
matching: 1-regular subgraph M
size: |E(M)|; β(G) = size of a largest matching
covers X if X ⊆ V (M); perfect if V (M) = V (G).

Q: What is β(the depicted graph)?



Hall’s theorem

G bipartite, parts A and B. Equivalent:

Exists a matching that covers A.
For every X ⊆ A,

|N(X )| ≥ |X |.



Corollary

G bipartite and d-regular⇒ G has a perfect matching.

d |X | = |E(G[X ∪ N(X )])| ≤ d |N(X )|



Observation

If V (G) \ S is an independent set, then β(G) ≤ |S|.
Hence, β(G) ≤ |V (G)| − α(G).



Theorem

For G bipartite:
There exists S ⊆ V (G) such that

V (G) \ S is an independent set and
β(G) = |S|.

Hence, β(G) = |V (G)| − α(G).

Q: Find a non-bipartite graph G such that

β(G) < |V (G)| − α(G).



A graph G is hypomatchable if
G does not have a perfect matching
for every v ∈ V (G), G − v has a perfect matching.

Observation

A hypomatchable graph must have an odd number of vertices.

Q: Find a hypomatchable graph with 5 vertices which does not
contain a 5-cycle.



For a graph G and S ⊆ V (G), GS is the bipartite graph with
parts

S and
components of G − S

and for v ∈ S and a component C of G − S,
vC ∈ E(GS) iff G has an edge from v to V (C).



A set S ⊆ V (G) is an EG-set (Edmonds-Gallai) if
every component of G − S is hypomatchable, and
GS has a matching that covers S.

Observation

∅ is an EG-set iff G is hypomatchable.



A set S ⊆ V (G) is an EG-set (Edmonds-Gallai) if
every component of G − S is hypomatchable, and
GS has a matching that covers S.

Q: Find an EG-set in the graph above.



Lemma

If S is an EG-set and G − S has c components, then

β(G) = 1
2(|V (G)|+ |S| − c).

In any matching, at least c − |S| components contain an
uncovered vertex.
There exists a matching with exactly c − |S| uncovered
vertices.



Lemma

If S is an EG-set and G − S has c components, then

β(G) = 1
2(|V (G)|+ |S| − c).

In any matching, at least c − |S| components contain an
uncovered vertex.
There exists a matching with exactly c − |S| uncovered
vertices.



Lemma

If S is an EG-set and G − S has c components, then

β(G) = 1
2(|V (G)|+ |S| − c).

In any matching, at least c − |S| components contain an
uncovered vertex.
There exists a matching with exactly c − |S| uncovered
vertices.



Theorem (Edmonds-Gallai)

Every graph contains an EG-set.

We will prove this Theorem at the end of the lecture.



o(H) = number of odd-size components of H

Q: What is o(G − S) for the graph above?

Observation

If G has a perfect matching, then for every S ⊆ V (G),

o(G − S) ≤ |S|.



Theorem (Tutte)

G has a perfect matching iff for every S ⊆ V (G),

o(G − S) ≤ |S|.

Proof.

By Edmonds-Gallai Theorem, G contains an EG-set S.
All components of G−S have odd size, there are o(G−S)
of them.
β(G) = 1

2(|V (G)|+ |S| − o(G − S)) ≥ 1
2 |V (G)|.



Theorem (Petersen)

Every 3-regular 2-edge-connected graph has a perfect
matching.

Proof.

For every odd-size component C of G − S, the number of
edges between S and C is odd.
If S 6= ∅, it is at least three, since G is 2-edge-connected.
3o(G − S) ≤ edges between S and V (G) \ S ≤ 3|S|.
o(G − ∅) = 0.

Q: Is it true that every 3-regular graph has a perfect matching?





Theorem (Edmonds-Gallai)

Every graph G contains an EG-set.

Induction: We can assume every graph with less than |V (G)|
vertices has an EG-set.

Choose S ⊆ V (G) such that
o(G − S)− |S| is maximum, and subject to that
|S| is maximum

Then S is an EG-set.



Claim

Every component C of G − S has odd size.

Otherwise:
Choose v ∈ V (C) arbitrarily, let S′ = S ∪ {v}.
C − v has an odd component: o(G − S′) ≥ o(G − S) + 1.

o(G − S′)− |S′| ≥ (o(G − S) + 1)− (|S|+ 1) = o(G − S)− |S|
and |S′| > |S|.



Claim

Every component C of G − S is hypomatchable.

Otherwise:
Choose v ∈ V (C) such that β(C − v) < |V (C − v)|/2.
Hence, β(C − v) ≤ |V (C − v)|/2− 1 = (|V (C − v)| − 2)/2.
EG-set SC in C − v : o(C − v − SC)− |SC | ≥ 2.
For S′ = S ∪ {v} ∪ SC ,
o(G − S′) = (o(G − S)− 1) + o(C − v − SC).

o(G − S′)− |S′| = (o(G − S) + o(C − v − SC)− 1)− (|S|+ |SC |+ 1)
= o(G − S)− |S|+ (o(C − v − SC)− |SC | − 2)
≥ o(G − S)− |S|

and |S′| > |S|.



Claim

GS has a matching that covers S.

Otherwise:
Hall’s theorem: X ⊆ G such that |NGS

(X )| < |X |.
For S′ = S \ X ,
o(G − S′) ≥ o(G − S)− |NGS

(X )| > o(G − S)− |X |.

o(G−S′)−|S′| > (o(G−S)−|X |)−(|S|−|X |) = o(G−S)−|S|.


