Definition

The (ordinary) generating function of a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

- The generating function of $1,1,1, \ldots$ is

$$
\sum_{n \geq 0} x^{n}=\frac{1}{1-x}
$$

- The generating function of the sequence with elements $a_{n}=$ number of strings of letters a and b of length n is

$$
\sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x}
$$

$$
\begin{aligned}
& \left(\sum_{n \geq 0} a_{n} x^{n}\right)+\left(\sum_{n \geq 0} b_{n} x^{n}\right)=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { E. }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sum_{n \geq 0} a_{n} x^{n}\right) \cdot\left(\sum_{n \geq 0} b_{n} x^{n}\right)=\sum_{n \geq 0}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n}
\end{aligned}
$$

$a_{n}=$ number of strings of letters a, b, c of length n and not containing substring aa.

- $a_{0}=1, a_{1}=3, a_{2}=8, a_{3}=$?,\ldots
- $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.
$a_{n}=$ number of strings of letters a, b, c of length n and not containing substring aa.
- $a_{0}=1, a_{1}=3, a_{2}=8, a_{3}=$?,\ldots
- $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.

A good string is

- empty or a: Generating function $1+x$. Or,
- b or c followed by a good string: Generating function $2 x \cdot A$. Or,
- ab or ac followed by a good string: Generating function $2 x^{2}$. A.
$a_{n}=$ number of strings of letters a, b, c of length n and not containing substring aa.
- $a_{0}=1, a_{1}=3, a_{2}=8, a_{3}=$?,\ldots
- $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.

A good string is

- empty or a: Generating function $1+x$. Or,
- b or c followed by a good string: Generating function $2 x \cdot A$. Or,
- ab or ac followed by a good string: Generating function $2 x^{2}$. A.

$$
\begin{aligned}
& A=1+x+\left(2 x+2 x^{2}\right) A \\
& A=\frac{1+x}{1-2 x-2 x^{2}}
\end{aligned}
$$

$2 x^{2}+2 x-1=0:$

$$
\begin{aligned}
x_{1} & =\frac{\sqrt{3}-1}{2}, & x_{2} & =-\frac{\sqrt{3}+1}{2} \\
1 / x_{1} & =\sqrt{3}+1, & 1 / x_{2} & =1-\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1+x}{1-2 x-2 x^{2}}=-\frac{1+x}{2\left(x_{1}-x\right)\left(x_{2}-x\right)} \\
& =\frac{(2 \sqrt{3}+3) / 6}{1-x / x_{1}}-\frac{(2 \sqrt{3}-3) / 6}{1-x / x_{2}} \\
& =\frac{2 \sqrt{3}+3}{6} \sum_{n \geq 0}\left(1 / x_{1}\right)^{n} x^{n}-\frac{2 \sqrt{3}-3}{6}\left(1 / x_{2}\right)^{n} x^{n}
\end{aligned}
$$

$$
a_{n}=\frac{2 \sqrt{3}+3}{6}(\sqrt{3}+1)^{n}-\frac{2 \sqrt{3}-3}{6}(1-\sqrt{3})^{n}
$$

$t_{n}=$ number of rooted trees with n vertices where each vertex is either a leaf or has 2 or 3 children; the order of chilren matters.

- $t_{0}=0, t_{1}=1, t_{2}=0, t_{3}=1, t_{4}=1, t_{5}=2, t_{6}=?, \ldots$
- $T(x)=\sum_{n \geq 0} t_{n} x^{n}$.
$t_{n}=$ number of rooted trees with n vertices where each vertex is either a leaf or has 2 or 3 children; the order of chilren matters.
- $t_{0}=0, t_{1}=1, t_{2}=0, t_{3}=1, t_{4}=1, t_{5}=2, t_{6}=?, \ldots$
- $T(x)=\sum_{n \geq 0} t_{n} x^{n}$.

A good tree is

- a single-vertex tree: Generating function x. Or,
- a root plus 2 good trees: Generating function $x \cdot T \cdot T$. Or,
- a root plus 3 good trees: Generating function $x T^{3}$.
$t_{n}=$ number of rooted trees with n vertices where each vertex is either a leaf or has 2 or 3 children; the order of chilren matters.
- $t_{0}=0, t_{1}=1, t_{2}=0, t_{3}=1, t_{4}=1, t_{5}=2, t_{6}=?, \ldots$
- $T(x)=\sum_{n \geq 0} t_{n} x^{n}$.

A good tree is

- a single-vertex tree: Generating function x. Or,
- a root plus 2 good trees: Generating function $x \cdot T \cdot T$. Or,
- a root plus 3 good trees: Generating function $x T^{3}$.

$$
\begin{aligned}
T(x) & =x\left(1+T^{2}(x)+T^{3}(x)\right) \\
x & =\frac{T(x)}{1+T(x)^{2}+T(x)^{3}}
\end{aligned}
$$

For $f(y)=\frac{y}{1+y^{2}+y^{3}}$: we have $f(T(x))=x$, and $T=f^{-1}$.

$$
\left[x^{n}\right] \sum_{n} a_{n} x^{n}=a_{n}
$$

Theorem (Lagrange inversion formula)
Suppose $F(y)=\sum_{n \geq 0} f_{n} y^{n}$ with $f_{0} \neq 0$ and $A(x)=x F(A(x))$. Then

$$
\left[x^{n}\right] A(x)=\frac{1}{n}\left[y^{n-1}\right] F^{n}(y)
$$

$$
\begin{aligned}
T(x) & =x\left(1+T^{2}(x)+T^{3}(x)\right) \\
F(y) & =1+y^{2}+y^{3} \\
t_{n} & =\frac{1}{n}\left[y^{n-1}\right]\left(1+y^{2}+y^{3}\right)^{n} \\
& =\frac{1}{n} \sum_{a, b \in \mathbb{Z}_{0}^{+}: 2 a+3 b=n-1}\binom{n}{n-a-b, a, b}
\end{aligned}
$$

Definition

The exponential generating function of a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is

$$
A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}
$$

- The exponential generating function of $1,1,1, \ldots$ is

$$
\sum_{n \geq 0} \frac{x^{n}}{n!}=e^{x}
$$

- The generating function of the sequence with elements

$$
a_{n}=\text { number of strings of letters } a \text { and } b \text { of length } n
$$

is

$$
\sum_{n \geq 0} 2^{n} \frac{x^{n}}{n!}=e^{2 x}
$$

$$
\begin{aligned}
& \left(\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}\right) \cdot\left(\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!}\right)=\sum_{n \geq 0}\left(\sum_{i=0}^{n} \frac{a_{i} b_{n-i}}{i!(n-i)!}\right) x^{n} \\
& =\sum_{n \geq 0}\left(\sum_{i=0}^{n}\binom{n}{i} a_{i} b_{n-i}\right) \frac{x^{n}}{n!} \\
& A=0]+\frac{61}{[\ln]} \frac{x}{1!}+\frac{\sqrt{[1-2]}}{[1-2]} \frac{x^{2}}{2!}+\left([1+-2+3) \frac{x^{3}}{3!}+\ldots\right.
\end{aligned}
$$

$p_{n}=$ number of ordered partitions of $\{1, \ldots, n\}$, i.e., number of tuples $\left(A_{1}, \ldots, A_{k}\right)$ of non-empty disjoint sets s.t. $A_{1} \cup \ldots \cup A_{k}=\{1, \ldots, n\}$

- $p_{0}=1, p_{1}=1, p_{2}=3, p_{3}=$?
- $P(x)=\sum_{n \geq 0} p_{n} \frac{x^{n}}{n!}$
$p_{n}=$ number of ordered partitions of $\{1, \ldots, n\}$, i.e., number of tuples $\left(A_{1}, \ldots, A_{k}\right)$ of non-empty disjoint sets s.t. $A_{1} \cup \ldots \cup A_{k}=\{1, \ldots, n\}$
- $p_{0}=1, p_{1}=1, p_{2}=3, p_{3}=$?
- $P(x)=\sum_{n \geq 0} p_{n} \frac{x^{n}}{n!}$

$$
\begin{aligned}
P & =1+\left(e^{x}-1\right)+\left(e^{x}-1\right) \cdot\left(e^{x}-1\right)+\left(e^{x}-1\right)^{3}+\ldots \\
& =\frac{1}{2-e^{x}}
\end{aligned}
$$

Definition

The radius of convergence of $A=\sum_{n=0}^{\infty} a_{n} x^{n}$ is

$$
R=\sup \left\{c>0:\left|a_{n}\right| \leq(1 / c)^{n} \text { for all but finitely many } n\right\}
$$

Lemma

Let $A=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence $R>0$.

- A diverges for every $x \in \mathbb{C}$ such that $|x|>R$,
- A converges for every $x \in \mathbb{C}$ such that $|x|<R$,
- there exists $x \in \mathbb{C}$ such that $|x|=R$ and A diverges at x, and
- if $a_{n} \geq 0$ for all n, then A diverges at R.

Graph of $|P(x)|=\left|\frac{1}{2-e^{x}}\right|$ for $x \in \mathbb{C}$:

Observation

For every $\varepsilon>0$,

$$
\left|a_{n}\right|<(1 / R+\varepsilon)^{n}
$$

holds for all but finitely many values of n, and thus

$$
\left|a_{n}\right|=O\left((1 / R+\varepsilon)^{n}\right) .
$$

$P(x)=\frac{1}{2-e^{x}}:$

- Radius of convergence $\log 2$.
- $1 / \log 2<1.443$

$$
\frac{p_{n}}{n!}=O\left(1.443^{n}\right)
$$

Let $q(x)=\frac{\log 2-x}{2-e^{x}}$, so that

$$
P(x)=\frac{1}{\log 2-x} \cdot q(x)
$$

Define

$$
\begin{aligned}
q(\log 2) & =\lim _{x \rightarrow \log 2} q(x)=\frac{1}{2} \\
h(x) & =P(x)-\frac{1 / 2}{\log 2-x}=\frac{q(x)-1 / 2}{\log 2-x}
\end{aligned}
$$

We have

$$
\begin{aligned}
\lim _{x \rightarrow \log 2} h(x) & =\lim _{x \rightarrow \log 2} \frac{q(x)-1 / 2}{\log 2-x}=\lim _{x \rightarrow \log 2}-q^{\prime}(x) \\
& =\lim _{x \rightarrow \log 2} \frac{2-e^{x}-(\log 2-x) e^{x}}{\left(2-e^{x}\right)^{2}} \\
& =\lim _{x \rightarrow \log 2} \frac{x-\log 2}{2 e^{x}-4}=\lim _{x \rightarrow \log 2} \frac{1}{2 e^{x}}=\frac{1}{4} .
\end{aligned}
$$

Define $h(\log 2)=1 / 4$.

Graph of $|h(x)|$ for $x \in \mathbb{C}$:

For $h(x)$:

- radius of convergence

$$
\left.\left.\begin{array}{l}
\quad|2 \pi i+\log 2|=\sqrt{4 \pi^{2}+\log ^{2} 2}>1 / 0.16, \\
\cdot
\end{array}\right] x^{n}\right] h(x)=O\left(0.16^{n}\right)
$$

$$
\begin{aligned}
\frac{p_{n}}{n!} & =\left[x^{n}\right] P(x)=\left[x^{n}\right] \frac{1 / 2}{\log 2-x}+\left[x^{n}\right] h(x) \\
& =\left[x^{n}\right] \frac{1}{2 \log 2} \cdot \frac{1}{1-x / \log 2}+\left[x^{n}\right] h(x) \\
& =\frac{1}{2 \log ^{n+1} 2}+O\left(0.16^{n}\right)=0.5 \cdot(1.443 \ldots)^{n+1}+O\left(0.16^{n}\right) .
\end{aligned}
$$

$t_{n}=$ number of rooted trees with n vertices where each vertex is either a leaf or has 2 or 3 children; the order of chilren matters.

- $T(x)=\sum_{n \geq 0} t_{n} x^{n}$.
- $T(x)$ is the inverse to $f(y)=\frac{y}{1+y^{2}+y^{3}}$.

- $R=f\left(y_{0}\right)$, where $f^{\prime}\left(y_{0}\right)=0$
- $1 / R<2.62 \Rightarrow t_{n}=O\left(2.62^{n}\right)$

