
Edmonds’ blossom algorithm

Zdeněk Dvořák

February 24, 2024

Our goal in this lecture will be to describe a polynomial-time algorithm
to find a largest matching in a graph.

1 Augmenting paths

Let M be a (not necessarily perfect) matching in a graph G. A path P =
v1v2 . . . vm in G is M-alternating if v1 is not covered by the matching and
for every even i < m, the edge vivi+1 of the path is contained in M . I.e.,
P alternates between the edges not in the matching and the edges in the
matching.

An alternating path P is M-augmenting if m ≥ 2 and vm is not covered
by the matching. Note that this implies that m is even. Let

M ′ = (M − E(P)) ∪ {v1v2, v3v4, . . . , vm−1vm}.

That is, we exchange the matching and the non-matching edges on P . Ob-
serve that M ′ is also a matching in G, and that |E(M ′)| = |E(M)|+ 1. We
say M ′ is obtained from M by switching on P .

Clearly, if G contains an M -augmenting path, then M is not the largest
matching in G. Interestingly, the converse implication holds as well.

Lemma 1. Let M be a matching in a graph G. Then M is the largest match-
ing in G if and only if there exists no M-augmenting path in G. Moreover,
given a matching M ′ in G larger than M , we can find an M-augmenting path
in G in time O(|V (G)|).

Proof. As we have already argued, if G contains an M -augmenting path then
M is not the largest matching in G.

Conversely, suppose that M is not the largest matching in G; we need to
show that then G contains an M -augmenting path. Let M ′ be a matching in
G with more than |E(M)| edges, and consider the subgraph F = (M ∪M ′)−

1

(M ′∩M ′) of G. Note that |E(F∩M ′)|−|E(F∩M)| = |E(M ′)|−|E(M)| > 0.
Each vertex of F has degree at most two, and in case that a vertex of F has
degree two, then it is incident with an edge of M and an edge of M ′. Hence,
each component K of F satisfies one of the following conditions:

• K is a cycle (of even length) in which edges of M and M ′ alternate,
and thus |E(K ∩M ′)| = |E(K ∩M)|, or

• K is a path in which edges of M and M ′ alternate, and

– K has one end in M and the other end in M ′, and thus K has
even length and |E(K ∩M ′)| = |E(K ∩M)|, or

– K has both ends in M , and thus K has odd length and |E(K ∩
M ′)| < |E(K ∩M)|, or

– K has both ends in M ′, and thus K has odd length and |E(K ∩
M ′)| > |E(K ∩M)|.

Since |E(F ∩M ′)| > |E(F ∩M)|, we conclude that F has a component K
of the last type, i.e., K = v1v2 . . . vm is a path in which edges of M and M ′

alternate and such that v1v2, vm−1vm ∈ E(M ′). Since v1 and vm have degree
one in F , they are not covered by M , and thus K is an M -augmenting path
in G.

Note also that if we are given the matching M ′, we can find the compo-
nents of F and pick K in time O(|V (G)|).

This gives us the following basic outline of an algorithm to find a largest
matching in a graph G:

• Let M be an empty matching in G.

• While there exists an M -augmenting path P in G:

– Replace M by the matching obtained from M by switching on P .

For the resulting matching M , there exists no M -augmenting path, and thus
M is a largest matching in G by Lemma 1. Of course, in order to implement
this algorithm, we need to be able to find an M -augmenting path efficiently
(without explicitly knowing the larger matching M ′), if one exists.

A reader with an experience in algorithmic design might feel that at this
point we are basically done—cannot we just find an augmenting path by
some variation of a graph search (DFS, BFS, . . .)? However, this is not as
straightforward as it might seem. It matters whether the search reaches a
vertex through an edge in the matching M or through a non-matching edge,

2

which forces us to do the search on an auxiliary graph where each vertex of
G appears twice (once for the possibility of reaching it through the matching
edge, once for the possibility of reaching it through a non-matching edge).
However, then we may end up with an “augmenting walk” (in which some
vertices repeat twice) rather than an augmenting path. Suppose for example
that we end up with an alternating walk u, v, w, x, y, w, v, z, where u and z
are not covered by M and the edges vw and xy belong to M . There is no
way how to turn this walk into an augmenting path!

2 Blossoms

The key observation is that we only can get stuck in this kind of situation
where there is an alternating path ending in an odd cycle. An M-blossom
consists of an M -alternating path v1v2 . . . vm with m odd (the stem of the
blossom) and an odd cycle C = vmu1u2 . . . uk disjoint from {v1, . . . , vm} (the
head of the blossom) such that u1u2, u3u4, . . . , uk−1uk ∈ E(M). The M -
blossom is simple if m = 1, i.e., the stem consists of only a single vertex v1
(not convered by M). The following lemma shows that if we are interested
in the existence of an M -augmenting path, then we can only focus on simple
blossoms.

Lemma 2. Let M be a matching in a graph G and let Q = v1v2 . . . vm
be an M-alternating path in G with m odd. Let M ′ be the matching in G
obtained from by M by switching on Q. Then vm is not covered by M ′ and
|E(M ′)| = |E(M)|. Moreover, G contains an M-augmenting path if and only
if it contains an M ′-augmenting path, and an M ′-augmenting path in G can
be turned into an M-augmenting path in time O(|V (G)|).

Proof. The facts that vm is not covered by M ′ and that |E(M ′)| = |E(M)|
are simple observations. In particular, M is a largest matching in G if and
only of M ′ is a largest matching in G, and by Lemma 1, G contains an
M -augmenting path if and only if G contains an M ′-augmenting path.

Finally, suppose that P is an M ′-augmenting path in M ′, and let M ′′

be the matching obtained from M ′ by switching on P . We have |E(M ′′)| >
|E(M ′)| = |E(M)|. By Lemma 1 applied to M and M ′′, we can find an
M -augmenting path in G in time O(|V (G)|).

Suppose C is a simple M -blossom. Let G/C denote the graph obtained
from G by contracting all vertices of C to a single vertex c (suppresing the
loops and the parallel edges that might arise), and let M/C denote the
matching M − E(C) in G/C. Note that c is not covered by M/C. This

3

operation again behaves well with respect to the existence of an augmenting
path.

Lemma 3. Let M be a matching in a graph G and let C = v1u1 . . . uk be a
simple M-blossom with stem v1 in G. Then G contains an M-augmenting
path if and only if G/C contains an (M/C)-augmenting path. Moreover, an
(M/C)-augmenting path R in G/C can be turned into an M-augmenting path
in G in time O(|V (G)|).

Proof. Let c be the vertex of G/C obtained by contracting c.
Suppose first that G contains an M -augmenting path P . If P is vertex-

disjoint from C, then P is also an (M/C)-augmenting path in G/C. Other-
wise, note that since v1 is the only vertex of C not covered by M , P has an
end x ̸∈ V (C). Let P ′ be the shortest subpath of P from x to a vertex of C.
Note that the last edge of P ′ is not contained in M , since v1 is not covered
by M and every other vertex of C is incident with an edge of M contained
in C. Therefore, the path in G/C obtained from P ′ by replacing y by c is
(M/C)-augmenting.

Conversely, suppose that R is an (M/C)-augmenting path in G/C. If
c ̸∈ V (R), then R is also an M -augmenting path of G. Otherwise, since c
is not covered by M/C, the path R starts in c. Let u be the second vertex
of R and let v be a vertex of C adjacent to u. Since the cycle C has odd
length, one of the M -alternating paths from c to v in C has even length; let
R′ be this path, and note that either R′ = v1 or R′ ends with an edge of M .
Therefore, R′ + vu + (R − c) is an M -augmenting path in G. Clearly, the
construction of this path from R can be performed in time O(|V (G)|).

Suppose we have an algorithm B that given a graph G and a matching M
in G decides that G does not contain an M -augmenting path, or returns an
M -augmenting path in G, or returns an M -blossom in G. By Lemmas 2 and
3, we can turn this algorithm to an algorithm A to return an M -augmenting
path (or decide that no such M -augmenting path exists) as follows:

• Run the algorithm B for G and M .

– If the outcome is an M -augmenting path or the conclusion that
no M -augmenting path in G exists, return the same.

– Otherwise, B returns an M -blossom with stem Q and head C.

∗ Let M ′ be obtained from M by switching on Q, so that C is
a simple M ′-blossom.

∗ Run the algorithm A recursively for G/C and M ′/C.

4

· If the outcome is that G/C does not contain an (M ′/C)-
augmenting path, then return that G does not contain an
M -augmenting path (this is correct by Lemmas 2 and 3).

· Otherwise, letR be the returned (M ′/C)-augmenting path
in G/C. Turn R into an M ′-augmenting path in G using
the algorithm from Lemma 3, then to an M -augmenting
path in G using the algorithm from Lemma 2, and return
it.

For the time complexity, note that |V (G/C)| ≤ |V (G)| − 2, and thus
the depth of the recursion is at most |V (G)|/2. At each level of the recur-
sion, we perform one call of B, then contract C, then recurse, then perform
postprocessing in time O(|V (G)|). A straightforward way of performing the
contraction of C takes time O(|E(G)|), though this can be improved with a
more clever implementation. Overall, the time complexity of this algorithm
is O(|V (G)||E(G)|) plus O(|V (G)|) times the complexity of the algorithm B.

3 Finding an augmenting path or a blossom

We can now use a simple variation of BFS to obtain the algorithm B. Let
L0 be the set of vertices of G that are not covered by M ; we can assume
that L0 ̸= ∅, as otherwise M is a perfect matching and there obviously
does not exist an M -augmenting path. Let us now proceed as follows for
i = 0, 1, . . ., defining layers Li so that for i > 0, each vertex u ∈ Li has a
neighbor p(u) ∈ Li−1. Moreover, the edge up(u) will belong to M if and only
if i is even. Thus, there exists an alternating path Pu = up(u)p2(u) . . . pi(u)
ending in a vertex pi(u) ∈ L0 not covered by M . Finally, we are going to
have |Li| = |Li+1| for every odd i, implying that M forms a perfect matching
between Li and Li+1:

• Let us first consider the case that i is even.

– Suppose that there is an edge uv ∈ E(G[Li]). Recall that if i > 0,
the edge up(u) belongs toM , and thus uv ̸∈ E(M). If the paths Pu

and Pv are disjoint, then their union with uv is an M -augmenting
path, which we return. Otherwise, (Pu ∪ Pv) + uv is a blossom,
which we again return.

– Otherwise, let Li+1 consist of the vertices z ∈ V (G)\(L1∪ . . .∪Li)
which have a neighbor z′ in Li (over an edge not belonging to M ,
since either z′ is not covered by M , or z′p(z′) ∈ E(M)). For

5

each such vertex z, choose a neighbor z′ ∈ Li arbitrarily and let
p(z) = z′.

• Next, consider the case that i is odd.

– If Li is empty, then the algorithm stops and returns that G does
not contain any M -augmenting path.

– Otherwise, suppose that there is an edge uv ∈ E(G[Li] ∩M). If
the paths Pu and Pv are disjoint, then their union with uv is an
M -augmenting path, which we return. Otherwise, (Pu ∪ Pv) + uv
is a blossom, which we again return.

– Otherwise, consider a vertex v ∈ Li and let uv be the incident
edge of M . Note that u ̸∈ Lj for any j < i, since M forms a
perfect matching on L1∪L2∪ . . .∪Li−1 and L0 consists of vertices
not covered by M . Let Li+1 = {u : v ∈ Li, uv ∈ E(M)}, and for
each uv ∈ E(M) with v ∈ Li, let p(u) = v. Note that this ensures
that |Li+1| = |Li| and M forms a perfect matching between Li

and Li+1, as required.

Suppose that this algorithm ends without finding an M -augmenting path
or an M -blossom, and let m be maximum such that the layer Lm is non-
empty; clearly m is even, since |Li| = |Li+1| for every odd i. Note that
L0 ∪ L2 ∪ . . . ∪ Lm is an independent set in G: For each even i, the set Li

is independent (as otherwise the algorithm would return an M -augmenting
path or an M -blossom), and all edges from Li to V (G)\(L1∪ . . .∪Li) belong
to Li+1. Let S = L1 ∪L3 ∪ . . .∪Lm−1; since |Li| = |Li+1| for every odd i, we
have |L0 ∪ L2 ∪ . . . ∪ Lm| = |S| + |L0|. Thus, G − S is an independent set
of size |S| + |L0|, and this implies that every matching in G leaves at least
|L0| vertices uncovered. Since M leaves exactly |L0| vertices uncovered, M
is a largest matching in G, and thus there indeed is no M -augmenting path
in G.

4 Putting things together

Note that the algorithm B is a straightforward variation on BFS and can
be implemented in time O(|E(G)|). This results in the algorithm A having
O(|V (G)||E(G)|) time complexity. Finally, the algorithm from the end of
Section 1 runs the algorithm A O(|V (G)|) times (more precisely, β(G) + 1
times). Hence, we obtain an algorithm to find a largest matching in a general
graph in time O(|V (G)||E(G)|β(G)) ≤ O(|V (G)|2|E(G)|). Note that there

6

exist more efficient (but substantially more complicated) algorithms for the
problem.

One might wonder whether we do not overcomplicate things in Section 2
by finding an (M/C)-augmenting path in G/C and turning it to an M -
augmenting path in G. Could we instead find a largest matching in G/C
and turn it into a largest matching in G, instead? This does not work (at
least not easily), as indicated by the following exercise.

Exercise 4. Find a graph G, a matching M in G, and a simple M-blossom
C such that G has a perfect matching, but G/C does not.

7

