$\pi_{G}(k)=$ number of k-colorings of G

$$
\pi_{G}(k)= \begin{cases}k^{|V(G)|} & \text { if } E(G)=\emptyset \\ 0 & \text { if } e \text { is a loop } \\ \pi_{G-e}(k)-\pi_{G / e}(k) & \text { otherwise }\end{cases}
$$

$\pi_{G}(k)=$ number of k-colorings of G

$$
\pi_{G}(k)= \begin{cases}k^{|V(G)|} & \text { if } E(G)=\emptyset \\ (k-1) \pi_{G / e}(k) & \text { if } e \text { is a bridge } \\ 0 & \text { if } e \text { is a loop } \\ \pi_{G-e}(k)-\pi_{G / e}(k) & \text { otherwise }\end{cases}
$$

Observation

$\pi_{G}(k)$ is a polynomial in variable k of degree at most $|V(G)|$.
π_{G} is the chromatic polynomial of G.
Q: Compute the chromatic polynomial of

For a connected graph G and $p \in[0,1]$:

- $G_{p}=$ the random graph obtained by deleting each edge independently with probability p.
- $R_{G}(p)=$ probability that G_{p} is connected

$$
R_{G}(p)= \begin{cases}1 & \text { if } E(G)=\emptyset \\ (1-p) R_{G / e}(p) & \text { if } e \text { is a bridge } \\ R_{G-e}(p) & \text { if } e \text { is a loop } \\ p R_{G-e}(p)+(1-p) R_{G / e}(p) & \text { otherwise }\end{cases}
$$

R_{G} is the reliability polynomial of G.

For a connected graph G, $s_{G}=$ the number of spanning trees of G

$$
s_{G}= \begin{cases}1 & \text { if } E(G)=\emptyset \\ s_{G / e} & \text { if } e \text { is a bridge } \\ s_{G-e} & \text { if } e \text { is a loop } \\ s_{G-e}+s_{G / e} & \text { otherwise }\end{cases}
$$

For a graph G and $A \subseteq E(G)$:

- $\kappa(G)=$ the number of components of G.
- $\kappa_{G}(A)=$ the number of components of $(V(G), A)$.
- $r_{G}(A)=\kappa_{G}(A)-\kappa(G) \geq 0$
- $c_{G}(A)=\kappa_{G}(A)-(V(G)-|A|) \geq 0$

Definition

Tutte polynomial of a graph G is

$$
T_{G}(x, y)=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{c_{G}(A)}
$$

Q: Compute Tutte polynomial of

For a graph G and $A \subseteq E(G)$:

- $\kappa(G)=$ the number of components of G.
- $\kappa_{G}(A)=$ the number of components of $(V(G), A)$.
- $r_{G}(A)=\kappa_{G}(A)-\kappa(G) \geq 0$
- $c_{G}(A)=\kappa_{G}(A)-(V(G)-|A|) \geq 0$

Definition

Tutte polynomial of a graph G is

$$
T_{G}(x, y)=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{c_{G}(A)}
$$

$$
T_{G}(2,2)=2^{|E(G)|}
$$

For a graph G and $A \subseteq E(G)$:

- $\kappa(G)=$ the number of components of G.
- $\kappa_{G}(A)=$ the number of components of $(V(G), A)$.
- $r_{G}(A)=\kappa_{G}(A)-\kappa(G) \geq 0$
- $c_{G}(A)=\kappa_{G}(A)-(V(G)-|A|) \geq 0$

Definition

Tutte polynomial of a graph G is

$$
T_{G}(x, y)=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{C_{G}(A)} .
$$

For G connected:

- $r_{G}(A)=0$ iff $(V(G), A)$ is connected.
- $c_{G}(A)=0$ iff $(V(G), A)$ is a forest.

For a graph G and $A \subseteq E(G)$:

- $\kappa(G)=$ the number of components of G.
- $\kappa_{G}(A)=$ the number of components of $(V(G), A)$.
- $r_{G}(A)=\kappa_{G}(A)-\kappa(G) \geq 0$
- $c_{G}(A)=\kappa_{G}(A)-(V(G)-|A|) \geq 0$

Definition

Tutte polynomial of a graph G is

$$
T_{G}(x, y)=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{c_{G}(A)}
$$

$T_{G}(1,2)=$ number of connected spanning subgraphs
$T_{G}(2,1)=$ number of spanning forests
$T_{G}(1,1)=$ number of spanning trees

Lemma

$$
T_{G}(x, y)= \begin{cases}1 & \text { if } E(G)=\emptyset \\ x \cdot T_{G / e}(x, y) & \text { if e is a bridge } \\ y \cdot T_{G-e}(x, y) & \text { if e is a loop } \\ T_{G-e}(x, y)+T_{G / e}(x, y) & \text { otherwise }\end{cases}
$$

$E(G)=\emptyset:$

$$
T_{G}(x, y)=(x-1)^{r_{G}(\emptyset)}(y-1)^{c_{G}(\emptyset)}=1
$$

e is a bridge:

$$
\begin{aligned}
r_{G}(A)-1 & =r_{G}(A \cup\{e\})=r_{G / e}(A) \\
c_{G}(A \cup\{e\}) & =c_{G}(A)=c_{G / e}(A)
\end{aligned}
$$

$T_{G}(x, y)$

$$
=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{c_{G}(A)}
$$

$$
=\sum_{A \subseteq E(G) \backslash\{e\}}\left((x-1)^{r_{G}(A)}(y-1)^{C_{G}(A)}+(x-1)^{r_{G}(A \cup\{e\})}(y-1)^{C_{G}(A \cup\{e\})}\right)
$$

$$
=\sum_{A \subseteq E(G / e)}\left((x-1)^{r_{G / e}(A)+1}(y-1)^{c_{G / e}(A)}+(x-1)^{r_{G / e}(A)}(y-1)^{c_{G / e}(A)}\right)
$$

$$
=x \sum_{A \subseteq E(G / e)}(x-1)^{r_{G} / e(A)}(y-1)^{c_{G / e}(A)}=x \cdot T_{G / e}(x, y) .
$$

e is a loop:

$$
\begin{aligned}
r_{G}(A) & =r_{G}(A \cup\{e\})=r_{G-e}(A) \\
c_{G}(A \cup\{e\})-1 & =c_{G}(A)=c_{G-e}(A)
\end{aligned}
$$

$T_{G}(x, y)$

$$
=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{c_{G}(A)}
$$

$$
=\sum_{A \subseteq E(G) \backslash\{e\}}\left((x-1)^{r_{G}(A)}(y-1)^{C_{G}(A)}+(x-1)^{r_{G}(A \cup\{e\})}(y-1)^{C_{G}(A \cup\{e\})}\right)
$$

$$
=\sum_{A \subseteq E(G-e)}\left((x-1)^{r_{G-e}(A)}(y-1)^{c_{G-e}(A)}+(x-1)^{r_{G-e}(A)}(y-1)^{c_{G-e}(A)+1}\right)
$$

$$
=y \sum_{A \subseteq E(G-e)}(x-1)^{r_{G-e}(A)}(y-1)^{c_{G-e}(A)}=y \cdot T_{G-e}(x, y)
$$

e is neither a bridge nor a loop:

$$
\begin{array}{ll}
r_{G}(A)=r_{G-e}(A) & r_{G}(A \cup\{e\})=r_{G / e}(A) \\
c_{G}(A)=c_{G-e}(A) & c_{G}(A \cup\{e\})=c_{G / e}(A)
\end{array}
$$

$T_{G}(x, y)$

$$
=\sum_{A \subseteq E(G)}(x-1)^{r_{G}(A)}(y-1)^{C_{G}(A)}
$$

$$
=\sum_{A \subseteq E(G) \backslash\{e\}}\left((x-1)^{r_{G}(A)}(y-1)^{c_{G}(A)}+(x-1)^{r_{G}(A \cup\{e\})}(y-1)^{c_{G}(A \cup\{e\})}\right)
$$

$$
=\sum_{A \subseteq E(G) \backslash\{e\}}\left((x-1)^{r_{G-e}(A)}(y-1)^{c_{G-e}(A)}+(x-1)^{r_{G / e}(A)}(y-1)^{c_{G / e}(A)}\right)
$$

$$
=T_{G-e}(x, y)+T_{G / e}(x, y)
$$

$$
\begin{aligned}
& =x^{2}+\zeta+\Omega \\
& =x^{2}+x+y \\
T_{c_{k}}(x, y) & =T_{p_{k}}(x, y)+T_{c_{k-1}}(x, y) \\
& =x^{k-1}+T_{c_{k-1}}(x, y) \\
& =x^{k-1}+x^{k-2}+\ldots+x+y
\end{aligned}
$$

$$
U_{G}(n, b, I, d, c)=n^{\kappa(G)} d^{|E(G)|+\kappa(G)-|V(G)|} c^{|V(G)|-\kappa(G)} T_{G}(b / c, I / d) .
$$

Lemma

$$
U_{G}= \begin{cases}n^{|V(G)|} & \text { if } E(G)=\emptyset \\ b \cdot U_{G / e} & \text { if e is a bridge } \\ I \cdot U_{G-e} & \text { if e is a loop } \\ d \cdot U_{G-e}+c \cdot U_{G / e} & \text { otherwise }\end{cases}
$$

Corollary

- $\pi_{G}=U_{G}(k, k-1,0,1,-1)=k^{\kappa(G)}(-1)^{|V(G)|-\kappa(G)} T_{G}(1-k, 0)$
- $R_{G}=U_{G}(1,1-p, 1, p, 1-p)=p^{c_{G}(E(G))}(1-p)^{|V(G)|-1} T_{G}\left(1, p^{-1}\right)$
- $s_{G}=U_{G}(1,1,1,1,1)=T_{G}(1,1)$
e is neither a bridge nor a loop:

$$
\begin{gathered}
\kappa(G)=\kappa(G-e)=\kappa(G / e) \\
U_{G}=n^{\kappa(G)} d^{|E(G)|+\kappa(G)-|V(G)|} c^{|V(G)|-\kappa(G)} T_{G}(b / c, I / d) \\
=n^{\kappa(G)} d^{|E(G)|+\kappa(G)-|V(G)|} C^{|V(G)|-\kappa(G)}\left(T_{G-e}+T_{G / e}\right) \\
=n^{\kappa(G-e)} d^{|E(G-e)|+1+\kappa(G-e)-|V(G-e)|} C^{|V(G-e)|-\kappa(G-e)} T_{G-e} \\
\\
+n^{\kappa(G / e)} d^{|E(G / e)|+\kappa(G-e)-|V(G / e)|} c^{|V(G / e)|+1-\kappa(G / e)} T_{G / e} \\
=d \cdot U_{G-e}(n, b, I, d, c)+c \cdot U_{G / e}(n, b, l, d, c) .
\end{gathered}
$$

Lemma

If G_{1} and G_{2} intersect in at most one vertex, then $T_{G_{1} \cup G_{2}}=T_{G_{1}} T_{G_{2}}$.

Proof.

By induction on $\left|E\left(G_{2}\right)\right|$. E.g., if G_{2} contains a bridge e :

- e is a bridge of $G_{1} \cup G_{2}$.

$$
\begin{aligned}
T_{G_{1} \cup G_{2}} & =x \cdot T_{\left(G_{1} \cup G_{2}\right) / e}=x \cdot T_{G_{1} \cup\left(G_{2} / e\right)} \\
& =T_{G_{1}} \cdot x \cdot T_{G_{2} / e}=T_{G_{1}} T_{G_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =C_{6}+D 09= \\
& =C_{6}+\left(C_{3}\right)^{2}= \\
& =x^{5}+x^{4}+\ldots+x+y+\left(x^{2}+x+y\right)^{2}
\end{aligned}
$$

For a connected plane graph G and its dual G^{\star} :

- e not a bridge: $(G-e)^{\star}=G^{\star} / e$
- e not a loop: $(G / e)^{\star}=G^{\star}-e$
- e is a loop in G iff e is a bridge in G^{\star}
- e is a bridge in G iff e is a loop in G^{\star}

Lemma

For a connected plane graph G,

$$
T_{G}(x, y)=T_{G^{\star}}(y, x)
$$

Q: Show that a connected plane graph and its dual have the same number of spanning trees.

Computing $T_{G}(x, y)$

- in P at $(1,1),(-1,-1),(0,-1),(-1,0),(x, 1 /(x-1)+1)$.
- for planar G in P at $(x, 2 /(x-1)+1)$
- \#P-hard otherwise

