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A Hamiltonian cycle in a graph G is a cycle in G containing all vertices
of G. If G has such a cycle, we say G is Hamultonian. In contrast, recall
that FEuler tour in a graph G is a tour passing through each edge exactly
once. An Euler tour in a graph is thus related to a Hamiltonian cycle in the
linegraph of G (they are not the same, though; e.g., K 3 does not have Euler
tour, but L(K3) = K3 has a Hamiltonian cycle). However, while it is easy
to decide whether a graph contains an Euler tour, deciding whether it has a
Hamiltonian cycle is NP-hard. Hence, the best we can do is to obtain some
necessary and/or sufficient conditions for the existence of a Hamiltonian cycle
(or to give algorithms for special graph classes).

Let us start with a useful sufficient condition. Suppose that G has a
Hamiltonian cycle C. Then for any S C V(G), C — S has at most |5]
components, and thus G— S also has at most |S| components. This motivates
the following definition: We say that a graph G is t-tough if for every S C
V(G), G — S has at most max(1, |S|/t) connected components.

Observation 1. Fvery Hamiltonian graph is 1-tough.

For every r < 9/4, there are r-tough graphs that are not Hamiltonian. It
has been conjectured that there exists some constant ¢ such that all c-tough
graphs are Hamiltonian, but this is still an open question. However, it is
known that 10-tough chordal graphs are Hamiltonian.

1 Degrees

What is the minimum degree that ensures that a graph is Hamiltonian? For
an odd integer n, the graph K|, 2| /2] is not Hamiltonian, since deleting
the |n/2] vertices of the smaller part results in [n/2] components.

Theorem 2 (Dirac). If |V(G)| > 3 and 6(G) > |V(G)|/2, then G is Hamil-
tonian.



In fact, the following weaker condition is also sufficient.

Theorem 3 (Ore). If |V (G)| > 3 and every pair x, y of non-adjacent vertices
of G satisfies degx + degy > |V(G)|, then G is Hamiltonian.

Both of these results can be proven using Chuvtal’s closure operation.

Lemma 4. Let x and y be non-adjacent vertices of a graph G. If degx +
degy > |V(G)|, then G is Hamiltonian iff G + xy is Hamiltonian.

Proof. Suppose G + xy contains a Hamiltonian cycle C. If xy ¢ E(C'), then
C is also a Hamiltonian cycle in G. Otherwise, consider the path C' — xy =
V1Vy ... Uy, Where vy = x and v, = y. Let S C {1,...,n — 1} be the set
of indices @ such that vjv;1; € E(G). Note that [{1,...,n — 1} \ S| =
|V(G)|—1—degx < degy, and thus there exists i € S such that v,v,, € E(G).
Then v1vy ... v;V,V,_1 ... V4101 IS a Hamiltonian cycle in G. ]

The graph G’ obtained from G by repeating the operation from the state-
ment of Lemma 4 as long as possible is called the Chutal’s closure of G (it
can be easily seen that G’ is uniquely determined, even though you can add
the edges to G in any order). By Lemma 4, G is Hamiltonian if and only if G’
is Hamiltonian. If G satisfies the assumptions of Theorem 3 (or Theorem 2),
then G’ is the complete graph, which clearly is Hamiltonian, and thus both
theorems follow.

Let us now give “the most general” theorem about degrees and Hamil-
tonicity. Let @ = (ay, as, ..., a,) be a sequence of integers such that 0 < a; <
. < a, <n-—1. We say that a graph G with n vertices dominates a if
there exists an ordering vy, ..., v, of vertices of G such that degwv; > a; for
1=1,...,n. We say that a is Hamiltonian if every graph that dominates @
is Hamiltonian.

Theorem 5. For n > 3, a sequence d = (ay,as,...,a,) is Hamiltonian if
and only if every i such that a; <i < n/2 satisfies an_; > n —i.

Proof. Suppose for a contradiction a satisfies the assumptions and G is a
non-Hamiltonian graph dominating @ with the largest number of edges. Let
x1 and z,, be non-adjacent vertices of GG such that deg x1+deg x,, is maximum
and deg 1 < degz,,. Note that G+x,x,, dominates @, and by the maximality
of G, the graph G + xyx, is Hamiltonian. Since G is not Hamiltonian, the
Hamiltonian cycle in G + x;z,, necessarily contains the edge z1x,, and thus
G contains a path P = z125...2,. Let A ={z; : zy2;41 € E(G)}. If z,, had
a neighbor z; in A, then P — x;x;11 + {z12;41, xn2;} would be a Hamiltonian
cycle in G.



Hence, this is not the case, and thus x, is non-adjacent to all vertices
in A. In particular, degzy + degz,, < degzy + (n—1—|A]) =n —1, and
h = degx; < n/2. By the maximality of degx; + degx,,, we have degv < h
for all v € A, and thus GG contains at least h vertices of degree at most
h. Consequently, aq,...,a, < h, and by the assumptions, a,_, > n — h.
Hence, GG contains at least h+ 1 vertices of degree at least n — h, and at least
one of them, say y, is non-adjacent to the vertex z; of degree h. But then
degzy + degy > n > degxy + deg z,,, contradicting the choice of z; and x,.

Conversely, suppose that @ does not satisfy the assumptions, and thus
there exists ¢ < n/2 such that a; < i and a,_; < n —1i— 1. Then consider

the graph G consisting of a clique on vertices v;y1,...,v, and a complete
bipartite graph with parts {vy,...,v;} and {v,_i11,...,v,}. The vertices
v1,...,v; have degree v > a; > ... > a1, the vertices v;y1,...,v,_; have
degree n — i —1 > a,_; > ... > a;11, and the vertices v,_;11,...,v, have
degree n — 1 > a, > ... > a,_;+1, and thus G dominates a@. Moreover, G is
not Hamiltonian, as deleting ¢ vertices v, _;11, ..., v, results in a graph with
1 4+ 1 components. ]

2 Planar graphs

One might hope that all plane triangulations are Hamiltonian. However,
this is not the case: Consider any plane triangulation H with n > 4 vertices,
and let G be the plane triangulation obtained from H by adding a vertex of
degree three into each face of H. Then G — V(H) has |[F(H)|=2n—4>n
components, and thus G is not 1-tough. Observation 1 implies G is not
Hamiltonian. On the other hand, the fact that this graph G contains a lot
of separating triangles (giving cuts of size three) turns out to be the only
problem.

Theorem 6 (Tutte). Every 4-connected planar graph is Hamiltonian.

The proof is somewhat involved and we will not give it here. It is based
on the following lemma for 2-connected planar graphs. Given a set S C V(G)
and a component C' of G — S, the attachments of C' are the vertices of S that
have a neighbor in C'.

Lemma 7. Let G be a 2-connected plane graph, let u and v be distinct vertices
incident with the outer face of G, and let e be an edge incident with the outer
face of G. Then there exists a path P in G from u to v such that e € E(P)
and every component of G — V(P) has at most three attachments.



To prove Theorem 6, suppose G is a 4-connected plane graph and let
¢/ = vw be an edge incident with the outer face of G. Then G — ¢’ is 3-
connected and the outer face of G — €’ has length at least four. Let uv and
e = wz be edges incident with the outer face of G — ¢’ such that u # z.
By Lemma 7 applied in G — €/, there exists a path P in G from u to v
containing the edge wz such that each component of G — V(P) has at most
three attachments. However, since G is 4-connected and |V (P)| > 4, no such
component can exist, and thus V(P) = V(G). Consequently, P + uv is a
Hamiltonian cycle in G.

Let us also note the following relationship between Hamiltonicity and
edge colorings.

Observation 8. If G is 3-reqular and Hamiltonian, then x'(G) = 3.

Proof. Since G is 3-regular, |V (G)] is even. Color the edges of a Hamiltonian
cycle of G alternatingly by two colors, then use the third color on the perfect
matching formed by the edges not belonging to the Hamiltonian cycle. [

The Four Color Theorem is known to be equivalent to the fact that every
planar 3-regular 3-connected graph is 3-edge-colorable. Motivated by this, it
was conjectured that planar 3-regular 3-connected graphs are Hamiltonian;
however, this is false (Tutte found a counterexample with 46 vertices).

3 Number of Hamiltonian cycles

In general, we cannot say much about the number of Hamiltoninan cycles in
a graph. However, there is a nice argument that shows that certain graphs
cannot have one or two Hamiltoninan cycles (i.e., either they have none or
at least three).

Lemma 9. Suppose every vertex of a graph G has odd degree. Then for
every edge e € E(G), the number of Hamiltonian cycles of G containing the
edge e is even.

Proof. Let e = xy. A connected subgraph H of G with V(H) = V(G) is a
lollipop if e € E(H) and either

e [ is a cycle, or

e degy x = 1, some vertex v € V(H) satisfies degy v = 3, and all other
vertices have degree two in H.



In the latter case, H consists of a path starting with the edge xy and ending
in a cycle. If H is a cycle, the tail of H is the edge of H incident with x and
different from e. Otherwise, the tails of H are the edges of the cycle of H
incident with the vertex of degree three.

Let L be the graph whose vertices are the lollipops of G, with distinct
lollipops H; and H, adjacent iff there exists a tail e; of H; and a tail ey of
Hs such that H; —e; = Hy —e5. Note that if H; = wzzxy . .. is a Hamiltonian
cycle, then necessarily e; = zx, and each neighbor of H; are obtained by
adding to H; — e; an edge incident with z and different from zx and zw;
hence, deg; H; = deg, z — 2 is odd.

Suppose now that H; is not a cycle, let z be the vertex of H; of degree
three, and let wyz and wyz be the tails of H;. Each neighbor of Hy in L is
obtained by, for some i € {1,2}, deleting the edge w;z and adding an edge
incident with w; and not belonging to H;. Hence, deg; H; = (deg, w; —2)+
(degg wy — 2) is even.

The graph L contains an even number of vertices of odd degree, and these
vertices are exactly the Hamiltonian cycles of G containing the edge e. [

Corollary 10. Suppose every vertex of a graph G has odd degree. If G is
Hamiltonian, then G has at least three distinct Hamiltonian cycles.

Proof. Let C} be a Hamiltonian cycle of G. By Lemma 9 applied to any
edge of (', there exist a Hamiltonian cycle C5 of G distinct from C}. Since
C) # Oy, there exists an edge e € E(Cy) \ E(Cy). By Lemma 9 applied to
e1, there exists a Hamiltonian cycle C3 # C containing e. Since e ¢ E(C%),
we also have C3 # Cs. O

This Corollary is the best possible; for example, K, has exactly three
Hamiltonian cycles.



