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If a graph G contains a subdivision of a graph H as a subgraph, we write
H �t G and say that H is a topological minor of G. You know this notion
from the statement of the well-known characterization of planar graphs.

Theorem 1 (Kuratowski). A graph G is planar if and only if K5, K3,3 6�t G.

The goal of this lecture is to prove Theorem 1. To this end, it is convenient
to work with a different notion of graph containment.

1 Graph minors

By contracting an edge uv in a graph G, we mean deleting the vertices u and
v and adding a new vertex adjacent to all vertices of (N(u)∪N(v)) \ {u, v}.
In other words, we identify the vertices u and v to a single vertex, suppressing
the loops and parallel edges that may arise. We denote by G/uv the graph
obtained by this contraction.

Definition 2. A graph H is a minor of G if a graph isomorphic to H can
be obtained from a subgraph of G by a sequence of edge contractions. In this
case, we say H �m G.

Exercise 3. If A ⊆ G, then A is a minor of G. If F �m H and H �m G,
then F �m G.

Exercise 4. Show that if H �t G, then also H �m G. Find a graph G such
that K1,4 �m G, but K1,4 6�t G.

Observation 5. If G is planar, then all minors of G are planar, and in
particular K5, K3,3 6�m G.
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Proof. Every subgraph of a planar graph is planar, and thus it suffices to
prove that contraction of an edge in a planar graph preserves planarity. Sup-
pose we are contracing an edge e = uv in a graph G drawn in the plane, and
let S be the set of edges incident with u or v different from e. Consider a
very small neighborhood Λ. of the drawing of e which contains only e and
initial segments of the edges of S. Erase the part of the drawing of G inside
Λ, draw a new vertex w inside Λ, and connect it within Λ to the points where
the remainders of the edges of S intersect the boundary of Λ. This gives us
a drawing of G/e in the plane.

Exercise 6. Show that if G is outerplanar, then all minors of G are outer-
planar as well.

Hence, we can try to characterize planar graphs in terms of their minors
rather than topological minors. Indeed, the following theorem holds and we
will be giving its proof shortly.

Theorem 7 (Wagner). A graph G is planar if and only if K5, K3,3 6�m G.

Before we proceed with the proof of Theorem 7, let us show that it implies
Kuratowski’s theorem. For this, we need to consider the relationship between
minors and topological minors. Let us start with a reformulation of the
definition of a minor.

Definition 8. A model of H in G is a function µ that

• to every vertex v of H assigns a connected subgraph µ(v) of G, such
that for u 6= v, µ(u) and µ(v) are vertex disjoint, and

• to every edge uv of H assigns an edge µ(uv) = xy of G such that
x ∈ V (µ(u)) and y ∈ V (µ(v)).

Lemma 9. A graph H is a minor of a graph G if and only if there exists a
model of H in G.

Proof. Suppose first that there exists a model µ of H in G. Delete from G
all vertices and edges that do not belong to the model, i.e., are contained
neither in

⋃
v∈V (H) µ(v) nor in {µ(e) : e ∈ E(H)}. Then, for each v ∈ V (H),

contract all edges of µ(v). Since µ(v) is connected, this shrinks it to a single
vertex, and if uv ∈ E(H), then the edge µ(uv) joins the vertex µ(u) and
the vertex µ(v) in the resulting graph. Consequently, the resulting graph is
isomorphic to H, and thus H is a minor of G.

Conversely, suppose H is a minor of G, and thus H is obtained from a
subgraph G′ of G by a sequence of contractions. For each v ∈ V (H), let
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Mv be the set of vertices of G′ that end up contracted into a vertex v. Note
that the graph G′[Mv] is connected, as otherwise it would not be possible to
contract it to a single vertex. For e ∈ E(H), let me be one of the edges of
G which ends up being mapped to the edge e by the contractions. Then a
model µ of H in G can be defined by letting µ(v) = G[Mv] and µ(e) = me

for each v and e.

Exercise 10. Note that we could add the following condition to the definition
of a model µ and still conclude that presence of a minor corresponds to the
existence of a model:

• For every v ∈ V (H), µ(v) is a tree, and for each leaf x of the tree,
there exists an edge e ∈ E(H) such that µ(e) is incident with x.

As we have seen in Exercise 4, the fact that H is a minor of G does not
imply that H is also a topological minor of G. However, this is at least
true for subcubic graphs. Given a model µ of a graph H in G and a vertex
v ∈ V (H), let µ+(v) denote the subgraph of G obtained from µ(v) by adding
all edges µ(e) such that e ∈ E(H) is incident with v.

Lemma 11. If H is a graph of maximum degree at most three and H �m G,
then H �t G.

Proof. Suppose H �m G. By Lemma 9, there exists a model µ of H in G.
Without loss of generality, we can assume µ satisfies the additional condition
from Exercise 10. Since H has minimum degree three, for each vertex v ∈
V (H) one of the following claims holds.

• µ(v) is a subdivision of the star with three rays, and each leaf of µ(v)
is incident with the edge µ(e) for an edge e ∈ E(H) incident with v, or

• µ(v) is a path and both ends of the path are incident with the edge
µ(e) for an edge e ∈ E(H) incident with v, or

• µ(v) is a single vertex.

Equivalently, µ+(v) is a subdivision of K1,deg(v). Observe that it follows that
the union of µ(v) for v ∈ V (H) together with the edges µ(e) for e ∈ E(H) is
subdivision of H. Therefore, H �t G.

Exercise 12. Prove that a graph G is a forest if and only if K3 6�m G.

We can prove something weaker for K5.

Lemma 13. If K5 �m G, then either K5 �t G, or K3,3 �t G.
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Proof. Let µ be a model of K5 in G satisfying the additional condition from
Exercise 10. If for each v ∈ V (K5), the graph µ+(v) is a subdivision of K1,4,
then the union of the subgraphs and edges of the model µ gives a subdivision
of K5 in G.

Otherwise, observe that there must exist v ∈ V (K5) such that µ+(v) is
the subdivision of the tree T with two vertices of degree three and four leaves.
Imagine we, for each u ∈ V (K5), contract all edges in µ(u), except that for
v, we leave the middle edge of T uncontracted. This shows that G contains
as a minor the graph K+

5 , obtained from K5 by splitting one vertex into two
adjacent vertices of degree three. However, K3,3 ⊆ K+5, and thus K3,3 is
also a minor of G.

We are now ready to show that Wagner’s theorem implies Kuratowski’s
theorem.

Proof of Theorem 1, assuming Theorem 7. Since K5 and K3,3 are not pla-
nar, if G is planar, then it contains neither of them as a topological minor.
Cnversely, suppose that K5, K3,3 6�t G. By Lemmas 11 and 13, this implies
that K5, K3,3 6�m G, and thus G is planar by Theorem 7.

Exercise 14. Prove that Kuratowski’s theorem implies Wagner’s theorem.

2 3-connectivity

The basic plan for the proof of Wagner’s theorem is to proceed by induction.
In a given graph G with no K5 or K3,3 minor, we contract an edge e. Then
clearlyK5, K3,3 6�m G/e, and thus by the induction hypothesis, G/e is planar.
We can then consider a plane drawing of G/e and try to modify it to a plane
drawing of G. However, there is one issue: It can be the case that the graph
G/e can be drawn in many different ways in the plane, and some of them
may be quite different from any possible drawing of G. To circumvent this,
we consider 3-connected graphs, which have unique drawings in the following
sense.

A function f : R2 → R2 is a homeomorphism of the plane if f is a
bijection, continuous, and the inverse f−1 is continuous as well. For example,
rotations, reflections, and shear are homeomorphisms.

Lemma 15. Any two plane drawings of a 3-connected graph can be trans-
formed to each other by a homeomorphism of the plane.

We will not actually need this Lemma, and thus we do not give its proof
(you can try to think about it, though you may prefer to wait for two more
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lectures, as we will consider the drawings and homeomorphisms in more
detail).

Exercise 16. Show (intuitively, viewing homeomorphisms as “continuous
bijective deformations of the plane”, rather than arguing about them for-
mally) this is not the case for 2-connected graphs. Hint: One of the two
parts to which the graph is split on a 2-cut can be reflected, obtaining a non-
homeomorphic drawing.

However, considering 3-connected graphs brings another complication to
the inductive argument: We need to make sure that the graph G/e is 3-
connected. Fortunately, this is always possible.

Theorem 17 (Tutte). For every 3-connected graph G 6= K4, there exists an
edge e ∈ E(G) such that G/e is 3-connected.

We will give the proof the next time.
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