- matching: 1-regular subgraph M
- size: |E(M)|; $\beta(G)$ = size of a largest matching
- covers X if $X \subseteq V(M)$; perfect if V(M) = V(G).

Q: What is β (the depicted graph)?

Hall's theorem

G bipartite, parts A and B. Equivalent:

- Exists a matching that covers A.
- For every $X \subseteq A$,

 $|N(X)| \geq |X|.$

Corollary

G bipartite and *d*-regular \Rightarrow *G* has a perfect matching.

 $d|X| = |E(G[X \cup N(X)])| \le d|N(X)|$

Observation

If $V(G) \setminus S$ is an independent set, then $\beta(G) \leq |S|$. Hence, $\beta(G) \leq |V(G)| - \alpha(G)$.

Theorem

For G bipartite:

There exists $S \subseteq V(G)$ such that

- $V(G) \setminus S$ is an independent set and
- $\beta(G) = |S|.$

Hence, $\beta(G) = |V(G)| - \alpha(G)$.

Q: Find a non-bipartite graph G such that

 $\beta(G) < |V(G)| - \alpha(G).$

A graph G is hypomatchable if

- *G* does not have a perfect matching
- for every $v \in V(G)$, G v has a perfect matching.

Observation

A hypomatchable graph must have an odd number of vertices.

Q: Find a hypomatchable graph with 5 vertices which does not contain a 5-cycle.

For a graph *G* and $S \subseteq V(G)$, G_S is the bipartite graph with parts

- S and
- components of *G S*

and for $v \in S$ and a component *C* of G - S,

• $vC \in E(G_S)$ iff G has an edge from v to V(C).

A set $S \subseteq V(G)$ is an EG-set (Edmonds-Gallai) if

- every component of G S is hypomatchable, and
- G_S has a matching that covers S.

Observation

 \emptyset is an EG-set iff G is hypomatchable.

A set $S \subseteq V(G)$ is an EG-set (Edmonds-Gallai) if

- every component of G S is hypomatchable, and
- G_S has a matching that covers S.

Q: Find an EG-set in the graph above.

Lemma

If S is an EG-set and G - S has c components, then

$$\beta(G) = \frac{1}{2}(|V(G)| + |S| - c).$$

- In any matching, at least c |S| components contain an uncovered vertex.
- There exists a matching with exactly c |S| uncovered vertices.

Lemma

If S is an EG-set and G - S has c components, then

$$\beta(G) = \frac{1}{2}(|V(G)| + |S| - c).$$

- In any matching, at least c |S| components contain an uncovered vertex.
- There exists a matching with exactly c |S| uncovered vertices.

Lemma

If S is an EG-set and G - S has c components, then

$$\beta(G) = \frac{1}{2}(|V(G)| + |S| - c).$$

- In any matching, at least c |S| components contain an uncovered vertex.
- There exists a matching with exactly c |S| uncovered vertices.

Theorem (Edmonds-Gallai)

Every graph contains an EG-set.

We will prove this Theorem at the end of the lecture.

o(H) = number of odd-size components of H

Q: What is o(G - S) for the graph above?

Observation

If G has a perfect matching, then for every $S \subseteq V(G)$,

$$o(G-S) \leq |S|.$$

Theorem (Tutte)

G has a perfect matching iff for every $S \subseteq V(G)$,

 $o(G-S) \leq |S|.$

Proof.

- By Edmonds-Gallai Theorem, G contains an EG-set S.
- All components of *G*−*S* have odd size, there are *o*(*G*−*S*) of them.
- $\beta(G) = \frac{1}{2}(|V(G)| + |S| o(G S)) \ge \frac{1}{2}|V(G)|.$

Theorem (Petersen)

Every 3-regular 2-edge-connected graph has a perfect matching.

Proof.

- For every odd-size component C of G S, the number of edges between S and C is odd.
- If $S \neq \emptyset$, it is at least three, since G is 2-edge-connected.
- $3o(G-S) \leq edges$ between S and $V(G) \setminus S \leq 3|S|$.
- $o(G \emptyset) = 0.$

Q: Is it true that every 3-regular graph has a perfect matching?

Theorem (Edmonds-Gallai)

Every graph G contains an EG-set.

Induction: We can assume every graph with less than |V(G)| vertices has an EG-set.

Choose $S \subseteq V(G)$ such that

- o(G-S) |S| is maximum, and subject to that
- |S| is maximum

Then S is an EG-set.

Claim

Every component C of G - S has odd size.

Otherwise:

• Choose $v \in V(C)$ arbitrarily, let $S' = S \cup \{v\}$.

• C - v has an odd component: $o(G - S') \ge o(G - S) + 1$. $o(G - S') - |S'| \ge (o(G - S) + 1) - (|S| + 1) = o(G - S) - |S|$ and |S'| > |S|.

Claim

Every component C of G - S is hypomatchable.

Otherwise:

Choose v ∈ V(C) such that β(C − v) < |V(C − v)|/2.
Hence, β(C − v) ≤ |V(C − v)|/2 − 1 = (|V(C − v)| − 2)/2.
EG-set S_C in C − v: o(C − v − S_C) − |S_C| ≥ 2.
For S' = S ∪ {v} ∪ S_C, o(G − S') = (o(G − S) − 1) + o(C − v − S_C).

$$egin{aligned} o(G-S') - |S'| &= (o(G-S) + o(C-v-S_C) - 1) - (|S| + |S_C| + 1) \ &= o(G-S) - |S| + (o(C-v-S_C) - |S_C| - 2) \ &\geq o(G-S) - |S| \end{aligned}$$

and |S'| > |S|.

Claim

 G_S has a matching that covers S.

Otherwise:

• Hall's theorem: $X \subseteq G$ such that $|N_{G_S}(X)| < |X|$.

• For
$$S' = S \setminus X$$
,
 $o(G - S') \ge o(G - S) - |N_{G_S}(X)| > o(G - S) - |X|$.

o(G-S') - |S'| > (o(G-S) - |X|) - (|S| - |X|) = o(G-S) - |S|.

