Hamiltonicity

Zdeněk Dvořák

November 30, 2020

A Hamiltonian cycle in a graph G is a cycle in G containing all vertices of G. If G has such a cycle, we say G is Hamiltonian. In contrast, recall that Euler tour in a graph G is a tour passing through each edge exactly once. An Euler tour in a graph is thus related to a Hamiltonian cycle in the linegraph of G (they are not the same, though; e.g., $K_{1,3}$ does not have Euler tour, but $L(K_{1,3}) = K_3$ has a Hamiltonian cycle). However, while it is easy to decide whether a graph contains an Euler tour, deciding whether it has a Hamiltonian cycle is NP-hard. Hence, the best we can do is to obtain some necessary and/or sufficient conditions for the existence of a Hamiltonian cycle (or to give algorithms for special graph classes).

Let us start with a useful sufficient condition. Suppose that G has a Hamiltonian cycle C. Then for any $S \subseteq V(G)$, C - S has at most |S| components, and thus G-S also has at most |S| components. This motivates the following definition: We say that a graph G is *t*-tough if for every $S \subseteq V(G)$, G - S has at most $\max(1, |S|/t)$ connected components.

Observation 1. Every Hamiltonian graph is 1-tough.

For every r < 9/4, there are r-tough graphs that are not Hamiltonian. It has been conjectured that there exists some constant c such that all c-tough graphs are Hamiltonian, but this is still an open question. However, it is known that 10-tough chordal graphs are Hamiltonian.

1 Degrees

What is the minimum degree that ensures that a graph is Hamiltonian? For an odd integer n, the graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is not Hamiltonian, since deleting the $\lfloor n/2 \rfloor$ vertices of the smaller part results in $\lceil n/2 \rceil$ components.

Theorem 2 (Dirac). If $|V(G)| \ge 3$ and $\delta(G) \ge |V(G)|/2$, then G is Hamiltonian.

In fact, the following weaker condition is also sufficient.

Theorem 3 (Ore). If $|V(G)| \ge 3$ and every pair x, y of non-adjacent vertices of G satisfies deg $x + \text{deg } y \ge |V(G)|$, then G is Hamiltonian.

Both of these results can be proven using *Chvtal's closure operation*.

Lemma 4. Let x and y be non-adjacent vertices of a graph G. If $\deg x + \deg y \ge |V(G)|$, then G is Hamiltonian iff G + xy is Hamiltonian.

Proof. Suppose G + xy contains a Hamiltonian cycle C. If $xy \notin E(C)$, then C is also a Hamiltonian cycle in G. Otherwise, consider the path $C - xy = v_1v_2...v_n$, where $v_1 = x$ and $v_n = y$. Let $S \subseteq \{1, ..., n-1\}$ be the set of indices i such that $v_1v_{i+1} \in E(G)$. Note that $|\{1, ..., n-1\} \setminus S| = |V(G)| - 1 - \deg x < \deg y$, and thus there exists $i \in S$ such that $v_iv_n \in E(G)$. Then $v_1v_2...v_iv_nv_{n-1}...v_{i+1}v_1$ is a Hamiltonian cycle in G.

The graph G' obtained from G by repeating the operation from the statement of Lemma 4 as long as possible is called the *Chvtal's closure* of G (it can be easily seen that G' is uniquely determined, even though you can add the edges to G in any order). By Lemma 4, G is Hamiltonian if and only if G'is Hamiltonian. If G satisfies the assumptions of Theorem 3 (or Theorem 2), then G' is the complete graph, which clearly is Hamiltonian, and thus both theorems follow.

Let us now give "the most general" theorem about degrees and Hamiltonicity. Let $\vec{a} = (a_1, a_2, \ldots, a_n)$ be a sequence of integers such that $0 \le a_1 \le \ldots \le a_n \le n-1$. We say that a graph G with n vertices dominates \vec{a} if there exists an ordering v_1, \ldots, v_n of vertices of G such that deg $v_i \ge a_i$ for $i = 1, \ldots, n$. We say that \vec{a} is Hamiltonian if every graph that dominates \vec{a} is Hamiltonian.

Theorem 5. For $n \ge 3$, a sequence $\vec{a} = (a_1, a_2, \ldots, a_n)$ is Hamiltonian if and only if every *i* such that $a_i \le i < n/2$ satisfies $a_{n-i} \ge n-i$.

Proof. Suppose for a contradiction \vec{a} satisfies the assumptions and G is a non-Hamiltonian graph dominating \vec{a} with the largest number of edges. Let x_1 and x_n be non-adjacent vertices of G such that deg x_1 +deg x_n is maximum and deg $x_1 \leq \text{deg } x_n$. Note that $G+x_1x_n$ dominates \vec{a} , and by the maximality of G, the graph $G + x_1x_n$ is Hamiltonian. Since G is not Hamiltonian, the Hamiltonian cycle in $G + x_1x_n$ necessarily contains the edge x_1x_n , and thus G contains a path $P = x_1x_2...x_n$. Let $A = \{x_i : x_1x_{i+1} \in E(G)\}$. If x_n had a neighbor x_i in A, then $P - x_ix_{i+1} + \{x_1x_{i+1}, x_nx_i\}$ would be a Hamiltonian cycle in G. Hence, this is not the case, and thus x_n is non-adjacent to all vertices in A. In particular, deg $x_1 + \deg x_n \leq \deg x_1 + (n - 1 - |A|) = n - 1$, and $h = \deg x_1 < n/2$. By the maximality of deg $x_1 + \deg x_n$, we have deg $v \leq h$ for all $v \in A$, and thus G contains at least h vertices of degree at most h. Consequently, $a_1, \ldots, a_h \leq h$, and by the assumptions, $a_{n-h} \geq n - h$. Hence, G contains at least h + 1 vertices of degree at least n - h, and at least one of them, say y, is non-adjacent to the vertex x_1 of degree h. But then deg $x_1 + \deg y \geq n > \deg x_1 + \deg x_n$, contradicting the choice of x_1 and x_n .

Conversely, suppose that \vec{a} does not satisfy the assumptions, and thus there exists i < n/2 such that $a_i \leq i$ and $a_{n-i} \leq n-i-1$. Then consider the graph G consisting of a clique on vertices v_{i+1}, \ldots, v_n and a complete bipartite graph with parts $\{v_1, \ldots, v_i\}$ and $\{v_{n-i+1}, \ldots, v_n\}$. The vertices v_1, \ldots, v_i have degree $i \geq a_i \geq \ldots \geq a_1$, the vertices v_{i+1}, \ldots, v_{n-i} have degree $n-i-1 \geq a_{n-i} \geq \ldots \geq a_{i+1}$, and the vertices v_{n-i+1}, \ldots, v_n have degree $n-1 \geq a_n \geq \ldots \geq a_{n-i+1}$, and thus G dominates \vec{a} . Moreover, G is not Hamiltonian, as deleting i vertices v_{n-i+1}, \ldots, v_n results in a graph with i+1 components.

2 Planar graphs

One might hope that all plane triangulations are Hamiltonian. However, this is not the case: Consider any plane triangulation H with n > 4 vertices, and let G be the plane triangulation obtained from H by adding a vertex of degree three into each face of H. Then G - V(H) has |F(H)| = 2n - 4 > n components, and thus G is not 1-tough. Observation 1 implies G is not Hamiltonian. On the other hand, the fact that this graph G contains a lot of separating triangles (giving cuts of size three) turns out to be the only problem.

Theorem 6 (Tutte). Every 4-connected planar graph is Hamiltonian.

The proof is somewhat involved and we will not give it here. It is based on the following lemma for 2-connected planar graphs. Given a set $S \subseteq V(G)$ and a component C of G - S, the *attachments* of C are the vertices of S that have a neighbor in C.

Lemma 7. Let G be a 2-connected plane graph, let u and v be distinct vertices incident with the outer face of G, and let e be an edge incident with the outer face of G. Then there exists a path P in G from u to v such that $e \in E(P)$ and every component of G - V(P) has at most three attachments. To prove Theorem 6, suppose G is a 4-connected plane graph and let e' = vw be an edge incident with the outer face of G. Then G - e' is 3-connected and the outer face of G - e' has length at least four. Let uv and e = wz be edges incident with the outer face of G - e' such that $u \neq z$. By Lemma 7 applied in G - e', there exists a path P in G from u to v containing the edge wz such that each component of G - V(P) has at most three attachments. However, since G is 4-connected and $|V(P)| \geq 4$, no such component can exist, and thus V(P) = V(G). Consequently, P + uv is a Hamiltonian cycle in G.

Let us also note the following relationship between Hamiltonicity and edge colorings.

Observation 8. If G is 3-regular and Hamiltonian, then $\chi'(G) = 3$.

Proof. Since G is 3-regular, |V(G)| is even. Color the edges of a Hamiltonian cycle of G alternatingly by two colors, then use the third color on the perfect matching formed by the edges not belonging to the Hamiltonian cycle. \Box

The Four Color Theorem is known to be equivalent to the fact that every planar 3-regular 3-connected graph is 3-edge-colorable. Motivated by this, it was conjectured that planar 3-regular 3-connected graphs are Hamiltonian; however, this is false (Tutte found a counterexample with 46 vertices).

3 Number of Hamiltonian cycles

In general, we cannot say much about the number of Hamiltoninan cycles in a graph. However, there is a nice argument that shows that certain graphs cannot have one or two Hamiltoninan cycles (i.e., either they have none or at least three).

Lemma 9. Suppose every vertex of a graph G has odd degree. Then for every edge $e \in E(G)$, the number of Hamiltonian cycles of G containing the edge e is even.

Proof. Let e = xy. A connected subgraph H of G with V(H) = V(G) is a *lollipop* if $e \in E(H)$ and either

- H is a cycle, or
- $\deg_H x = 1$, some vertex $v \in V(H)$ satisfies $\deg_H v = 3$, and all other vertices have degree two in H.

In the latter case, H consists of a path starting with the edge xy and ending in a cycle. If H is a cycle, the *tail* of H is the edge of H incident with x and different from e. Otherwise, the *tails* of H are the edges of the cycle of Hincident with the vertex of degree three.

Let L be the graph whose vertices are the lollipops of G, with distinct lollipops H_1 and H_2 adjacent iff there exists a tail e_1 of H_1 and a tail e_2 of H_2 such that $H_1 - e_1 = H_2 - e_2$. Note that if $H_1 = wzxy...$ is a Hamiltonian cycle, then necessarily $e_1 = zx$, and each neighbor of H_1 are obtained by adding to $H_1 - e_1$ an edge incident with z and different from zx and zw; hence, $\deg_L H_1 = \deg_G z - 2$ is odd.

Suppose now that H_1 is not a cycle, let z be the vertex of H_1 of degree three, and let $w_1 z$ and $w_2 z$ be the tails of H_1 . Each neighbor of H_1 in L is obtained by, for some $i \in \{1, 2\}$, deleting the edge $w_i z$ and adding an edge incident with w_i and not belonging to H_1 . Hence, $\deg_L H_1 = (\deg_G w_1 - 2) + (\deg_G w_2 - 2)$ is even.

The graph L contains an even number of vertices of odd degree, and these vertices are exactly the Hamiltonian cycles of G containing the edge e.

Corollary 10. Suppose every vertex of a graph G has odd degree. If G is Hamiltonian, then G has at least three distinct Hamiltonian cycles.

Proof. Let C_1 be a Hamiltonian cycle of G. By Lemma 9 applied to any edge of C_1 , there exist a Hamiltonian cycle C_2 of G distinct from C_1 . Since $C_1 \neq C_2$, there exists an edge $e \in E(C_1) \setminus E(C_2)$. By Lemma 9 applied to e_1 , there exists a Hamiltonian cycle $C_3 \neq C_1$ containing e. Since $e \notin E(C_2)$, we also have $C_3 \neq C_2$.

This Corollary is the best possible; for example, K_4 has exactly three Hamiltonian cycles.