{2} \quad\right)
$$

Boxes=pairs, $G=$ their permutations induced by vertex permutations.
(abc): 2×3-cycle

Boxes=pairs, $G=$ their permutations induced by vertex permutations.
(abcd): 2-cycle and 4-cycle

$$
\frac{1}{24}\left(x_{1}^{6}+9 x_{1}^{2} x_{2}^{2}+8 x_{3}^{2}+6 x_{2} x_{4}\right)
$$

- k boxes, G : a group of some of their permutations
- For $i=0,1,2, \ldots . a_{i}$ kinds of objects of size i
- \# of arrangements of total size m, up to symmetries given by G

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

Generating function for choosing ℓ copies of the same kind:

$$
a_{0}+a_{1} x^{\ell}+a_{2} x^{2 \ell}+\ldots=A\left(x^{\ell}\right)
$$

Arrangements fixed by π : Placing copies of the same kind in each cycle.

$$
|\operatorname{Fix}(\pi)|=\left[x^{m}\right] \prod_{\ell \geq 1} A^{c_{\ell}(\pi)}\left(x^{\ell}\right)
$$

The answer to Pólya enumeration problem is

$$
\frac{1}{|G|} \sum_{\pi \in G}\left[x^{m}\right] \prod_{\ell \geq 1} A^{c_{\ell}(\pi)}\left(x^{\ell}\right)=\left[x^{m}\right] Z_{G}\left(A(x), A\left(x^{2}\right), A\left(x^{3}\right), \ldots\right) .
$$

Number of non-isomorphic graphs with 4 vertices and m edges:

- $a_{0}=1$ (non-edge), $a_{1}=1$ (edge), $A(x)=1+x$.

$$
\begin{aligned}
& Z_{G}\left(1+x, 1+x^{2}, \ldots\right) \\
& =\frac{1}{24}\left((1+x)^{6}+9(1+x)^{2}\left(1+x^{2}\right)^{2}+8\left(1+x^{3}\right)^{2}\right. \\
& \left.\quad \quad+6\left(1+x^{2}\right)\left(1+x^{4}\right)\right) \\
& =\frac{1}{24}\left(24+24 x+48 x^{2}+72 x^{3}+48 x^{4}+24 x^{5}+24 x^{6}\right) \\
& =1+x+2 x^{2}+3 x^{3}+2 x^{4}+x^{5}+x^{6}
\end{aligned}
$$

