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A Hamiltonian cycle in a graph G is a cycle in G containing all vertices
of G. If G has such a cycle, we say G is Hamiltonian. In contrast, recall
that Euler tour in a graph G is a tour passing through each edge exactly
once. An Euler tour in a graph is thus related to a Hamiltonian cycle in the
linegraph of G (they are not the same, though; e.g., K1,3 does not have Euler
tour, but L(K1,3) = K3 has a Hamiltonian cycle). However, while it is easy
to decide whether a graph contains an Euler tour, deciding whether it has a
Hamiltonian cycle is NP-hard. Hence, the best we can do is to obtain some
necessary and/or sufficient conditions for the existence of a Hamiltonian cycle
(or to give algorithms for special graph classes).

Let us start with a useful sufficient condition. Suppose that G has a
Hamiltonian cycle C. Then for any S ⊆ V (G), C − S has at most |S|
components, and thus G−S also has at most |S| components. This motivates
the following definition: We say that a graph G is t-tough if for every S ⊆
V (G), G− S has at most max(1, |S|/t) connected components.

Observation 1. Every Hamiltonian graph is 1-tough.

For every r < 9/4, there are r-tough graphs that are not Hamiltonian. It
has been conjectured that there exists some constant c such that all c-tough
graphs are Hamiltonian, but this is still an open question. However, it is
known that 10-tough chordal graphs are Hamiltonian.

1 Degrees

What is the minimum degree that ensures that a graph is Hamiltonian? For
an odd integer n, the graph Kbn/2c,dn/2e is not Hamiltonian, since deleting
the bn/2c vertices of the smaller part results in dn/2e components.

Theorem 2 (Dirac). If |V (G)| ≥ 3 and δ(G) ≥ |V (G)|/2, then G is Hamil-
tonian.
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In fact, the following weaker condition is also sufficient.

Theorem 3 (Ore). If |V (G)| ≥ 3 and every pair x, y of non-adjacent vertices
of G satisfies deg x+ deg y ≥ |V (G)|, then G is Hamiltonian.

Both of these results can be proven using Chvtal’s closure operation.

Lemma 4. Let x and y be non-adjacent vertices of a graph G. If deg x +
deg y ≥ |V (G)|, then G is Hamiltonian iff G+ xy is Hamiltonian.

Proof. Suppose G+ xy contains a Hamiltonian cycle C. If xy 6∈ E(C), then
C is also a Hamiltonian cycle in G. Otherwise, consider the path C − xy =
v1v2 . . . vn, where v1 = x and vn = y. Let S ⊆ {1, . . . , n − 1} be the set
of indices i such that v1vi+1 ∈ E(G). Note that |{1, . . . , n − 1} \ S| =
|V (G)|−1−deg x < deg y, and thus there exists i ∈ S such that vivn ∈ E(G).
Then v1v2 . . . vivnvn−1 . . . vi+1v1 is a Hamiltonian cycle in G.

The graph G′ obtained from G by repeating the operation from the state-
ment of Lemma 4 as long as possible is called the Chvtal’s closure of G (it
can be easily seen that G′ is uniquely determined, even though you can add
the edges to G in any order). By Lemma 4, G is Hamiltonian if and only if G′

is Hamiltonian. If G satisfies the assumptions of Theorem 3 (or Theorem 2),
then G′ is the complete graph, which clearly is Hamiltonian, and thus both
theorems follow.

Let us now give “the most general” theorem about degrees and Hamil-
tonicity. Let ~a = (a1, a2, . . . , an) be a sequence of integers such that 0 ≤ a1 ≤
. . . ≤ an ≤ n − 1. We say that a graph G with n vertices dominates ~a if
there exists an ordering v1, . . . , vn of vertices of G such that deg vi ≥ ai for
i = 1, . . . , n. We say that ~a is Hamiltonian if every graph that dominates ~a
is Hamiltonian.

Theorem 5. For n ≥ 3, a sequence ~a = (a1, a2, . . . , an) is Hamiltonian if
and only if every i such that ai ≤ i < n/2 satisfies an−i ≥ n− i.

Proof. Suppose for a contradiction ~a satisfies the assumptions and G is a
non-Hamiltonian graph dominating ~a with the largest number of edges. Let
x1 and xn be non-adjacent vertices of G such that deg x1+deg xn is maximum
and deg x1 ≤ deg xn. Note that G+x1xn dominates ~a, and by the maximality
of G, the graph G + x1xn is Hamiltonian. Since G is not Hamiltonian, the
Hamiltonian cycle in G+ x1xn necessarily contains the edge x1xn, and thus
G contains a path P = x1x2 . . . xn. Let A = {xi : x1xi+1 ∈ E(G)}. If xn had
a neighbor xi in A, then P −xixi+1 + {x1xi+1, xnxi} would be a Hamiltonian
cycle in G.
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Hence, this is not the case, and thus xn is non-adjacent to all vertices
in A. In particular, deg x1 + deg xn ≤ deg x1 + (n − 1 − |A|) = n − 1, and
h = deg x1 < n/2. By the maximality of deg x1 + deg xn, we have deg v ≤ h
for all v ∈ A, and thus G contains at least h vertices of degree at most
h. Consequently, a1, . . . , ah ≤ h, and by the assumptions, an−h ≥ n − h.
Hence, G contains at least h+1 vertices of degree at least n−h, and at least
one of them, say y, is non-adjacent to the vertex x1 of degree h. But then
deg x1 + deg y ≥ n > deg x1 + deg xn, contradicting the choice of x1 and xn.

Conversely, suppose that ~a does not satisfy the assumptions, and thus
there exists i < n/2 such that ai ≤ i and an−i ≤ n − i − 1. Then consider
the graph G consisting of a clique on vertices vi+1, . . . , vn and a complete
bipartite graph with parts {v1, . . . , vi} and {vn−i+1, . . . , vn}. The vertices
v1, . . . , vi have degree i ≥ ai ≥ . . . ≥ a1, the vertices vi+1, . . . , vn−i have
degree n − i − 1 ≥ an−i ≥ . . . ≥ ai+1, and the vertices vn−i+1, . . . , vn have
degree n− 1 ≥ an ≥ . . . ≥ an−i+1, and thus G dominates ~a. Moreover, G is
not Hamiltonian, as deleting i vertices vn−i+1, . . . , vn results in a graph with
i+ 1 components.

2 Planar graphs

One might hope that all plane triangulations are Hamiltonian. However,
this is not the case: Consider any plane triangulation H with n > 4 vertices,
and let G be the plane triangulation obtained from H by adding a vertex of
degree three into each face of H. Then G− V (H) has |F (H)| = 2n− 4 > n
components, and thus G is not 1-tough. Observation 1 implies G is not
Hamiltonian. On the other hand, the fact that this graph G contains a lot
of separating triangles (giving cuts of size three) turns out to be the only
problem.

Theorem 6 (Tutte). Every 4-connected planar graph is Hamiltonian.

The proof is somewhat involved and we will not give it here. It is based
on the following lemma for 2-connected planar graphs. Given a set S ⊆ V (G)
and a component C of G−S, the attachments of C are the vertices of S that
have a neighbor in C.

Lemma 7. Let G be a 2-connected plane graph, let u and v be distinct vertices
incident with the outer face of G, and let e be an edge incident with the outer
face of G. Then there exists a path P in G from u to v such that e ∈ E(P )
and every component of G− V (P ) has at most three attachments.
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To prove Theorem 6, suppose G is a 4-connected plane graph and let
e′ = vw be an edge incident with the outer face of G. Then G − e′ is 3-
connected and the outer face of G − e′ has length at least four. Let uv and
e = wz be edges incident with the outer face of G − e′ such that u 6= z.
By Lemma 7 applied in G − e′, there exists a path P in G from u to v
containing the edge wz such that each component of G− V (P ) has at most
three attachments. However, since G is 4-connected and |V (P )| ≥ 4, no such
component can exist, and thus V (P ) = V (G). Consequently, P + uv is a
Hamiltonian cycle in G.

Let us also note the following relationship between Hamiltonicity and
edge colorings.

Observation 8. If G is 3-regular and Hamiltonian, then χ′(G) = 3.

Proof. Since G is 3-regular, |V (G)| is even. Color the edges of a Hamiltonian
cycle of G alternatingly by two colors, then use the third color on the perfect
matching formed by the edges not belonging to the Hamiltonian cycle.

The Four Color Theorem is known to be equivalent to the fact that every
planar 3-regular 3-connected graph is 3-edge-colorable. Motivated by this, it
was conjectured that planar 3-regular 3-connected graphs are Hamiltonian;
however, this is false (Tutte found a counterexample with 46 vertices).

3 Number of Hamiltonian cycles

In general, we cannot say much about the number of Hamiltoninan cycles in
a graph. However, there is a nice argument that shows that certain graphs
cannot have one or two Hamiltoninan cycles (i.e., either they have none or
at least three).

Lemma 9. Suppose every vertex of a graph G has odd degree. Then for
every edge e ∈ E(G), the number of Hamiltonian cycles of G containing the
edge e is even.

Proof. Let e = xy. A connected subgraph H of G with V (H) = V (G) is a
lollipop if e ∈ E(H) and either

• H is a cycle, or

• degH x = 1, some vertex v ∈ V (H) satisfies degH v = 3, and all other
vertices have degree two in H.
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In the latter case, H consists of a path starting with the edge xy and ending
in a cycle. If H is a cycle, the tail of H is the edge of H incident with x and
different from e. Otherwise, the tails of H are the edges of the cycle of H
incident with the vertex of degree three.

Let L be the graph whose vertices are the lollipops of G, with distinct
lollipops H1 and H2 adjacent iff there exists a tail e1 of H1 and a tail e2 of
H2 such that H1−e1 = H2−e2. Note that if H1 = wzxy . . . is a Hamiltonian
cycle, then necessarily e1 = zx, and each neighbor of H1 are obtained by
adding to H1 − e1 an edge incident with z and different from zx and zw;
hence, degLH1 = degG z − 2 is odd.

Suppose now that H1 is not a cycle, let z be the vertex of H1 of degree
three, and let w1z and w2z be the tails of H1. Each neighbor of H1 in L is
obtained by, for some i ∈ {1, 2}, deleting the edge wiz and adding an edge
incident with wi and not belonging to H1. Hence, degLH1 = (degGw1−2)+
(degGw2 − 2) is even.

The graph L contains an even number of vertices of odd degree, and these
vertices are exactly the Hamiltonian cycles of G containing the edge e.

Corollary 10. Suppose every vertex of a graph G has odd degree. If G is
Hamiltonian, then G has at least three distinct Hamiltonian cycles.

Proof. Let C1 be a Hamiltonian cycle of G. By Lemma 9 applied to any
edge of C1, there exist a Hamiltonian cycle C2 of G distinct from C1. Since
C1 6= C2, there exists an edge e ∈ E(C1) \ E(C2). By Lemma 9 applied to
e1, there exists a Hamiltonian cycle C3 6= C1 containing e. Since e 6∈ E(C2),
we also have C3 6= C2.

This Corollary is the best possible; for example, K4 has exactly three
Hamiltonian cycles.
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