
Graph coloring: Heawood and Brooks
theorems, edge coloring
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1 Heawood’s formula

What can we say about the chromatic number of graphs drawn in a given
surface? For a surface Σ, let χ(Σ) denote the maximum chromatic number
of a graph drawn in Σ. So, for example, the Four Color Theorem shows that
χ(sphere) = 4. Let us also define ω(Σ) as the order of the largest clique that
can be drawn in Σ. Clearly, χ(Σ) ≥ ω(Σ).

Observe that Hadwiger’s conjecture implies that actually χ(Σ) = ω(Σ).
Indeed, consider any graph G drawn in Σ. If Hadwiger’s conjecture is true,
then G contains Kχ(G) as a minor. However, any minor of G is also drawn
in Σ, and thus the order χ(G) of this clique must be at most ω(Σ).

In fact, this result has been proven unconditionally, without needing to
assume the validity of Hadwiger’s conjecture. Let us define

H(g) =
⌈7 +

√
24g + 1

2

⌉
.

Theorem 1 (Heawood’s formula). Every graph drawn in a surface of Euler
genus g has chromatic number at most H(g).

Proof. Note thatH(0) = 4 and the graphs drawn in the sphere are 4-colorable
by the Four Color Theorem. Hence, we can assume g > 0.

Suppose for a contradiction that there exists a graph drawn in a surface
of Euler genus g with chromatic number is greater than H(g), and let G be
such a graph with the smallest number n of vertices. Clearly n ≥ H(g) + 1.
Moreover, G has minimum degree at least H(g): If G contained a vertex v
of smaller degree, we could H(g)-color G − v by the minimality of G, then
extend the coloring to G by giving v a color different from the colors of its
neighbors.

1



On the other hand, as we learned the last time, G has at most 3n+3g−6
edges, and thus its average degree is at most 6 + 6(g−2)

n
. For g = 1, this is a

contradiction, as this shows that the average degree is less than 6, while in
the previous paragraph, we argued the minimum degree is at least H(1) = 6.
Hence, assume g ≥ 2.

Then, since n ≥ H(g) + 1, we conclude that the average degree of G is

at most 6 + 6(g−2)
n
≤ 6 + 6(g−2)

H(g)+1
, and comparing the average degree with the

minimum degree, we conclude

H(g) ≤ 6 + 6(g−2)
H(g)+1

H2(g)− 5H(g)− 6(g − 1) ≤ 0

H(g) ≤ 5 +
√

24g + 1

2
,

contradicting the definition of H(g).

On the other hand, Ringel and Youngs proved the following (much harder)
result.

Theorem 2. If Σ is a surface of Euler genus g and Σ is not the Klein bottle,
then KH(g) can be drawn in Σ.

We can now combining this theorem with Heawood’s formula.

Corollary 3. For every surface Σ other than the Klein bottle, denoting by g
the Euler genus of Σ, we have χ(Σ) = ω(Σ) = H(g).

What about the Klein bottle?

Exercise 4. Show that it is possible to draw K6 but not K7 in the Klein
bottle, and thus ω(Klein bottle) = 6.

We will prove that also χ(Klein bottle) = 6. First, let us see how the
argument used to prove Heawood’s formula constrains a hypothetical minimal
counterexample.

Lemma 5. If G is a non-6-colorable graph drawn in the Klein bottle with
the smallest number of vertices, then G is 6-regular.

Proof. As in the proof of Heawood’s formula, we argue G has minimum
degree at least 6. Moreover, since the Klein bottle has Euler genus 2, we
have |E(G)| ≤ 3|V (G)| from the generalized Euler formula, and thus G has
average degree at most 6. This is only possible if G is 6-regular.

The main result of the following section will finish the argument.
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2 Brooks theorem

A straightforward greedy coloring argument shows that every graph G can
be colored by ∆(G) + 1 colors. Indeed, if the graph is not regular, we can
save a color.

Lemma 6. Let G be a graph of maximum degree at most ∆. If every com-
ponent of G contains a vertex of degree less than ∆, then χ(G) ≤ ∆.

Proof. We prove the claim by induction on |V (G)|, with the basic case
|V (G)| = 1 being trivial. By the assumptions, G contains a vertex v of
degree less than ∆. Note that for every component C of G − v, either C is
also a component of G, or C contains a neighbor of v, and thus C contans
a vertex of degree less than ∆. By the induction hypothesis, G − v can be
colored by ∆ colors. Since v has degree less than ∆, we can extend this
coloring to a coloring of G by giving v a color different from the colors of all
its neighbors.

Moreover, we can extend this result to graphs that are ∆-regular, but not
3-connected.

Lemma 7. Let ∆ ≥ 3 be an integer and let G be a connected graph of
maximum degree at most ∆. If G is not 3-connected, then χ(G) ≤ ∆.

Proof. Let S be a minimum cut in G and let G = G1∪G2 for proper induced
subgraphs G1 and G2 intersecting only in S. If S = {v}, then note that v
has degree less than ∆ both in G1 and in G2, and thus both of these graphs
can be ∆-colored by Lemma 6. Moreover, without loss of generality, we can
assume v gets color 1 in both colorings. Then the union of the colorings is a
∆-coloring of G.

Hence, suppose S = {u, v}. Without loss of generality, we can assume
that u has at least two neighbors in G1 (as otherwise we could consider the
cut consisting of v and the neighbor of u in G1, instead), and similarly, that
v has at least two neighbors in G2. Then u has degree less than ∆ in G2 +uv
and v has degree less than ∆ in G1 + uv, and thus these graphs have a ∆-
coloring by Lemma 6. In both colorings, we can without loss of generality
assume u has color 1 and v has color 2, and thus they combine to a ∆-coloring
of G.

In fact, much more is true: The only connected graphs for which ∆ colors
do not suffice are cliques and odd cycles!

Lemma 8. Let ∆ ≥ 3 be an integer and let G be a 3-connected graph of
maximum degree at most ∆. If G 6= K∆+1, then χ(G) ≤ ∆.
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Proof. Since G is not a clique, it contains non-adjacent vertices. Choose such
vertices u and v at distance two from one another, and let w be a common
neighbor of u and v. Since G is 3-connected, G−{u, v} is connected. Let v1,
. . . , vn be an ordering of vertices of G such that v1 = u, v2 = v, vn = w, and
v3, . . . , vn−1 are sorted in a non-increasing order according to their distance
from w in G− {u, v}. Let us give u and v the color 1.

Next, we color v3, . . . , vn−1 in order. For i = 3, . . . , n−1, note that vi has
a neighbor vj on a shortest path from vi to w in G−{u, v}, and by the choice
of the ordering, we have j > i. Hence, when we are coloring vi, the vertex
vj is still uncolored, and thus vi has at most ∆ − 1 neighbors to which we
already assigned a color. Hence, we can color vi by a color from {1, . . . ,∆}
different from the colors of these neighbors.

Finally, we color w; since both u and v are neighbors of w and they
received the same color, there are again at most ∆−1 distinct colors appear-
ing on the neighborhood of w, and thus we can give w a different color from
{1, . . . ,∆}.

Let us now put all of these partial results together.

Theorem 9 (Brooks). Let G be a connected graph of maximum degree ∆. If
G is neither a clique nor an odd cycle, then χ(G) ≤ ∆.

Proof. We cannot have ∆ = 1, since G is not the clique K2. For ∆ = 2, G is
a path or an even cycle, and thus G is 2-colorable. Hence, suppose ∆ ≥ 3.
Then G is ∆-colorable by Lemma 7 or Lemma 8, depending on whether G
is 3-connected.

Corollary 10. Every graph G drawn in the Klein bottle is 6-colorable.

Proof. By Lemma 5, we can assume G is 6-regular, and by Lemma 4 we have
G 6= K7. Hence, G is 6-colorable by Theorem 9.

Exercise 11. Prove that a graph G drawn in the torus is 6-colorable if and
only if ω(G) ≤ 6.

3 Edge coloring

Instead of giving colors to vertices, we can assign them to edges.

Definition 12. A function ϕ : E(G) → {1, . . . , k} is an edge k-coloring of
G if for every distinct edges e1, e2 ∈ E(G) incident with the same vertex, we
have ϕ(e1) 6= ϕ(e2).
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The chromatic index χ′(G) of G is the minimum k such that G has an
edge k-coloring.

For example, suppose you are organizing a tournament and some of the
teams already played against one another. You are given a graph G in which
the pairs of teams that still need to play a game are joined by an edge. In
each round, there can be any number of matches running in parallel, but
of course every team can play in at most one of them. How many rounds
are at minimum needed to finish the tournament? Coloring by i the edges
corresponding to the matches played in the i-th round, we conclude we need
precisely χ′(G) rounds.

Observation 13. In an edge coloring, edges incident with the same vertex
have pairwise distinct colors, and thus χ′(G) ≥ ∆(G). Edges of the same
color form a matching, and thus if the largest matching in G has b edges,
then χ′(G) ≥ |E(G)|/b.

Exercise 14. Show that

χ′(Kn) =

{
n− 1 if n is even

n if n is odd.

We can translate edge coloring to vertex coloring. The linegraph L(G) of
a graph G is the graph with vertex set E(G) and such that distinct e1, e2 ∈
E(G) are adjacent if and only if e1 and e2 are incident with the same vertex.

Observation 15. χ′(G) = χ(L(G))

However, not every graph is a linegraph, and thus we may be able to
obtain results for edge coloring that do not hold for ordinary coloring.

Exercise 16. Show that there does not exist any graph G such that L(G) =
K1,3.

Note that L(G) has maximum degree at most 2∆(G)− 2.

Observation 17. χ′(G) ≤ 2∆(G)− 1

Exercise 18. Using Brook’s theorem, we can improve this bound to 2∆(G)−
2, with some exceptions. What are the exceptions?

However, much more is true in general.

Theorem 19 (Vizing). Any simple graph G satisfies χ′(G) ≤ ∆(G) + 1.
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Note that this is not true for multigraphs (the triangle Tk with each edge
of multiplicity k has ∆(Tk) = 2k and χ′(Tk) = 3k). By Observation 13, we
have χ′(G) ∈ {∆(G),∆(G)+1} for every G. However, in general it is hard to
determine χ′(G) exactly; for example, it is NP-hard to distinguish whether
a 3-regular graph has chromatic index 3 or 4.

For the proof of Vizing’s theorem, we use the notion of Kempe chains.
Consider a proper edge coloring of a graph G. A Kempe chain in colors
{a, b} is a maximal connected subgraph K of G such that every edge of H is
colored a or b. Note that since each vertex is incident with at most one edge
of each color, K has maximum degree at most two, and thus K is either a
path or a cycle. Moreover, the colors a and b alternate on K, and thus if K
is a cycle, then K has even length. By switching the Kempe chain K, we
mean changing the color of each edge of K to the other color in {a, b}. Note
this results in another proper coloring of edges of G.

Exercise 20. Show that if G is a d-regular graph of chromatic index d and
G has (up to renaming of the colors) only one proper edge coloring using
d colors, then G contains a Hamilton cycle (i.e., a cycle containing all the
vertices of G).

Given a graph G with a proper coloring of its edges, we say that a color
c is missing at a vertex v of G if no edge incident with v has color c. Note
that if G is colored using more than ∆(G) colors, then at least one color is
missing at each vertex of G. Consider a Kempe chain K in colors {a, b}. If
K is a cycle, then switching K does not change which colors are missing at
any vertex. If K is a path, then one of the colors {a, b} must be missing
at each end of K (by the maximality of the chain) and switching K makes
the other color in {a, b} missing at each end. We now prove the key lemma
towards the proof of Vizing’s theorem.

Lemma 21. Let G be a graph of maximum degree at most ∆ with edges
properly colored using ∆ + 1 colors. Let u and v be distinct non-adjacent
vertices of G. Then there exists a proper edge coloring using ∆ + 1 colors
such that the same color missing at both u and v.

Proof. Let c1 be a color missing at u. Without loss of generality, we can
assume that c1 is not missing at v; let e1 = vx1 be an edge of color c1

incident with v. We now repeat the following procedure for i = 1, 2, . . ., as
long as possible, building a “fan” of edges incident with v: Choose a color
ci+1 6∈ {c1, . . . , ci} missing at xi but not at v, and let ei+1 = vxi+1 be an edge
of color ci+1 incident with v.

As the number of colors is bounded, this procedure eventually stops; let ck
and ek = vxk be the last chosen color and edge. There is some color a missing

6



at xk, but this color cannot be chosen to be ck+1; there are two possibilities
why this might be the case. It could be that the color a is also missing at
v. Hence, we can change the color of ek to a. In the resulting coloring, the
color ck is missing at v, and thus we can change the color of ek−1 to ck. We
continue this process, recoloring ei−1 by the color ci for i = k, k − 1, . . . , 2.
At the end, the color c1 is missing at v. It is also still missing at u, since u
is not adjacent to v, and thus it is different from the vertices x1, . . . , xk for
which the set of missing colors changed.

Hence, we can assume that the color a is not missing at v, but it is equal
to cs for some s ∈ {1, . . . , k − 1}. Let b be a color missing at v, and let K
be the Kempe chain in colors {a, b} containing xk. Since a is missing at xk,
K is a path starting in xk; let z denote the other end of the path K. Let us
distinguish several cases based on where K ends.

• Suppose first z 6= v. Since b is missing at v, it follows that v is not an
internal vertex of K, and thus v 6∈ V (K). This implies that the edge
es of color a is not contained in K, and thus xs 6∈ V (K).

If z 6∈ {u, xs−1}, then we switch the chain K. This gives an edge
coloring in which the color b is missing at xk, and moreover, edges
incident with v have the same color, the color c1 is still missing at u,
and for i = 1, . . . , k − 1, the color ci+1 is missing at xi. Hence, we can
change the color of ek to b, and for i = k, k− 1, . . . , 2, change the color
of ei−1 to ci; the color c1 is missing at both u and v in the resulting
coloring.

Similarly, if z = xs−1, we switch the chain K, ensuring the color b is
missing at xs−1, change the color of es−1 to b, and for i = s− 1, . . . , 2,
change the color of ei−1 to ci, so that c1 is missing at both u and v in
the resulting coloring.

Hence, suppose that z = u. If the color b is missing at u, then b is
missing at both u and v and we are done. Otherwise, the edge of K
incident with u has color b; switching the chain K, we obtain an edge
coloring in which the color b is missing at both u and v.

• Finally, let us consider te case z = v. The edge es has color cs = a, and
thus es is the last edge of K. We switch K, obtaining an edge coloring
such that b is missing at xk, cs is missing at v, es has color b, and
moreover, no other edge incident with v changed color, c1 is missing
at u, and for i = 1, . . . , k − 1, the color ci+1 is missing at xi. Now for
i = s, s− 1, . . . , 2, change the color of ei−1 to ci, so that the color c1 is
missing at both u and v in the resulting coloring.
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Vizing’s theorem is now easy to prove.

Proof of Theorem 19. We prove the claim by inducion on |E(G)|; if E(G) =
∅, then the claim is trivial. Hence, suppose that there exists an edge e =
uv ∈ E(G). By the induction hypothesis, G − e has an edge coloring using
∆(G′) + 1 ≤ ∆(G) + 1 colors. By Lemma 21, G − e has such a coloring in
which the same color c is missing at both u and v. We can color e by c to
obtain an edge coloring of G using ∆(G) + 1 colors.
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