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1 Generating functions

Recall that the (ordinary) generating function of a sequence a0, a1, a2, . . . is
the function defined by the series

A(x) =
∞∑
n=0

anx
n.

Typically, we are interested in this function in case that an is the number of
certain combinatorial objects/structures/. . . of size n (with n points/vertices/. . . ).
This representation is convenient, because:

• Many operations on these objects (such as disjoint union, selection of
a single vertex, . . . ) transform the sequence in a way that corresponds
to a simple arithmetic operation on the generating function.

• Consequently, if the objects are obtained by a composition of such
operation, we can easily obtain the corresponding generating function.

• Once we have the generating function, we can sometimes use it to
obtain an exact formula for its coefficient.

• Perhaps even more importantly, using the tools from mathematical
analysis, we can estimate the speed of the growth of the elements of
the sequence, thus getting (often arbitrarily precise) approximations
for the number of objects of certain size.

For example:

• For B(x) =
∑∞

n=0 bnx
n, we have

A(x)B(x) =
∞∑
n=0

( n∑
i=0

aibn−i

)
xn,
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and thus A(x)B(x) is the generating function of the sequence whose
n-th element is

∑n
i=0 aibn−i; combinatorially, this is the number of ways

how to combine two types of objects—one represented by A, the other
one by B—to a single object of size B.

• A(x) + B(x) has coefficients an + bn, which count the number of ob-
jects that can be of two types, one represented by A and the other
represented by B.

Example 1. For n ≥ 0, let sn denote the number of strings of length n
consisting of digits 1, 2, and 3, and not containing consecutive digits 1. Let
S(x) =

∑∞
n=1 snx

n be the generating function of this sequence. Such a string
is empty or consists of just 1 (generating function 1 + x, corresponding to
one object of size 0 and one object of size 1), or is the composition of one
of ‘2’, ‘3’, ‘12’, ‘13’ (generating function 2x + 2x2) with another such string
(generating function S). Hence, we get

S = 1 + x + (2x + 2x2)S

S =
1 + x

1− 2x− 2x2

We could now obtain an exact formula for the coefficients of the power series
expansion of S, and thus express sn exactly.

Example 2. For n ≥ 1, let Tn denote the number of rooted trees with n
vertices such that every non-leaf vertex has 2 or 3 children, and let T (x) =∑∞

n=1 tnx
n be the generating function of this sequence. Each such tree is

either a single vertex, or a single vertex combined with two trees represented
by T , or a single vertex combined with three trees represented by T . The
generating function of a single vertex is x (there is just one such object of
size 1), and thus

T = x + xT 2 + xT 3

x =
T

1 + T 2 + T 3

Hence, writing f(y) = y
1+y2+y3

, we have T = f−1. The graphs of the functions
f and T are as follows:
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It is not easy to see how to turn the expression for T (the inverse to some
rational function) to an exact formula for tn; we will see a way to do it later.
We will also be able to use the generating function to approximate tn.

Before we show how we can analyze the behavior of the coefficients, let
us remark that in some circumstances, it may be useful to consider different
kinds of generating functions. The most common are exponential generating
functions; the exponential generating functions of a sequence a0, a1, . . . is
defined as the power series

A(x) =
∞∑
n=0

an
xn

n!
.

The operations with different kinds of generating functions have different
semantics. For example, if

B(x) =
∞∑
n=0

bn
xn

n!

is the exponential generating function of another series b0, b1, . . ., then

A(x)B(x) =
∞∑
n=0

( n∑
i=0

aibn−i
i!(n− i)!

)
xn =

∞∑
n=0

( n∑
i=0

(
n

i

)
aibn−i

)xn

n!

is the exponential generating function of the series whose n-th element

n∑
i=0

(
n

i

)
aibn−i
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counts the number of ways how, among n points, select i and put an object
represented by A on the selected points, and put an object represented by B
on the remaining n−i points (in contrast with ordinary generating functions,
where we are putting the object next to one another).

Example 3. Let sn denote the number of spanning trees of Kn with one
vertex selected as a root, and let S(x) =

∑
n≥0 sn

xn

n!
be the corresponding

exponential generating function. We can obtain a spanning tree of Kn by
partitioning {1, . . . , n − 1} into a single-vertex part (exponential generating
function x) and any number k of other parts containing a rooted spanning
tree, and joining the selected single vertex by edges to the roots of the spanning
trees of the parts. By the interpretation of the product of exponential gen-
erating functions, the coefficient at xn in xSk is the number of such choices
where the order of the parts matters (we specify which part is the first one,
the second one, . . . ). To compensate for this overcounting, we need to divide
by k!. Hence, we have

S(x) =
∞∑
k=0

x
Sk

k!
= xeS(x).

Similarly to Example 2, we conclude that S is the inverse to the function y
ey

.

2 Asymptotic behavior of coefficients

The radius of convergence of a power series
∑∞

n=0 anx
n is

R = sup{c > 0 : |an| ≤ (1/c)n for all but finitely many n}.

Lemma 4. Let A =
∑∞

n=0 anx
n be a power series with radius of convergence

R. Then

• A diverges for every x ∈ C such that |x| > R, and

• A converges for every x ∈ C such that |x| < R.

Proof. A necessary condition for a series to converge is that the limit of
its terms is 0. However, by the definition of the radius of convergence, if
|x| > R, then there exist infinitely many n such that |an| ≥ (1/|x|)n, and
thus |anxn| ≥ 1. Hence, A diverges at x.

If |x| < R, then choose y such that |x| < y < R. By the definition of the
radius of convergence, there exists n0 such that for every n ≥ n0, we have
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|an| < (1/y)n. Hence, for m ≥ n0, we have∣∣∣ ∞∑
n=m

anx
n
∣∣∣ ≤ ∞∑

n=m

|an| · |x|n =
∞∑

n=m

|an|yn(|x|/y)n

≤
∞∑

n=m

(|x|/y)n = 1
1−|x|/y · (|x|/y)m.

Since |x|/y < 1, we have

lim
m→∞

∞∑
n=m

anx
n = 0,

and thus the series A converges at x.

Hence, considering the function A(x) defined as the sum of the power
series at any point x ∈ C where the series converges, we conclude that A(x)
is defined everywhere in the open circle |x| < R and undefined outside of the
closure of this circle, with no information about the behavior for |x| = R.
Actually, the following is true.

Lemma 5. Let A =
∑∞

n=0 anx
n be a power series with radius of convergence

R such that 0 < R < ∞. Then there exists x ∈ C such that |x| = R and A
diverges at x. Moreover, if an ≥ 0 for all n, this is the case for x = R.

The proof of this Lemma requires some (elementary) knowledge from
complex analysis and we will skip it (we do not actually need this result).
However, as a way of motivation, let us remark that already this gives us some
useful knowledge about the rate of the growth of the coefficients. Suppose
A(x) is a generating function of some combinatorial objects, and thus its
coefficients are nonnegative. Then the radius of convergence of A is the
smallest R such that A(R) is not defined, and by Lemma 4, we have an ≤(

1
R−ε

)n
for every ε > 0 smaller than R and for every sufficiently large n (and

also, this is the best possible bound of such form).

Example 6. Consider the generating function S(x) from Example 1. This

function is defined everywhere except for the points x1,2 = −1±
√
3

2
where the

denominator is 0. Therefore, the radius of convergence of the series is R =
−1+

√
3

2
, and since 1/R < 2.7321, we conclude that sn = O(2.7321n).

Example 7. Let us now consider the generating function T (x) from Exam-
ple 2. From the graphs, we see that the point where the function stops to be
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defined (and thus also the radius of convergence of T ) is R = f(y0), where
y0 is the point where f ′(y0) = 0, that is

0 = f ′(y0) =
1

1 + y20 + y30
− y0(2y0 + 3y20)

(1 + y20 + y30)2

0 = 2y30 + y20 − 1

y0 ≈ 0.657

R = f(y0) =≈ 0.383

Since 1/R < 2.62, we have tn = O(2.62n).

Exercise 8. Perform a similar analysis for the generating function from
Example 3 and show that the number of spanning trees of Kn is O((e+ε)nn!)
for every ε > 0.

We now describe how to improve on the bound from Example 6. Suppose
B(x) =

∑
n≥0 bnx

n is a power series with the same radius R of convergence
as A such that

• B is some simple function, and thus we know the sequence b0, b1, . . .
exactly, and

• B diverges at the circle of convergence in the same way as A, in the
sense that the radius R′ of convergence of A−B is larger than R.

Then the coefficients of A and B have the same asymptotic behavior—they
differ by O(1/(R′ − ε)n) for any ε > 0 smaller than R′, while the coefficients
of B are roughly 1/Rn.

Example 9. Consider again the generating function S(x) from Example 1,

and recall that x1 = −1+
√
3

2
and x2 = −1−

√
3

2
are the points where S(x) is not

defined. Note that S(x) = 1
x1−x ·

1+x
2(x−x2)

, and let q(x) = 1+x
2(x2−x) . We have

q(x1) = 3+
√
3

12
. Let B(x) = q(x1)/(x1 − x), so that

lim
x→x1

S(x)−B(x) = lim
x→x1

q(x)− q(x1)

x1 − x
= −q′(x1).

Therefore, the function S(x) − B(x) is defined at x1, and clearly also at all
points other than x2. Consequently, S(x) − B(x) has radius of convergence

|x2| = 1+
√
3

2
.

Moreover,

B(x) = q(x1)/(x1 − x) =
q(x1)/x1

1− x/x1

=
∞∑
n=0

q(x1)/x1

xn
1

xn.
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Since 1/x1 =
√

3 + 1, we conclude that for any ε > 0, we have

sn =
3 +
√

3

12
· (
√

3 + 1)n+1 + O
(
(2/(1 +

√
3) + ε)n

)
.

Similarly, we can deal with the singularity of T (x) from Example 2 to
obtain an exact asymptotics for tn; however, this is a bit more involved and
we will not go into the details. Instead, let us use another result from analysis
to get a convenient formula for the coefficients of T .

3 Lagrange inversion formula

Lagrange inversion formula is a powerful result that enables us to deal with
generating functions of the form arising in Example 2. In the proof, we
need to deal with a generalization of power series, called Laurent series, of
form B(x) =

∑∞
n=c bnx

n for some (possibly negative) starting index c. We
define [xn]B = bn as the coefficient of the series at xn. Let us remark that if
D(x) =

∑∞
n=s dnx

n with d ≥ 0 and ds 6= 0 is a power series, then 1
D(x)

can be

expressed as a Laurent series
∑∞

n=−s rnx
n with r−s = 1/ds 6= 0.

We will need two observations on derivatives of Laurent series. First, note
that [x−1]B′(x) = 0. Second, if D(x) =

∑∞
n=1 d

nxn with d1 6= 0, then

[x−1]
D′(x)

D(x)
= [x0]

D′(x)

D(x)/x
=

D′(0)

[D(x)/x]x=0

=
d1
d1

= 1.

Lemma 10. Let F (x) =
∑∞

n=0 fnx
n be a power series with f0 6= 0. Suppose

A(x) =
∑∞

n=0 anx
n satisfies A = xF (A). Then an = 1

n
[xn−1]F n.

Proof. Let us define D(y) = y/F (y); we have x = A(x)/F (A(x)) = D(A(x)),
and thus D and A are inverse. Hence, we also have x = A(D(x)); taking the
derivative and using the observations on derivatives, we have

1 = (A(D(x)))′ =
( ∞∑

k=0

akD
k(x)

)′
=
∞∑
k=1

kakD
k−1(x)D′(x).

F n(x)

xn

1

Dn(x)
=
∞∑
k=1

kakD
k−n−1(x)D′(x) =

( ∑
k≥1,k 6=n

kakD
k−n−1(x)D′(x)

)
+ nan

D′(x)

D(x)

=
( ∑
k≥1,k 6=n

k

k − n
ak(Dk−n(x))′

)
+ nan

D′(x)

D(x)
.[xn−1]F n(x) = [x−1]

F n(x)

xn
= nan[x−1]

D′(x)

D(x)
= nan.

Let us note that the proof that we presented is a bit careless, ignoring
concerns such as for which x are the considered functions defined. This can
be fixed by defining all the operations that we performed purely formally, as
operations on the sequences of coefficients in the power series.
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Example 11. In Example 2, we have T = x(1 + T 2 + T 3), and thus we can
apply Lemma 10 with F = 1 + x2 + x3. Consequently,

tn =
1

n
[xn−1](1 + x2 + x3)n =

1

n

∑
a,b∈Z+

0 ,2a+3b=n−1

(
n

n− a− b, a, b

)
.

Example 12. Let us now apply Lagrange inversion formula to the generating
function from Example 3; we have

sn
n!

= [xn]S(x) =
1

n
[xn−1]exn =

1

n
· nn−1

(n− 1)!
,

and thus sn = nn−1. Hence, Kn has nn−1 rooted spanning trees, and since we
can select the root in n ways, Kn has nn−2 spanning trees.
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