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Introduction

This thesis presents and studies the concept of bounded expansion and re-
lated graph parameters introduced recently by Jaroslav Nešetřil and Patrice
Ossona de Mendez. Let us first present a motivation for this new graph
property. In this brief introduction, we are quite informal and use several
standard graph theory notions without defining them first. We refer the
reader to Chapter 1 or any textbook on graph theory for precise definitions.

One of the oldest topics in the graph theory is the graph coloring. Already
in 1852, Guthrie and De Morgan proposed what became the famous Four
Color Conjecture. This conjecture turned out to be surprisingly difficult,
and it was only proved in 1976 by Appel and Haken [7, 8] (a simpler and
easier to verify proof was later provided by Robertson et al. [83]).

The Four Color Theorem claims that every planar graph can be colored
using at most four colors. However, if we are only interested in whether there
exists a constant c such that every planar graph can be colored by at most c
colors, the problem becomes much simpler – by Euler’s formula, every planar
graph is 5-degenerate, hence it can be colored by at most 6 colors. Note that
similarly, a graph with maximum degree d can be colored by at most d + 1
colors.

The graph coloring became one of the most studied problems in graph
theory, and with that, many variants of the basic problem have arisen. One
of them is the acyclic coloring – coloring a graph in such a way that no two
adjacent vertices have the same color and no cycle is colored by only two
colors. A quite complex proof of Borodin [20] shows that there exists an
acyclic coloring of every planar graph by at most five colors. Similarly to the
case of Four Color Theorem, one might ask whether there is a simple way
how to see that the acyclic chromatic number of planar graphs is bounded
by a constant? Note that the degeneracy is no longer sufficient to ensure
this property, since for example the graph obtained from Kn by subdividing
each edge by one vertex is 2-degenerate, but its acyclic chromatic number is
Ω(

√
n).

The result of Nešetřil and Ossona de Mendez [66] can be viewed as such
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a way. They have proved that every graph G has a minor H such that
χa(G) ≤ O (χ(H)2). Together with the fact that all graphs in a proper
minor-closed class are degenerate, this implies that the acyclic chromatic
number is bounded by a constant for any such class of graphs, in particular
for planar graphs as well.

It is also easy to see that the acyclic chromatic number of a graph is
bounded by the chromatic number of the square of the graph, which implies
that the acyclic chromatic number of a graph with maximum degree d is at
most d2 + 1.

Unlike the case of the ordinary coloring, we needed separate arguments
to show that the acyclic chromatic number is bounded by a constant both for
planar graphs and for graphs with bounded maximum degree – the chromatic
number of the square of a planar graph may be arbitrarily high, and graphs
with bounded maximum degree may contain arbitrary minors. Naturally,
the question is whether it is possible to present an argument that would
work for both of these graph classes. One might hope that such an argument
could be easy to generalize for a wide range of other graph classes and graph
properties.

The cornerstone for such a result is finding a property that both proper
minor-closed graph classes and graphs with bounded maximum degree share.
It turns out that both of these classes have bounded expansion, in the sense
defined in Section 1.4, and Nešetřil and Ossona de Mendez [70] have proved
that graphs with bounded expansion have a bounded acyclic chromatic num-
ber. Therefore, we indeed have a natural way to see for many graph classes
that they have bounded acyclic chromatic number.

The acyclic coloring is just one of many graph coloring notions that can
be defined by requiring some prescribed type of subgraphs to have many
colors. An interesting question is how many colors we can request on a
particular type of subgraphs, and still be able to color any graph in an
arbitrary proper minor-closed class by a bounded number of colors. For
example, it is possible to require that each cycle has at least three colors
(the acyclic chromatic number is bounded in any proper minor-closed class
of graphs), but it is not possible to require this for a path with three vertices:
Such coloring corresponds to the coloring of the square of the graph, and the
number of colors of this coloring is bounded from below by the maximum
degree of the graph. However, planar graphs and graphs in many other
proper minor-closed classes have unbounded maximum degree. A surprising
result of Nešetřil and Ossona de Mendez [74] shows how to determine exactly
the maximum number of colors that we may request for any graph. Later,
Nešetřil and Ossona de Mendez [70] have showed that this property in fact
does not rely on the classes being minor-closed – the essential property again
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turns out to be their bounded expansion.
One of the reasons for the importance of the study of proper minor-

closed classes is that many algorithmic problems that are hard in general
can be solved or approximated quickly for graphs in such a class. Classes
with bounded expansion are more general, and they appear in many common
applications (intuitively, many graphs arising from the geometric considera-
tions have the property that there are few vertices that are near to any chosen
vertex, which implies that their expansion is bounded), thus one might ask
whether such algorithms generalize for these graph classes. Indeed, Nešetřil
and Ossona de Mendez [71] describe many such algorithmic applications, even
more emphasizing the importance of the concept of the bounded expansion.

Motivated by these striking results and unexpected connections, we fur-
ther investigate the properties of the classes of graphs with bounded expan-
sion, as well as the related concepts. The thesis is structured as follows:

• We start by introducing the definitions and notation.

• In Chapter 2, we describe some of the known properties of graphs with
bounded expansion and results regarding them.

In the following chapters we present our own contributions:

• In Chapter 3, we study the existence of subdivisions of certain graphs
as subgraphs. We present a characterization of graphs with bounded
expansion in the terms of forbidden subdivisions that cannot appear in
such graphs. We also provide similar characterizations for the acyclic
chromatic number and the arrangeability of the graph, and in this
way expose more clearly the relationship of the bounded expansion to
these graph parameters. We apply these characterizations on problems
regarding the game chromatic number.

Additionally, we study the existence of clique subgraphs with edges
subdivided by a constant number of vertices, use this to character-
ize graphs with exponential expansion and relate this property to the
existence of big expander-like subgraphs.

• In Chapter 4, we consider several algorithmic questions regarding the
bounded expansion – we show that determining the expansion precisely
is NP-complete even for graphs with degree bounded by four, discuss
several classes of graphs for that the expansion can be determined in
polynomial time, and show an approximation algorithm with polyno-
mial approximation factor.
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• In Chapter 5, we provide several results regarding the concepts aris-
ing from the study of the properties of graph classes with bounded
expansion – the tree-depth of a graph and the subgraph coloring.

• We finish by some concluding remarks and open problems, in Chapter 6.



Chapter 1

Definitions

Let us introduce definitions and notation regarding the concepts we use.

1.1 Graphs

Most of the thesis is devoted to the study of graphs and their properties.
We expect the reader to be familiar with the elementary results and notions
of the graph theory, to the extent covered for example by the textbook by
Matoušek and Nešetřil [64]. Unless specified otherwise, we deal with simple
undirected graphs, without loops and parallel edges. If G is a graph, let V (G)
denote the set of its vertices and E(G) the set of its edges. For a vertex v of
a graph G, let N(v) denote the open neighborhood of v, i.e., the set of the
vertices adjacent to v, and d(v) = |N(v)| the degree of v.

Let ∆(G) denote the maximum degree and δ(G) the minimum degree of
the graph G. If ∆(G) = δ(G) = d, then the graph G is called d-regular.
The 3-regular graphs are also called cubic. If ∆(G) ≤ 3, we say that G is
subcubic.

Let Pn denote a path with n vertices. The length of a path is the number
of its edges, i.e., the length of Pn is n−1. The distance of two vertices u and
v in a graph is the length of the shortest path between u and v.

In a rooted tree, a level of a vertex is its distance from the root. The
depth of a rooted tree is the maximum of the levels of its vertices.

1.2 Vertex Orderings

Several of our definitions and proofs involve constructing a linear ordering of
vertices of a graph that satisfies some properties. Given a linear ordering L of
the vertices of a graph G, let L+(v) be the set of vertices of G that are after v

5
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in this ordering (not including v), and L−(v) the set of vertices that are before
it (again, we do not include v in this set). More precisely, if the vertices are
ordered by L in the sequence v1, v2, . . . , vn, then L−(vi) = {v1, v2, . . . , vi−1}
and L+(vi) = {vi+1, vi+2, . . . , vn} for each i = 1, . . . , n.

Given a fixed ordering L of the vertices of a graph G, we let the back-
degree d−(v) of a vertex v be the number of neighbors of v before it in L,
d−(v) = |N(v) ∩ L−(v)|.

1.3 Minors and Subdivisions

The definition of the measure of the expansion of the graph that we investi-
gate is based on average degrees of minors of a graph, and it is closely related
to average degrees of subdivisions inside the graph.

To contract an edge e = {u, v} of a graph G means to identify the vertices
u and v into a single vertex, remove the edge e and suppress the possibly
arising parallel edges. The graph obtained from G by contracting the edge e
is denoted by G/e. To suppress a vertex v of degree two means to contract
one of the edges incident with v.

A graph H is a minor of a graph G (denoted by H ≺ G) if it can
be obtained from G by contracting edges and removing vertices and edges.
In other words, the vertices of H correspond to vertex disjoint connected
subgraphs of G and if two vertices form an edge of H , then the corresponding
subgraphs contain adjacent vertices. For w ∈ V (H), let sgofv(G, H, w) be the
subgraph of G corresponding to the vertex w. For v ∈ V (G), let repr(G, H, v)
be the vertex w of H such that the subgraph sgofv(G, H, w) contains v (if
such a vertex exists), and let sgofv(G, H, v) = sgofv(G, H, repr(G, H, v)) be
the subgraph that contains v. Sometimes, we use the following observation:
We may assume that all the subgraphs sgofv(G, H, w) are trees.

A class of graphs G is called minor-closed if for each G ∈ G, every minor
of G belongs to G as well. A minor-closed class G is proper if it is not the
class of all graphs. Equivalently, a minor-closed class G is proper if does not
contain all complete graphs. Each minor-closed class G corresponds to a set
of forbidden minors F – the set of graphs that do not belong to G, but all
their minors do. Note that a graph belongs to G if and only if it does not
contain a minor belonging to F , in particular, no graph in F is a minor of
another graph in F . The famous result of Robertson and Seymour [87] states
that the set of forbidden minors for any minor-closed class of graphs is finite.

Given a graph G, the eccentricity of a vertex v ∈ V (G) is the maximum
distance from v to any other vertex of a graph G. The radius of a graph G is
the minimum of the eccentricities of its vertices. Given an integer r ≥ 0 and
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a graph G with radius at most r, a center of G is a vertex with eccentricity at
most r. Note that there may be several centers in a graph; usually, we select
one of them arbitrarily. Note also that this definition of center does not in
general require the center to be a vertex with the minimum eccentricity.

The depth of a minor H ≺ G is the maximum of the radii of the subgraphs
sgofv(G, H, w) for w ∈ V (H). Note that we may require the subgraphs to
be trees without changing the depth of the minor. It is also often useful to
consider the trees to be rooted in a center.

A graph G′ = sdt(G) is the t-subdivision of a graph G, if G′ is obtained
from G by replacing each edge by a path with exactly t inner vertices. Sim-
ilarly, the graph G′ is a ≤ t-subdivision of G if the graph G′ can be obtained
from G by subdividing each edge by at most t vertices (the number of ver-
tices may be different for each edge). By a small misuse of the notation (a
≤ t-subdivision of G is not determined uniquely), we write G′ = sd≤t(G).
We call a graph G subdivided if no two vertices of G of degree greater than
two are adjacent.

If H ′ is a subdivision of a graph H and H ′ is a subgraph of a graph G, we
say that G contains a subdivision of the graph H . Note that if G contains a
≤ t-subdivision of H , then H is a minor of G of depth at most

⌈

t
2

⌉

, but the
reverse claim does not hold – there exist graphs such that H ≺ G, but G does
not contain any subdivision of H . One notable exception is the case that H
is subcubic. Then, if H is a minor of G of depth d, then a ≤ 4d-subdivision
of H is a subgraph of G.

If a subdivision of H is a subgraph of G, a phrase that H is a topological
subgraph or a topological minor of G is sometimes used in literature. We do
not use this terminology, since we usually need to specify the properties of
the subdivision more precisely.

Stars and their subdivisions are used intensively in our characterizations
and proofs, warranting a need for a special terminology: For an integer t ≥ 0,
a ≤ t-star S is a ≤ t-subdivision of a star and a t-star is the t-subdivision of a
star, i.e., the ordinary stars are 0-stars. The subdivision of a star consists of
ray vertices (the leaves), middle vertices (the vertices of degree two created
by subdividing the edges) and the center vertex. A ray vertex and the middle
vertices on the path from the ray vertex to the center form a ray of the ≤ t-
star. For a ≤ t-star S that is a subgraph of a graph G and a set T ⊆ V (G),
let raysT (S) be the set of the ray vertices of S that belong to T . The (T, t)-
degree dT

t (v) of a vertex v of G is the maximum of | raysT (S)| for all ≤ t-stars
S with the center v that are subgraphs of G.

We also use the term double-star for 1-star. The middle edges of a double
star are the edges that are incident with the center, while the remaining edges
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are the ray edges. The double back-degree of v is d−
2 (v) = d

L−(v)
1 (v), i.e., the

maximum number of ray vertices of a double-star with the center v that are
before v in the ordering L.

1.4 Greatest Reduced Average Density and

Classes With Bounded Expansion

The notion of the graph expansion is defined in th terms of the greatest
reduced average density.

The average degree of a graph G is equal to 2|E(G)|
|V (G)| . The average density

of a graph G is half of its average degree, i.e., |E(G)|
|V (G)| . The maximum average

density ∇0(G) is the maximum of the average densities of the subgraphs of
G.

A related parameter is the degeneracy of a graph. A graph G is t-
degenerate if the minimum degree of every subgraph of G is at most t.
Equivalently, G is t-degenerate if there exists an ordering L of vertices of
G such that d−(v) ≤ t for each vertex v. The degeneracy ∇d

0(G) of the graph
G is the minimum t such that G is t-degenerate. If a graph G with n vertices
is t-degenerate, then it has at most tn edges, hence ∇0(G) ≤ ∇d

0(G). Note
that this also implies that a graph with average degree at least t contains a
subgraph whose minimum degree is at least t

2
. On the other hand, if G is

not t − 1-degenerate, then it contains a subgraph with minimum (and thus
also average) degree at least t, hence ∇d

0(G) ≤ 2∇0(G).
For an integer r ≥ 0, the greatest reduced average density of rank r ∇r(G)

of a graph G is the maximum of the average densities of all minors of G of
depth at most r. For example, ∇1(G) is the maximum average density of
all graphs that can be obtained from G by contracting the edges of a star
forest. The greatest reduced average density may be an arbitrary rational
number. In some (especially computational) contexts, the variant in that we
replace the average density by the minimum degree is easier to work with. We
define ∇d

r(G) as the maximum degeneracy of a minor of G of depth at most
r. Obviously, ∇r(G) ≤ ∇d

r(G) ≤ 2∇r(G), and unlike the greatest reduced
average density, ∇d

r(G) is always an integer.
A class of graphs G has bounded expansion with the bounding function

f , if for each G ∈ G, ∇r(G) ≤ f(r). Let us present several examples of such
classes:

• Every proper minor-closed class G has the expansion bounded by a
constant function: Every minor of a graph G ∈ G belongs to G, and all
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graphs in a proper minor-closed class are t-degenerate for some constant
t. On the other hand, the class Gc of graphs for that ∇r(G) ≤ c for each
r is proper minor-closed, hence each class of graphs whose expansion is
bounded by a constant function is a subclass of a proper minor closed
class.

• A class of graphs G that do not contain a subdivision of any of graphs in
some set S (possibly infinite) as a subgraph has the expansion bounded
by the function f(r) = 2r−1(minH∈S |V (H)|)2r+1

, by Nešetřil and Os-
sona de Mendez [73].

• For a constant c > 1, the class of graphs with maximum degree at most
c has expansion bounded by the function f(r) = 1

2
c(c − 1)r.

• The class consisting of the graphs sd|V (G)|(G) for all graphs G has ex-
pansion bounded by the function f(r) = max(2, r), since for a graph
G on n vertices, ∇r(sdn(G)) ≤ 2 if 2r < n and ∇r(sdn(G)) ≤ n−1

2
if

2r ≥ n.

1.5 Arrangeability

The arrangeability of a graph is a graph parameter with a bit artificially
looking definition, that nevertheless appears in many different contexts – it
bounds the acyclic chromatic number, the game chromatic number (Kier-
stead and Trotter [55]), and the Ramsey number (Chen and Schelp [23]) of a
graph in a natural way (some of the authors rather consider admissibility of
the graph, which differs from the arrangeability only by a polynomial factor).
As we will see later, the arrangeability of a graph G can in some sense be
viewed as ∇1/2(G).

A graph G is p-arrangeable if there exists a linear ordering L of vertices
of G such that every vertex v of G satisfies

∣

∣

∣

∣

∣

∣

L−(v) ∩
⋃

u∈N(v)∩L+(v)

N(u)

∣

∣

∣

∣

∣

∣

≤ p,

i.e., the neighbors of v after it have only few different neighbors before v.
Note that in particular every vertex v has back-degree at most p + 1 – if
w is the last of the vertices in L−(v) ∩ N(v), then (L−(v) ∩ N(v)) \ {w} ⊆
L−(w)∩⋃u∈N(w)∩L+(w) N(u). It follows that a p-arrangeable graph is (p+1)-
degenerate.
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1.6 Graph Colorings

A coloring of a graph G by k colors is a function from the vertices of G
to a k-element set. Graph colorings are one of the most intensively studied
subjects in the graph theory, and various generalizations and variants of the
graph coloring have been investigated. In this thesis, we deal with several of
these types of coloring.

A coloring of vertices of a graph G is proper if no two adjacent vertices
have the same color. The minimum k such that the graph G has a proper
coloring by k colors is called the chromatic number of G and denoted by
χ(G).

A proper coloring of a graph G is acyclic if the union of each two color
classes induces a forest, i.e., there is no cycle colored by two colors. The
minimum k such that the graph G has an acyclic coloring by k colors is called
the acyclic chromatic number of G and denoted by χa(G). Note that the fact
that G has low acyclic chromatic number implies that G is degenerate, as it
is a union of a small number of trees.

The star chromatic number χs(G) of G is the minimum k such that G
can be properly colored by k colors in such a way that union of each two
colors induces a star forest. It is a well-known fact that the acyclic and the
star chromatic number of a graph are almost equal – by Albertson et al. [2],
χa(G) ≤ χs(G) ≤ χa(G)(2χa(G) − 1). The study of the star chromatic
number and its generalizations was one of the motivations for the definition
of the bounded expansion.

Another interesting variant of graph coloring is game coloring. The graph
coloring game with k colors and a graph G has the following rules: There
are two players, Alice and Bob, who take turns. Each move of Alice or Bob
consists of coloring a so far uncolored vertex of G by one of the k colors
in such a way that the obtained partial coloring of G is proper. Alice wins
if the whole graph G is colored, while Bob wins if he prevents this, i.e.,
manages to ensure that there is an uncolored vertex such that all k colors
are used in its neighborhood. The game chromatic number χg(G) of a graph
G is defined as the minimum k such that Alice has a winning strategy. The
game chromatic number is quite difficult to work with, and it has some
rather surprising properties, e.g, a subgraph G′ ⊆ G may have greater game
chromatic number than G: The game chromatic number of the complete
bipartite graph Kn,n is 3, while the game chromatic number of Kn,n without
a single perfect matching is n. It is not even known whether there exists a
graph G such that Alice wins with k colors, but loses with k + 1 colors.

An easier to work parameter related to the game chromatic number is the
game coloring number. The game coloring number col(G) of a graph G is the
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minimum number k for that Alice wins the marking game: Alice and Bob
are marking vertices of a graph in such a way that in the moment when a
vertex is marked, it has at most k−1 marked neighbors. Alice wins if all the
vertices of the graph are marked, while Bob wins if this becomes impossible.
It is easy to see that the game coloring number is the upper bound on the
game chromatic number, and that it is monotone (game coloring number of
a subgraph of G is at most col(G), and if Alice wins the marking game for k,
she also wins it for k +1). Note that a graph with game coloring number c is
(c − 1)-degenerate, however there exist 2-degenerate graphs with arbitrarily
large game coloring number.

Another way how to make the game chromatic number more tractable is
to consider the hereditary game chromatic number χhg(G) – the maximum
of the game chromatic numbers of all subgraphs of G. The hereditary game
chromatic number at least obviously is monotone with respect to taking
subgraphs.

Finally, let us define two almost equivalent notions of coloring that have
a direct connection to the tree-depth of a graph (see the next section). A
rank coloring of a graph by colors 1, . . . , t is a coloring in such a way that
each path between two vertices with the same color contains a vertex with
greater color. In the centered coloring, we require that in each connected
subgraph of G, some color appears exactly once. Trivially, a rank coloring
is also centered. Note also that given a centered coloring by t colors, we can
construct a rank coloring by the same number of colors.

1.7 Tree-width and Tree-depth

The tree-width tw(G) of a graph G is an important and intensively studied
parameter, especially because of its connections to the theory of graph mi-
nors and because of its algorithmic applications. There are many equivalent
definitions of tree-width, let us state the two of them that we need.

A graph is chordal if it does not contain a cycle of length greater than
three as an induced subgraph. A clique number of a graph is the size of
the largest clique. The tree-width of a graph G is by one lower than the
minimum clique number of all chordal supergraphs of G. This definition is
elegant and exposes the connection of the tree-width and the tree-depth (one
of the graph parameters we study, see the definition later in this section), but
it says very little about the structure of the graphs with bounded tree-width.

The second definition of tree-width is often used in the algorithmic appli-
cations. This definition brings out the tree-like structure of the graphs with
bounded tree-width, which is useful for recursive dynamic programming-type
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algorithms. A connected graph G has tree-width at most k if there exists a
rooted tree T together with induced subgraphs Gu ⊆ G and sets of at most
k+1 border vertices Su ⊆ V (Gu) associated with each node u of T , satisfying
the following properties: The set Su separates V (Gu)\Su from V (G)\V (Gu),
the root r of the tree is associated with the graph Gr = G and Sr = ∅, and
each node u of T is of one of the following types:

• The node u is a leaf of T , the graph Gu consists of a single vertex v,
and Su = {v}, or

• the node u has a single child w, Gw = Gu − v and Su = Sw ∪ {v}, or

• the node u has a single child w, Gu = Gw and Su = Sw \ {v}, or

• the node u has exactly two children w1 and w2 such that Su = Sw1 =
Sw2 = V (Gw1) ∩ V (Gw2), and Gu = Gw1 ∪ Gw2.

The tree T together with the associated subgraphs and sets of border
vertices is called the tree of the construction of G. The tree T describes the
construction of G starting with single vertices, and proceeding by adding
new vertices together with the edges that join them to some of the border
vertices, and taking unions of graphs that intersect only in the small sets of
border vertices.

Several important types of graphs have small tree-width, e.g., trees have
tree-width one and series-parallel and outerplanar graphs have tree-width
at most two. The tree-width of a graph appears in many contexts – VLSI
layouts, Cholesky factorization, expert systems, evolution theory, natural
language processing, etc. (Bodlaender [13]). A theorem of Robertson and
Seymour [84] states that for any planar graph H , the graphs without H as a
minor have bounded tree-width. Also, many problems that are NP-complete
become solvable in polynomial or even linear time on graphs with tree-width
bounded by a constant. In particular, the series of results started by Cour-
celle [27, 28] shows that a wide class of problems (verifying properties that
can be formulated in Monadic Second Order Logic) can be solved in linear
time for graphs with constant tree-width. See the survey of Bodlaender [13]
for more results regarding the graphs with bounded tree-width.

Given the abundance of the algorithms for graphs with small tree-width,
one might be interested in whether it is possible to recognize such graphs,
and to construct their trees of construction. In general, determining the tree-
width of a graph is NP-complete (Arnborg et al. [9]), even for graphs with
bounded maximum degree (Bodlaender [13]). However, for fixed k, it can be
determined in polynomial time whether the tree-width of a graph is at most
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k, and to construct the tree of the construction that witnesses this tree-width
if this is the case (Reed [82], Bodlaender and Kloks [16], Bodlaender [12]).

A parameter related to the tree-width with a natural connection to the
expansion in graphs is the tree-depth. The closure of a rooted tree T is the
graph obtained from T by joining each vertex v by edges with all its ancestors
(the vertices on the path from v to the root of T ). The depth of a forest F
of rooted trees is the maximum of the depths of the trees in the forest, and
the closure of F is the disjoint union of the closures of the trees of F . The
tree-depth td(G) of a graph G is the minimum d such that G is a subgraph of
the closure of a forest of depth d−1. Graphs with small tree-depth naturally
generalize stars – star forests are exactly the graphs with tree-depth two.

We define the tree-depth this way for consistency with the paper of
Nešetřil and Ossona de Mendez [74]. It might appear more natural to set
the tree-depth of star forests to one, corresponding with our definition of the
depth or the radius of a tree. To avoid confusion, we decided against this.
Also, the definition we use has the advantage that td(G) is exactly equal to
the minimum number of colors in a rank coloring of G.

1.8 Clique-width

Another parameter related to tree-width is clique-width. A clique-width of
a graph G is the minimum number k for that there exists a coloring of G
by k colors such that G together with this coloring can be obtained from
single-vertex colored graphs by a finite sequence of the following operations:

• Given two k-colored graphs G1 and G2, take their disjoint union.

• Given a k-colored graph G1 and two colors c1 6= c2, change the color of
all vertices of G1 colored by c1 to c2.

• Given a k-colored graph G1 and two colors c1 6= c2, join by an edge
each pair of vertices v1 and v2 such that the color of v1 is c1 and the
color of v2 is c2.

The clique-width of a graph G is denoted by cw(G). The notion of clique-
width has been introduced by Courcelle et al. [29], and found many applica-
tions in the design of algorithms (Courcelle, Makovsky and Rotics [30, 31],
Gerber and Kobler [43]). Courcelle and Olariu [32] have showed that clique-
width has several desirable properties that other graph width parameters
lack, e.g., robustness on some graph operations (the complement and the
square of a graph G have the clique-width bounded by a function of the
clique-width of G).
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The clique-width of a graph is bounded by a function of its tree-width,
more precisely cw(G) ≤ 3(2tw(G)−1) by Corneil and Rotics [26]. They also
found examples of graphs with tree-width k but clique-width 2Ω(k) for any
k. The reverse inequality cannot be true, e.g., cliques have clique-width two,
but arbitrarily large tree-width. However, Gurski and Wanke [46] have at
least showed the following statement:

Theorem 1.1 (Gurski and Wanke [46]) Let t > 1 be an arbitrary in-
teger. If a graph G does not contain Kt,t as a subgraph, then tw(G) ≤
3(t − 1) cw(G) − 1.

As Fellows et al. [41] showed, determining the clique-width of a graph is
NP-complete. Regarding the fixed-parameter cases, it is possible to decide
in polynomial time whether cw(G) ≤ 3 (Corneil et al. [25]). The complexity
of the problems of determining whether cw(G) ≤ k is open for all constants
k ≥ 4. On the other hand, there exists a polynomial-time algorithm that
given a graph G with cw(G) = k, finds a construction that shows that
cw(G) ≤ 23k+2 − 1 (Oum and Seymour [78]).

1.9 Separators and Expanders

For a graph G, an α-vertex separator is a set S ⊆ V (G) such that each
component of G − S has at most α|V (G)| vertices. Let sepα(G) be the size
of the smallest α-vertex separator of G. Usually, we consider the case α = 2

3
.

We say just separator for the 2/3-vertex separator. A well-known theorem
of Lipton and Tarjan [60] states that any planar graph on n vertices has a
separator of size at most O(

√
n). This was generalized to all proper minor-

closed graph classes by Alon, Seymour and Thomas [6].
The vertex expansion vexp(G) of a graph G on n vertices is defined as

vexp(G) = min
U⊆V (G),|U |≤n

2

∣

∣

(
⋃

u∈U N(u)
)

\ U
∣

∣

|U | .

A graph is an expander if it has bounded degree and large vertex expan-
sion. More precisely, a class G of d-regular graphs is a family of expanders
with expansion c > 0 if for each G ∈ G, vexp(G) ≥ c. Note that expanders
do not have separators of sublinear size.

1.10 Probability Theory

In some of our proofs, we use probabilistic arguments. Let Prob [K] denote
the probability of an event K and E [X] the expected value of a random



1.10. PROBABILITY THEORY 15

variable X. We use the following variants of the well-known estimates, see
e.g. [4] for reference.

Lemma 1.2 (Markov Inequality) If X is a nonnegative random variable
and a > 0, then

Prob [X ≥ a] ≤ E [X]

a
.

Lemma 1.3 (Chernoff Inequality) Let X1, . . . , Xn be independent ran-
dom variables, each attaining values 1 with probability p and 0 with probability
1 − p. Let X =

∑n
i=1 Xi. For any t ≥ 0,

Prob [X ≥ np + t] < e−
t2

2(np+t/3) ,

and

Prob [X ≤ np − t] < e
− t2

2(np+t/3) .

In particular, we use the following special cases of Chernoff Inequality:
Prob [X ≥ 2np] < e−

3
8
np, and Prob

[

X ≤ np
2

]

< e−
3
28

np.
Given a class of random graphs, we say that the graphs in this class have

some property asymptotically almost surely (a.a.s.), if the probability that
a graph in this class with n vertices has this property is at least 1 − f(n),
where limn→∞ f(n) = 0.
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Chapter 2

Overview of Known Results

Let us now provide a brief overview of the known properties of graphs
with bounded expansion and graphs whose ∇r(·) is bounded at least for
all r ≤ r0. Most of the results in this chapter are by Nešetřil and Ossona de
Mendez [70, 71, 72]. We start by introducing one of the original motivations
for the bounded expansion property – relationship to star colorings and their
generalizations.

2.1 Star Coloring and Low Tree-depth Col-

oring

As we mentioned in the introduction, the acyclic chromatic number of planar
graphs is bounded by a constant (by 5 due to Borodin [20]). Since the star
chromatic number of a graph G is bounded by χa(G)(2χa(G)−1) (Albertson
et al. [2]), the star chromatic number of planar graphs is also bounded (the
best known bound by Albertson et al. [2] is that the star chromatic number of
a planar graph is at most 20). Recently, several researchers asked the question
for what classes of graphs this result can be generalized. Nešetřil and Ossona
de Mendez [66] have proved that the star chromatic number of graphs in any
proper minor-closed class is bounded by some constant (depending on the
class). More generally, DeVos et al. [34] have proved the following statement
concerning the low tree-width coloring:

Theorem 2.1 (DeVos et al. [34]) For any fixed integer p > 1 and any
proper minor-closed class G, there exists a constant c such that every graph
in G can be colored by at most c colors in such a way that the union of any
i ≤ p colors induces a graph of tree-width at most i − 1.

17
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A more precise generalization of the star coloring is the low tree-depth
coloring. For a fixed integer p ≥ 1, the p-tree-depth coloring is defined ana-
logically to the low tree-width one – the coloring such that the union of any
i ≤ p colors induces a graph of tree-depth at most i. The minimum number
of colors of such a coloring of a graph G is denoted by χp(G). In particular,
χ1(G) = χ(G), χ2(G) = χs(G) and χ|V (G)|(G) = td(G). The definition of the
low tree-depth coloring can also be reformulated in the following way: Every
nonempty subgraph G′ ⊆ G is colored by at least min(p + 1, td(G′)) colors.
In [74], Nešetřil and Ossona de Mendez have proved the following theorem:

Theorem 2.2 (Nešetřil and Ossona de Mendez [74]) For any integer
p ≥ 0 and any proper minor-closed class of graphs G, there exists a constant
c such that χp(G) ≤ c for every G ∈ G.

Since a low tree-depth coloring is also a low tree-width coloring, this result
strengthens Theorem 2.1.

There is a close relationship between the graphs with low tree-depth col-
orings by a few colors and graphs with bounded expansion. It is well-known
that χ(G) = χ1(G) is bounded for graphs with bounded maximum average
density ∇0(G). Similarly, Nešetřil and Ossona de Mendez [66] in fact shows
that χs(G) = χ2(G) is bounded for graphs G such that all minors of G ob-
tained by contracting edges of a star forest have bounded maximum average
degree, i.e., ∇1(G) is bounded. On the other hand, if G has small χ2(G), its
edge set is a union of edges of a small number of trees, hence G has small
maximum average degree. The following hypothesis is natural: There exist
functions f1, f ′

1, f2 and f ′
2 such that for any integer p ≥ 0 and any graph G,

χp(G) ≤ f ′
1

(

∇f1(p)(G)
)

,

and

∇p(G) ≤ f ′
2

(

χf2(p)(G)
)

.

In [70], Nešetřil and Ossona de Mendez proved that this hypothesis is
true. More precisely, they proved the following inequalities:

Theorem 2.3 ([70]) For any graph G and any integer r ≥ 0,

∇r(G) ≤ (2r + 1)

(

χ2r+2(G)

2r + 2

)

,

and
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Theorem 2.4 ([70]) There exist polynomials Pi such that for any graph G
and any integer p ≥ 0, if t = 1 + (p − 1)(2 + ⌈log2 p⌉), then

χp(G) ≤ Pt (∇2t+1−1(G)) .

The polynomials Pi can be deduced from the proof, however their degree
is quite large (in the order of ii

2
). Unlike the previous (more special) results

regarding the minor-closed classes, the proofs of these inequalities do not use
Structural Theorem of Roberson and Seymour [86], and yield a linear-time
algorithm for finding such a coloring, see the paper of Nešetřil and Ossona
de Mendez [71] and the discussion in Section 2.6 for details. As we note in
Section 5.2, a stronger version of Theorem 2.4 (Theorem 5.6) follows from
our results.

2.2 Subgraph Coloring

In this section, we present another motivation for introducing the notion of
the tree-depth and the low tree-depth coloring. A graph function is a function
ϕ that assigns each nonempty graph G an integer between one and |V (G)|
and assigns the same number to the isomorphic graphs. For a graph G, let
χϕ(G) be the minimum number k such that there exists a coloring of the
vertices of G by k colors with the property that the number of colors used
in every nonempty subgraph H ⊆ G is at least ϕ(H). Note that we do not
restrict the subgraph H to be induced. The number χϕ(G) is always defined,
since coloring the vertices of G by |V (G)| different colors obviously satisfies
the condition of the subgraph coloring.

This notion generalizes most of the locally constrained variants of the
graph coloring. For example,

• If ϕ(K2) = 2 and ϕ(G) = 1 for all other graphs G, then χϕ(G) = χ(G)
is the ordinary graph coloring.

• If ϕ(K2) = 2, ϕ(C) = 3 for each cycle C, and ϕ(G) = 1 for all other
graphs, then χϕ(G) = χa(G) is the acyclic coloring.

• If ϕ(K2) = 2, ϕ(P4) = 3 and ϕ(G) = 1 for all other graphs, then
χϕ(G) = χs(G) is the star coloring.

• If ϕ(G) = min(p + 1, td(G)), then χϕ(G) is the minimum number of
colors of a p-tree-depth coloring.
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With this notion, Theorem 2.1 of DeVos et al. [34] can be restated in
the following way: For any p, if ϕ(G) = 1 + min(p, tw(G)) and G is any
proper minor-closed class of graphs, then there exists a constant c such that
χϕ(G) ≤ c for any G ∈ G. We call a graph function ϕ with this property
minor-closed class coloring bounded, i.e., the function is minor-closed class
coloring bounded if for any proper minor-closed class G there exists a constant
c such that χϕ(G) ≤ c for any G ∈ G. For a graph H , let ϕH,k be the
function defined by ϕH,k(H) = k and ϕH,k(H

′) = 1 for any H ′ 6= H . The
upper chromatic number χ̄(H) of a graph H is the maximum k such that the
function ϕH,k is minor-closed class coloring bounded.

The main question considered by Nešetřil and Ossona de Mendez in [74] is:
How large can the values of a minor-closed class coloring bounded function ϕ
be? For example, ϕ(P3) may be at most two, since if ϕ(P3) = 3, then χϕ(G) ≥
∆(G) + 1, and planar graphs (or graphs in almost any other infinite minor-
closed class of graphs) have unbounded maximum degree. The following
theorem of Nešetřil and Ossona de Mendez [74] shows that the tree-depth of
the graph is the correct bound:

Theorem 2.5 (Nešetřil and Ossona de Mendez [74]) If ϕ is a minor-
closed class coloring bounded function, then ϕ(H) ≤ td(H) for any graph
H.

Obviously, it is not possible to require ϕ(H) = td(H) for every H , since
then χϕ(G) = td(G), and the tree-depth is not bounded on many proper
minor-closed classes of graphs (e.g., on paths). However, Theorem 2.2 shows
that there exists an infinite sequence of minor-closed class coloring bounded
functions whose limit is the function ϕ(H) = td(H). This means that χ̄(H) =
td(H).

Interestingly, it turns out that this characterization extends to a much
wider set of of graph classes – the classes with bounded expansion. We
call a function ϕ bounded expansion class coloring bounded, if the subgraph
chromatic number χϕ(·) is bounded on any class of graphs with bounded
expansion. Since bounded expansion class coloring bounded function is also
minor-closed class coloring bounded, Theorem 2.5 implies that ϕ(H) ≤ td(H)
for any bounded expansion class coloring bounded function. On the other
hand, Theorem 2.4 shows that for each p ≥ 0, the function ϕ(H) = min(p +
1, td(H)) is bounded expansion class coloring bounded. We consider the
minor-closed class coloring bounded and bounded expansion class coloring
bounded functions in Section 5.4.

We may also define χi
ϕ(G) as the minimum number k such that there

exists a coloring of the vertices of G by k colors with the property that the
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number of colors used in every nonempty induced subgraph H ⊆ G is at
least ϕ(H). The behavior of the chromatic numbers χi

ϕ(·) was studied much
less than χϕ(·), see Section 5.3 for some results.

2.3 Homomorphisms

The bounded expansion also has interesting consequences regarding the prop-
erties of the ordering of graphs by the homomorphism relation. A homomor-
phism from a graph G to a graph H is a function f : V (G) → V (H) such
that whenever e = {u, v} is an edge in G, then {f(u), f(v)} is an edge of H .
If there exists a homomorphism from G to H , we write G → H , otherwise
we write G 6→ H . For a set of graphs F , let Forbh(F) be the set of all graphs
G that satisfy F 6→ G for every F ∈ F . If G → H and H → G, the graphs
G and H are homomorphism equivalent. The relation → is transitive and
reflexive, hence it forms a quasiorder on the class of all finite graphs. See for
example Hell and Nešetřil [49] for an overview of the properties and results
regarding the graph homomorphisms.

One of the reasons for the importance of the study of graph homomor-
phisms is that many types of graph coloring can be expressed using this no-
tion. For example, χ(G) ≤ t if and only if G → Kt. A well-known theorem
of Grötzsch [45] states that every triangle-free planar graph is 3-colorable,
i.e., G → K3 for every graph G in the class P3 of triangle-free planar graphs.
Using the partial order terminology, K3 is an upper bound for P3. One might
ask whether P3 has a smaller bound. This indeed turns out to be the case
– there exists a triangle-free 3-colorable graph H such that G → H for any
G ∈ P3 (this has been showed by Nešetřil and Ossona de Mendez [68, 74]
in the setting of proper minor-closed classes). In fact, there exists a smaller
bound for P3 below any given bound, i.e., the class P3 has no supremum
(Nešetřil and Ossona de Mendez [67]).

A similar result holds for the class of the subcubic graphs. By Brooks
Theorem (Brooks [21], Lovász [62]), all connected subcubic graphs (except
for K4) are 3-colorable. Häggkvist and Hell [47] and Dreyer et al. [36] have
showed that the class of subcubic triangle-free graphs also has a 3-colorable
triangle-free bound. In fact, for every finite set F = {F1, F2, . . . , Ft} of
connected graphs there exists a graph H ∈ Forbh(F) with the following
properties:

• H → K3, and

• G → H for every subcubic graph G ∈ Forbh(F) (except for K4).



22 CHAPTER 2. OVERVIEW OF KNOWN RESULTS

This property can be interpreted as the existence of “restricted dualities”,
in the sense described below.

A pair F and D of graphs is called a dual pair if for every graph G, F 6→ G
if and only if G → D. Equivalently, D is the maximum of Forbh({F}). One
of the interesting properties of the dual pairs is that it can be determined
in polynomial time whether G → D (by testing whether F → G) – this is
a very rare property, since determining whether G → D is NP-complete for
most graphs D (Hell and Nešetřil [48], Bang-Jensen et al. [11]).

Dual pairs of graphs and even of relational structures were characterized
by Nešetřil and Tardif [76]. All the dualities turn out to be of the form
(T, DT ), where T is a finite (relational) tree and DT is uniquely determined
by T (however, its structure is far more complex). These results imply that
while in most classes of structures there are infinitely many dualities, they
are relatively quite rare. However, a much richer spectrum of dualities arises
when we restrict the notion to a particular class of graphs.

A restricted duality for a class of graphs G is a pair consisting of a finite
set of connected graphs F and a finite graph D ∈ Forbh(F) such that for
any G ∈ G, G ∈ Forbh(F) if and only if G → D. In other words, the class
G ∩ Forbh(F) has an upper bound D belonging to Forbh(F).

A class G is said to have all restricted dualities if for any finite set of
connected graphs F , the class G ∩Forbh(F) has an upper bound in the class
Forbh(F). Obviously, not all graph classes have all restricted dualities. The
main result of Nešetřil and Ossona de Mendez [72] is the following sufficient
condition:

Theorem 2.6 ([72]) Any class of graphs with bounded expansion has all
restricted dualities.

Since proper minor-closed classes and bounded degree graphs form classes
of bounded expansion, this theorem generalizes both of the mentioned results.
It also has many interesting consequences and connections:

The well-known Hadwiger conjecture states that every graph without a
Kt minor has chromatic number at most t − 1. In other words, if Gt is the
class of all graphs without Kt minor, the conjecture claims that Kt−1 is a
maximum (in the homomorphism ordering) of Gt. In fact, as Naserasr and
Nigussie [65] and independently Nešetřil and Ossona de Mendez [67] showed,
the Hadwiger conjecture is equivalent to the claim that every proper minor-
closed class has a maximum. Theorem 2.6 shows at least that Gt has a Kt-free
upper bound.

The exact p-power of a graph G is the graph G♯p on the vertex set V (G),
in that two vertices u and v are joined by an edge if and only if there exists
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a path u from to v in G of length exactly p. If p is even, then the graph G♯p

may have arbitrarily large chromatic number even if G is a tree. Surprisingly,
Theorem 2.6 shows that if p is odd, this is not the case: Let G be any class
with bounded expansion, and let F = {Cp} consist of the cycle on p vertices.
By Theorem 2.6, there exists a graph D of odd girth greater than p such that
for each G ∈ G, Cp 6→ G if and only if G → D. This implies the if G ∈ G has
odd-girth greater than p, then G♯p has a proper coloring by |V (D)| colors.
Note that |V (D)| is a constant dependent only on G and p.

The proof of Theorem 2.6 uses the following lemma, that claims that
there are only finitely many cores with bounded tree-depth (a graph G is a
core if G is not homomorphic to any of its proper subgraphs):

Lemma 2.7 ([74]) For any positive integer p there exists a number N such
that if G is a connected graph with td(G) = p, then G contains a subgraph
H with at most N vertices such that G → H.

Let Dp be the finite set of cores with tree-depth at most p. Theorem 2.4
thus implies the following claim: For any class of graphs with bounded ex-
pansion G and any p > 0, there exists N such that any graph G ∈ G has
a partition to at most N parts with the property that each connected com-
ponent of the subgraph induced by the union of any j ≤ p parts is homo-
morphism equivalent to a graph in Dj. This interprets Theorem 2.4 as a
kind of a “sparse regularity lemma”, claiming that each graph in a bounded
expansion class has a partition such that that the graphs induced by a few
of the parts are of quite precisely described types.

2.4 Tree-depth

The previous sections indicate the importance of the tree-depth. Let us
mention some of the results regarding this graph property. The tree-depth
was introduced by Nešetřil and Ossona de Mendez [74], but the equivalent or
similar notions appeared in several contexts, e.g. as the minimum height of
an elimination tree (Deogun et al. [33]), a rank function of a graph (Nešetřil
and Švejdarová [77]), or the rank coloring [14, 50, 81, 90, 91].

The tree-depth is minor-monotone (td(H) ≤ td(G) if H ≺ G), and
bounds the tree-width of the graph – tw(G) < td(G) ≤ (tw(G) + 1) log2 n
holds for any graph G with n vertices. The bound tw(G) < td(G) is an easy
consequence of the fact that the closure of any rooted forest is chordal, and
for a chordal graph, the tree-width is equal to the size of the maximum clique
minus one. The upper bound is by Bodlaender et al. [15] and Nešetřil and
Ossona de Mendez [74]. However, a graph with low tree-width may have an
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arbitrarily large tree-depth, since a path on 2k vertices has tree-depth k + 1.
In fact, the tree-depth of a graph G is high if and only if G contains a long
path:

Lemma 2.8 (Nešetřil and Ossona de Mendez [71]) If k is the number
of the vertices of the longest path in a graph G, then ⌈log2(k+1)⌉ ≤ td(G) ≤
(

k+2
2

)

− 1.

The tree-depth of a graph G also can be defined using the following
inductive scheme (that gives rise to the elimination tree of the graph, whose
depth corresponds to the tree-depth of G):

• If |V (G)| = 1 then td(G) = 1.

• If G is not connected and G1, . . . , Gk are its components, then td(G) =
max{td(Gi)|i = 1, . . . , k}.

• If G is connected and |V (G)| > 1, then td(G) = 1+min{td(G− v)|v ∈
V (G)}.

Determining the tree-depth of a graph is NP-complete in general; in fact,
unless P = NP , there is no polynomial time algorithm that would approx-
imate the tree-depth with an error bounded by nε, where ε is a constant
0 < ε < 1 and n is the order of the graph, by Bodlaender [15]. On the other
way, there are many ways how to see that it is possible to decide whether
td(G) ≤ k for any fixed integer k:

• The inductive definition of the tree-depth provides an algorithm with
time complexity O(nk).

• Since the graphs with td(G) ≤ k form a proper minor-closed class, there
is a finite number of forbidden minors for this class, and an algorithm to
recognize the members of this class in time O(n3) exists by Robertson
and Seymour [85, 87].

• As Nešetřil and Ossona de Mendez [74] showed, every graph with
td(G) > k contains a subgraph H of bounded size with td(H) = k + 1
(we discuss this in greater detail in Section 5.1). This implies that there
is a finite number of forbidden subgraphs for the class of graphs with
td(G) ≤ k.

• Nešetřil and Ossona de Mendez [71] provide a linear-time algorithm to
verify whether td(G) ≤ k for any fixed integer k.
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Also, efficient algorithms are known for some special classes of graphs,
e.g., trees, cographs, permutation graphs, circular-arc graphs and cocompa-
rability graphs of bounded dimension (Deogun et al. [33], Schaffe [90], Schef-
fler [91]), graphs with bounded tree-width (Bodlaender et al. [14]), star-like
graphs and split graphs (Hsieh [50]). On the other hand, determining tree-
depth is NP-complete when restricted to cobipartite graphs (Pothen [81]).

We can also bound the tree-depth of graphs in many graph classes. One
such bound (by Nešetřil and Ossona de Mendez [74]) relates the tree-depth
of a graph to the size of its separators. For a graph G, let sG(k) be the
maximum of sep1/2(H) of a subgraph H ⊆ G with at most k vertices.

Lemma 2.9 ([74]) For any graph G with n vertices,

td(G) ≤
⌊log2 n⌋
∑

i=1

sG

( n

2i

)

.

This lemma implies the already mentioned bound td(G) ≤ (tw(G) +
1) log2 n, and bounds the tree-depth of graphs in minor-closed classes:

Lemma 2.10 ([74]) If a graph G does not contain Kh (for some integer
h > 0) as a minor, then td(G) ≤ (2 +

√
2)
√

h3n.

2.5 Separators and Expanders

The term “bounded expansion” suggests that it might be interesting to con-
sider the relationship with the previously studied notion of the graph expan-
sion and expander graphs. Both expanders and separators are studied inten-
sively for their applications in design of algorithms (Lipton and Tarjan [61],
Alber et al. [1], Baker [10]), derandomization (Gilman [44], Kabanets [53])
and graph theory (Wigderson and Zuckerman [94]). To make the distinction
clear, in this section we use the term bounded-depth minor expansion for the
definition of the expansion of a graph G based on the values ∇r(G).

The notion of the vertex expansion is in some sense dual to the notion of
the bounded-depth minor expansion: The bounded-depth minor expansion is
small unless there exists an obstruction (a bounded-depth minor with many
edges), whereas the vertex expansion is small if there exists an obstruction
for it to be large (a small separator). As we describe below, a large vertex
expansion implies a large bounded-depth minor expansion.

Alon, Seymour and Thomas [6] have showed that graphs in any proper
minor-closed class of graphs have separators whose size is sublinear in the
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number of vertices, hence the graphs in such a class are not expanders.
Nešetřil and Ossona de Mendez [71] extended this result for classes with
subexponential bounded-depth minor expansion:

Theorem 2.11 ([71]) Let f be a function such that log f(n) = o(n). If G
is a class of graphs with expansion bounded by f , then the graphs in G have
sublinear vertex separators.

This theorem cannot be improved significantly, since a random cubic
graph on n vertices almost surely has no separator of size n

20
(Bollobás [18],

Kostochka and Melnikov [58]), hence if log f(n) = (log 2)n, the graphs in the
class do not necessarily have sublinear separators.

The result is based on the following theorem by Plotkin et al. [80]:

Theorem 2.12 (Plotkin et al. [80]) Given a graph G with m edges and
n vertices, and integers l and h, there is an O(mn/l) time algorithm that
will either produce a Kh-minor of G of depth at most l log2 n, or will find a
separator of size at most O(n/l + 4lh2 log n).

Can Theorem 2.11 be reversed, claiming that a graph with exponential
expansion does not have small separators? Such a claim would be obvi-
ously false, since the large bounded-depth minor expansion can be caused
by a relatively small subgraph of the graph, but the whole graph still can
contain a small separator. Nevertheless, there is a more interesting coun-
terexample to this hypothesis: Consider the graph G = sdlog n(Kn). This
graph has Ω(n2 log n) vertices, exponential bounded-depth minor expansion
(since ∇log n(G) = n), however the vertices of degree greater than two form
a separator whose size is n, i.e., sublinear in the number of vertices.

Formulating the question more carefully, we want to ask whether a graph
with a large bounded-depth minor expansion contains a (reasonably large)
subgraph without small separators. This obviously handles the case of the
expansion being caused by only a part of the graph. The other counterex-
ample for the naive version of the question (the graph sdlog n(Kn)) contains
a log n-subdivision of a random 3-regular graph, that almost surely does not
have a separator whose size would be sublinear in n. Since such a graph has

N = θ(n log n) vertices, all of its separators have size Ω
(

N
log N

)

. Therefore,

even in this setting it is impossible to match Theorem 2.11 exactly, and claim
that such a graph does not have a sublinear separator. However, as we show

in Section 3.2.2, the lower bound of Ω
(

N
log N

)

is correct.
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2.6 Algorithmic Considerations

The proofs of most of the results mentioned in the previous sections are con-
structive and can be modified to provide efficient algorithms. In particular,
there exists a linear time algorithm that given a graph G from a class with
bounded expansion, finds the p-tree-depth coloring of G whose existence is
guaranteed by Theorem 2.4 (Nešetřil and Ossona de Mendez [71]). The mul-
tiplicative constant of the algorithm depends on the expansion of the class
and on p. The same paper also shows how such a coloring can be used to
solve several other problems efficiently.

Consider the problem of deciding whether a graph G with n vertices con-
tains a subgraph isomorphic to a fixed graph H with k vertices. In general,
the best known algorithm (by Nešetřil and Poljak [75]) for this problem has

time complexity O(n
αk
3 ), where α is the exponent of the square matrix mul-

tiplication. Using the best known multiplication algorithm of Coppersmith
and Winograd [24], this gives time complexity O(n0.792k). The special case
of planar graphs was studied by Plehn and Voigt [79], Alon et al. [5] and fi-
nally Eppstein ([38, 39]) who gave a linear-time algorithm. Eppstein [39] also
shows that counting the number of subgraphs isomorphic to a fixed graph
H in a graph with bounded tree-width can be done in linear time. Together
with the existence of the low tree-depth coloring, this implies the following
result:

Theorem 2.13 ([71]) Let G be a class with bounded expansion and H a
fixed graph. Then, there exists a linear time algorithm that for any G ∈ G
determines the number of subgraphs of G isomorphic to H.

Monadic Second-Order Logic (MSOL) is the extension of First-Order
Logic (FOL) that includes vertex and edge sets and the relation of belonging
to these sets. A well-known result of Courcelle [27, 28] states that a property
expressible in MSOL can be verified for graphs with bounded tree-width in
linear time. A similar result for graphs with bounded expansion follows:

Theorem 2.14 ([71]) Let G be a class of graphs with bounded expansion and
let p be a fixed integer. Let φ be a FOL sentence. Then, there exists a linear
time algorithm to check whether the following sentence is true: (∃X)(|X| ≤
p) ∧ (G[X] |= φ).

For instance:

Theorem 2.15 ([71]) Let G be a class of graphs with bounded expansion
and H a fixed graph. Then, there exist linear time algorithms that for a
graph G ∈ G decide whether
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• H → G,

• H is a subgraph of G,

• H is an induced subgraph of G.

We consider some further algorithmic questions (regarding complexity of
determining or approximating the values ∇r(·) that determine the expansion
of the graph) in Chapter 4, and apply these results to improve the bounds on
the number of colors in the low tree-depth coloring of a graph with bounded
expansion in Section 5.2.

2.7 Relationships of Graph Classes

Figure 2.1 summarizes the known and conjectured relationships between var-
ious graph classes and graph parameters we consider with respect to the
bounded expansion. The arrows in the figure should be interpreted in the
following sense: if P1 and P2 are quantitative graph properties and P1 → P2,
then there exists a function f such that P2(G) ≤ f(P1(G)) for any graph
G. For qualitative properties, the arrows can be read as implications (e.g.,
planar graphs are a proper minor-closed class of graphs), and an arrow from
a qualitative property P1 to a quantitative parameter P2 reads as that the
graphs with property P1 have the parameter P2 bounded by a constant, or
vice versa (e.g., graphs with arrangeability bounded by a constant have lin-
ear Ramsey numbers). The dotted arrows correspond to the conjectured
relationships.

Most of the claims depicted in the figure are discussed in detail elsewhere
in this thesis, however let us briefly summarize the nontrivial ones here:

• Nešetřil and Ossona de Mendez [69] have proved that the arrangeability
of a graph G is bounded by a function of ∇1(G). It also follows from
our Theorem 3.7.

• It is easy to see that a p-arrangeable graph has acyclic chromatic num-
ber at most 2p+2: Given the ordering L that witnesses the arrangeabil-
ity, we assign each vertex v a color different from the colors of vertices
in

L−(v) ∩



N(v) ∪
⋃

u∈N(v)∩L+(v)

N(u)



 ,

and observe that this coloring is acyclic. This fact also follows from
Theorem 3.3 (with a much worse bound).
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bounded expansion

∆(·)

nontrivial minor-closed

planar

...

∇2(·)

∇1(·)

arrangeabilitycol(·)

χa(·)χhg(·)

χg(·) ∇0(·)

χ(·)

linear Ramsey number

subdivided

Figure 2.1: The relationships of various graph classes.
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• Zhu and Dinsky [35] have proved that a function of the acyclic chro-
matic number bounds the hereditary game chromatic number, and con-
jectured that the reverse is true as well.

• The game coloring number that bounds the (hereditary) game chro-
matic number was defined in order to capture the concept common
in many proofs regarding the game chromatic number. Kierstead and
Trotter [55] have proved that a function of the arrangeability bounds
the game chromatic number, and their proof in fact works for the game
coloring number as well. Inspired by the conjecture of Zhu and Din-
sky and by the relationship between the acyclic chromatic number and
the arrangeability that follows from Theorems 3.3 and 3.7, we pose
Conjecture 3.3 stating that the reverse is true as well, i.e., that the
arrangeability of the graph is bounded by a function of its coloring
number.

• A class of graphs G has linear Ramsey number if there exists a constant
c such that a monochromatic copy of any graph G ∈ G appears in any
coloring of the edges of the graph Kc|V (G)| by two colors. The famous
Erdős-Burr conjecture [22] states that every degenerate graph has linear
Ramsey number. The best known results regarding the conjecture are
by Chen and Schelp [23] that states that the classes of graphs with
bounded arrangeability have a linear Ramsey number, and by Alon [3]
that shows that the subdivided graphs have a linear Ramsey number.



Chapter 3

Subdivisions

In this chapter, we study the relationship between the graph expansion and
other similar graph parameters and the existence of certain subdivisions in
such graphs. We provide a characterization of several of the graph parameters
discussed in the previous chapter in terms of forbidden subdivisions. In
addition to precisely describing graph classes in that these parameters are
bounded by a constant, these characterizations help to clarify the relationship
among the parameters.

Also, we consider the existence of a large cliques with edges subdivided
by a number of vertices bounded by a constant in graphs with large minimum
degree and use this result to characterize graphs with exponential expansion.
This characterization implies that such graphs contain large expander-like
subgraphs.

3.1 Forbidden Subdivisions

One of the parameters we consider is the acyclic chromatic number. Let us
first mention several past results. Borodin [20] has proved that the acyclic
chromatic number of every planar graph is at most 5. Nešetřil and Os-
sona de Mendez [66] have proved that every graph G has a minor H such
that χa(G) = O (χ(H)2). This implies that the acyclic chromatic number is
bounded by a constant for every proper minor-closed class of graphs. How-
ever, this result does not describe all graph classes with bounded acyclic
chromatic number, e.g., sd1(Kn,n) has acyclic chromatic number 3, but it
contains Kn as a minor.

On the other hand, Wood [95] has proved that the acyclic chromatic
number of sd1(G) is bounded by a function of the chromatic number of the
graph G and vice versa:

31
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Theorem 3.1 (Wood [95], Corollary 3) For each graph G,

√

χ(G)

2
< χa(sd1(G)) ≤ max(3, χ(G)).

A simple corollary of this theorem is the following characterization:

Corollary 3.2 Let G be a graph with χa(G) = c. If H is a graph such that
χ(H) ≥ 2c2, then G does not contain sd1(H) as a subgraph.

In Section 3.1.1, we prove that this statement essentially describes all
graphs with bounded acyclic chromatic number, i.e., that if G has high acyclic
chromatic number, it contains as a subgraph a ≤ 1-subdivision of a graph
with high chromatic number:

Theorem 3.3 Let c ≥ 4 be an integer and let d = 56(c − 1)2 log(c−1)
log c−log(c−1)

.

Let G be a graph with acyclic chromatic number greater than c(c − 1)c(d
2),

i.e., χa(G) ≈ exp(c7 log3 c). If χ(G) ≤ c, then G contains a subgraph G′ =
sd1(G

′′) such that the chromatic number of the graph G′′ is c.

This result generalizes the result of Nešetřil and Ossona de Mendez [66],
although our bound is much weaker than the quadratic one. The consequence
of Theorem 3.3 and Corollary 3.2 is the following characterization of graph
classes with the bounded acyclic chromatic number:

Corollary 3.4 Let G be any class of graphs such that the chromatic number
of every graph in G is bounded by a constant. The acyclic chromatic number
of graphs in G is bounded by a constant if and only if there exists a constant
c such that every graph G such that sd1(G) is a subgraph of a graph in G
satisfies χ(G) ≤ c.

Arrangeability turns out to be closely related to the acyclic chromatic
number. In Section 3.1.2, we show a precise characterization of graphs G
with bounded arrangeability in terms of average degrees of graphs whose ≤ 1-
subdivisions are subgraphs of G, analogical to Theorem 3.3 and Corollary 3.4.
Rödl and Thomas [89] have shown that every graph with arrangeability p8

contains a subdivision of the clique Kp as a subgraph; a result similar to
ours is implicit in their proof. However, the result we obtained is slightly
stronger. Komlós and Szemerédi ([56, 57, 92]) have proved that every simple
graph with average degree at least d2 contains a subdivision of Kd as a
subgraph, hence Theorem 3.7 implies that every graph with arrangeability
Ω(p6) contains a subdivision of Kp as a subgraph. Nešetřil and Ossona de
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Mendez [69] have proved that the arrangeability of a graph G is bounded by
a function of ∇1(G). This fact is also an easy consequence of Theorem 3.7.

Similarly, the greatest reduced average density of rank r of a graph G can
be characterized by the average degrees of graphs whose ≤ 2r-subdivisions
are contained in G. More precisely, if G is a ≤ 2r-subdivision of a graph
with minimum degree d, then ∇r(G) ≥ d

2
. In Section 3.1.3, we prove that on

the other hand, graphs with large ∇r(G) contain ≤ 2r-subdivisions of graphs
with high minimum degree. In the view of this result, one can consider the
arrangeability to be ∇1/2(G).

Also, in Section 4.3, we show an approximation algorithm that given a
graph G with ∇r(G) = d, produces a witness that proves that ∇r(G) ≤ f(d),
for some function f . This witness is a linear ordering of the vertices of G that
satisfies certain properties, thus allowing us to interpret the greatest reduced
average densities as stronger versions of the arrangeability.

3.1.1 Acyclic Chromatic Number

The goal of this section is to prove Theorem 3.3. We first prove a lemma
regarding the graphs with high density. Note that a graph G with acyclic
chromatic number at most c cannot have high density, as G is a union of

(

c
2

)

forests.

Lemma 3.5 Let c ≥ 4 be an integer and let G be a graph with the minimum
degree d > 56(c − 1)2 log(c−1)

log c−log(c−1)
, (i.e., d = Ω(c3 log c)). Then the graph G

contains a subgraph G′ that is the 1-subdivision of a graph with chromatic
number c.

Proof: Every graph contains a bipartite subgraph with at least half of the
edges of the original graph, i.e., G contains a bipartite subgraph G1 with
average degree more than d

2
. The graph G1 cannot be d

4
-degenerate, since

otherwise the average degree of G1 would be at most d
2
. Let G2 be a subgraph

of G1 with minimum degree at least d2 = d
4
. The graph G2 is bipartite, let

V (G2) = A ∪ B be a partition of its vertices to two independent sets such
that |A| ≤ |B|. Let a = |A| and b = |B|. Since the minimum degree of G2 is
at least d2, it follows that d2 ≤ a ≤ b.

Let q = 7 log(c−1)
log c−log(c−1)

. Note that d2

q
≥ 10. We construct a subgraph G3

in the following way: if b ≥ qa, then let G3 = G2, A′ = A and B′ = B.
Otherwise, we choose sets A′ ⊆ A and B′ ⊆ B as described in the next
paragraph, and let G3 be the subgraph of G2 induced by A′ and B′:

Let A′ be a subset of A obtained by taking each element of A randomly
independently with probability p = b

qa
. The expected size of A′ is ap = b

q
,
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and by Chernoff Inequality, the size of A′ is more than 2b
q

with probability less

than e−
3b
8q ≤ e−

3d2
8q ≤ e−

15
4 < 0.5. Consider a vertex v of B with degree s ≥ d2

in G2, and let s′ be the number of neighbors of v in A′ and r(v) = s′

s
. The

expected number of neighbors of v in A′ is ps. By Chernoff Inequality, the

probability that s′ < p
2
s is less than e−

3ps
28 ≤ e

3
28

· b
a
· d2

q ≤ e−
15
14 < 0.35. Let B′ be

the set of vertices v of B such that r(v) ≥ p
2
. The expected value of |B \B′|

is less than 0.35b, and by Markov Inequality, Prob [|B \ B′| ≥ 0.7b] ≤ 0.5.
Therefore, the probability that the set A′ has size at most 2b

q
while the set

B′ has size at least 0.3b is greater than zero. We let A′ and B′ be a pair of
sets that satisfies these properties.

Let a′ = |A′| and b′ = |B′|. Observe that the degree of every vertex of B′

in G3 is at least b
2qa

d2 ≥ 1
2q

d2 = (c − 1)2 = d3, and that b′ ≥ 0.3b ≥ 0.15qa′.
Let D1, . . . , Db′ ≥ d3 be the degrees of vertices of B′.

We show that the graph G3 contains as a subgraph the 1-subdivision of a
graph with chromatic number c. Suppose for contradiction that each graph
whose 1-subdivision is a subgraph of G3 has chromatic number at most c−1.
Let us consider only the subgraphs whose vertices of degree 2 created by
subdividing edges belong to B′. There are exactly NG =

∏b′

i=1

(

Di

2

)

such

subgraphs and NC = (c − 1)a′

colorings of A′ by c − 1 colors.
Let ϕ be a coloring of A′ by c − 1 colors. We determine the number of

subgraphs H ⊆ G3 such that all vertices of B′ have degree 2 in H , and ϕ is
a proper coloring of the graph obtained from H by suppressing the vertices
in B′. Let us consider a vertex v in B′ of degree D. Since ϕ is proper, the
two edges incident with v in H lead to vertices with different colors. Let M
be the neighborhood of v, |M | = D. Let mi be the number of vertices of M
colored by ϕ with the color i. The number s of the pairs of neighbors of v
that have different colors satisfies

s =
∑

1≤i<j≤c−1

mimj =
1

2

∑

1≤i,j≤c−1,i6=j

mimj =
1

2

c−1
∑

i=1

mi(D − mi)

s =
1

2

(

D2 −
c−1
∑

i=1

m2
i

)

≤ 1

2

(

D2 − D2

c − 1

)

.

Therefore, the number of the subgraphs of G3 for that ϕ is proper is at

most NP =
(

1
2

(

1 − 1
c−1

))b′∏b′

i=1 D2
i . For each subgraph of G3 there exists at

least one proper coloring, hence NG ≤ NCNP , and we obtain

(c − 1)a′

(

1

2

(

1 − 1

c − 1

))b′ b′
∏

i=1

D2
i ≥

b′
∏

i=1

(

Di

2

)
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(c − 1)a′

(

1 − 1

c − 1

)b′

≥
b′
∏

i=1

(

1 − 1

Di

)

≥
(

1 − 1

d3

)b′

Since b′ ≥ 0.15qa′ and
(

1 − 1
d3

)

(

1 − 1
c−1

)−1
= c

c−1
> 1, it follows that

(c − 1)a′ ≥
(

(

1 − 1

d3

)(

1 − 1

c − 1

)−1
)0.15qa′

(c − 1) ≥
(

c

c − 1

)0.15q

This is a contradiction, since

(

c

c − 1

)0.15q

>

(

c

c − 1

)
log(c−1)

log c−log(c−1)

= c − 1.

Let us now prove the main theorem of this section.

Proof of Theorem 3.3: We prove the contravariant implication: “Let G
be a graph with χ(G) ≤ c. If all graphs whose 1-subdivision is a subgraph
of G have chromatic number at most c − 1, then G has acyclic chromatic

number at most c1 = c(c − 1)c(d
2).”

Let us assume that G is a graph with chromatic number at most c, such
that all graphs whose 1-subdivision is a subgraph of G have chromatic number
at most c−1. By Lemma 3.5, the graph G is d-degenerate. Let L = v1, . . . , vn

be an ordering of the vertices of G in such a way that each vertex has at most
d neighbors after it; let Nt = L+(vt) ∩N(v) be the set of the neighbors of vt

that are after vt in the ordering L, and let vt,j be the j-th of these neighbors,
for j = 1, 2, . . . , |Nt|.

Suppose that there exists a proper coloring ϕ of G such that each set Nt

is rainbow (i.e., no two vertices in Nt have the same color). Let us consider
an arbitrary cycle C in G. Let v be the vertex of C that appears first in the
ordering L, and let u and w be the neighbors of v in C. The colors ϕ(u),
ϕ(v) and ϕ(w) are mutually distinct, hence C is not colored by two colors.
Therefore, the coloring ϕ is acyclic.

Let us now construct a coloring ϕ that satisfies this property. Let ϕ0 be a
fixed proper coloring of G by c colors. For i = 1, . . . , c and 1 ≤ j1 < j2 ≤ d,
we define the graph Gi,j1,j2 in the following way: the vertices of Gi,j1,j2 are
the vertices of G, and for each t such that ϕ0(vt) = i, we join by an edge the
vertices vt,j1 and vt,j2 (if both of them exist). Note that the 1-subdivision of
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Gi,j1,j2 is a subgraph of G, hence Gi,j1,j2 can be colored by c − 1 colors. Let
ϕi,j1,j2 be such a coloring.

We color each vertex v of G with the c
(

d
2

)

+ 1-tuple ϕ(v) consisting of
ϕ0(v) and ϕi,j1,j2(v) for i = 1, . . . , c and 1 ≤ j1 < j2 ≤ d. Each Nt is rainbow
in this coloring, as the vertices vt,a and vt,b get distinct colors in the coloring
ϕϕ0(vt),a,b. Also, the coloring ϕ is proper since the coloring ϕ0 is proper.
Therefore, we found the acyclic coloring ϕ of G by c1 colors, hence the claim
of the theorem holds.

3.1.2 Arrangeability

Let us start with a simple observation regarding the arrangeability. Let G be
the 1-subdivision of a graph with minimum degree d > 2, and consider the
ordering L that shows that its arrangeability is at most p. Let v be the last
vertex of degree greater than two in this ordering. Note that |N(v)∩L−(v)| ≤
p + 1 and |N(v) ∩ L+(v)| ≤ p. Since the degree of v is at least d, the graph
G is not p-arrangeable for p < d−1

2
. The goal of this section is to prove

that on the other hand, every graph with large arrangeability contains a
≤ 1-subdivision of a graph with large minimum degree. First, we show the
following characterization of graphs with small arrangeability:

Lemma 3.6 If G is a p-arrangeable graph, then there exists ordering L of
vertices of G such that each vertex has the back-degree at most p + 1 and
the double back-degree at most 2p + 1. On the other hand, if there exists an
ordering L of vertices of a graph G such that the back-degree of each vertex
is at most d1 and the double back-degree is at most d2, then the graph G has
arrangeability at most d1d2.

Proof: Suppose first that the graph G is p-arrangeable, and let L be an
ordering of the vertices of G that witnesses its arrangeability. Let S be a
double-star in G with center v. As we observed before, the back-degree of v
is at most p + 1, hence S has at most p + 1 middle vertices in L−(v). By the
p-arrangeability of G, the double-star S also has at most p middle vertices
in L+(v) whose ray vertex belongs to L−(v). Therefore, d−

2 (v) ≤ 2p + 1.
Let us now assume that L is an ordering of vertices of the graph G such

that for each v, d−(v) ≤ d1 and d−
2 (v) ≤ d2. Consider an arbitrary vertex v,

and let X = L−(v)∩⋃u∈N(v)∩L+(v) N(u). For each vertex x ∈ X, let us choose

one of its neighbors ux ∈ N(v)∩L+(v) arbitrarily, and let U = {ux : x ∈ X}.
By the definition of the double back-degree, |U | ≤ d2. On the other hand,
each vertex in U has at most d1 neighbors before it, hence |X| ≤ d1d2.
Therefore, the ordering L witnesses that G is d1d2-arrangeable.
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Let us formulate the main theorem of this section:

Theorem 3.7 Let d ≥ 1 be an arbitrary integer and p = 4d2(4d + 5). Let
G be a d-degenerate graph. If G is not p-arrangeable, then G contains a
subgraph G′ = sd1(G

′′) such that the minimum degree of G′′ is at least d.

Proof: Let G be a d-degenerate graph that is not p-arrangeable and let n
be the number of vertices of G. Let d1 = 4d and d2 = d(4d+5) and consider
the following algorithm that attempts to construct an ordering of vertices of
G such that for each vertex v, d−(v) ≤ d1 and d−

2 (v) ≤ d2: We set G0 = G.
In the step i > 0, if there exists a vertex v of Gi−1 such that the degree of v in
Gi−1 is at most d1 and each double-star S in G with center v has at most d2

ray vertices in V (Gi−1), then let vn−i+1 = v and Gi = Gi−1−v. Note that we
consider also the double-stars that are not subgraphs of Gi−1. Obviously, if
this algorithm succeeds in each step, the ordering L = v1, v2, . . . , vn satisfies
the required properties.

By Lemma 3.6, since p = d1d2 and G is not p-arrangeable, this algorithm
fails on G. This means that there exists i such that each vertex v of Gi−1

has more than d1 neighbors in Gi−1, or is a center of a double-star in G
with more than d2 ray vertices in V (Gi−1). Let V1 be the set of vertices of
degree greater than d1 in Gi−1, and let V2 = V (Gi−1) \ V1. Let n1 = |V1|
and n2 = |V2|. Each vertex v in V2 has degree at most d1 in Gi−1, hence
v is a center vertex of a double-star with more than d2 − d1 ray vertices
in V (Gi−1) and all middle vertices in V (G) \ V (Gi−1); let us choose such a
double-star Sv for each vertex v ∈ V2 arbitrarily. Let X be the set of the
chosen double-stars, X = {Sv|v ∈ V2}.

Let M be the set of middle vertices of double-stars in X, let m = |M |,
and let GX be the bipartite graph on V2 ∪ M (note that V2 and M are
disjoint) whose set of edges consists of all the middle edges of the double-
stars in X. Since the graph G is d-degenerate, the average degree of GX

is at most 2d. On the other hand, each vertex in V2 has degree at least
d2 − d1 in GX , hence d(m + n2) ≥ |E(GX)| ≥ n2(d2 − d1). It follows that

m ≥ n2(d2−d1−d)
d

= 4dn2 = d1n2. For each vertex u ∈ M , let us choose an
arbitrary double-star Tu ∈ X such that u is a middle vertex of Tu. Let us
remove u together with the corresponding ray vertex from each double-star
in X except for Tu. Let X ′ be the set of double-stars obtained this way. The
double-stars in X ′ have disjoint middle vertices, and in total m rays (the ray
vertices do not have to be disjoint).

Let us consider the graph H with the vertex set V1∪V2 in that the vertices
u and v are adjacent if:

1. u ∈ V1 and {u, v} is an edge of Gi−1, or
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2. u is a center of a star T ∈ X ′, and v is a ray vertex of T .

A ≤ 1-subdivision of H is a subgraph of G. Observe that the graph H
has n1 + n2 vertices, and at least 1

2
(n1d1 + m) edges. Using the lower bound

m ≥ d1n2, we conclude that |E(H)| ≥ d1

2
(n1 + n2).

Let H ′ be the subgraph of H , whose edges are only the edges connecting
the ray vertices of the double-stars in X ′ with their centers. The graph G
is d-degenerate, hence H ′ has at least (d1

2
− d)(n1 + n2) = d(n1 + n2) edges.

Therefore, the average degree of H ′ is at least 2d. It follows that H ′ has a
subgraph G′′ with the minimum degree at least d. The graph G′ = sd1(G

′′)
is a subgraph of G that satisfies the claim of the theorem.

3.1.3 Greatest Reduced Average Density

We now focus on the characterization of graphs with bounded expansion. A
non-empty graph H is an average (resp. minimum) degree (r, d)-witness if
there exists a (r, d)-witness decomposition D = {(S1, s1), . . . , (Sk, sk)} of H ,
i.e., vertex-disjoint nonempty induced subgraphs S1, S2, . . . , Sk of H such
that V (S1), V (S2), . . . partition V (H), and vertices si ∈ V (Si) such that

• the subgraphs Si are trees, and

• for each vertex v ∈ Si, the distance of v from si in Si is at most r, and

• for each i 6= j, there is at most one edge between Si and Sj in H , and

• the average (resp. minimum) degree of the minor obtained from H by
identifying all the vertices of each tree Si with si is at least d.

Observe that ∇r(G) ≥ d if and only if G contains an average degree
(r, 2d)-witness as a subgraph. Therefore, if ∇r(G) ≥ d then G contains a
minimum degree (r, d)-witness as a subgraph.

The size of the decomposition is the number of its trees. The vertices si

of a witness decomposition are called centers. We consider the trees to be
rooted in the centers. The edges that belong to the trees of the decomposition
are called internal and the remaining edges are external. For a non-center
vertex v ∈ V (Si), the unique internal edge from v on the shortest path to si

is called the parent edge and its vertex different from v is called the parent
vertex.

We always assume that each leaf of a tree Si is incident to at least one
external edge, unless the leaf is the center of the tree; otherwise, the leaf
vertex may be removed from the witness. When an external edge is re-
moved from the decomposition, we also repeatedly remove leaves that are
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incident to no external edges. Similarly, the operation of removal of a tree
from the decomposition D of a graph H is defined in the following way: The
decomposition D′ = {(S ′

1, s
′
1), . . .} of a graph H ′ =

⋃

i V (S ′
i) is obtained

from the decomposition {(S1, s1) . . . , (St−1, st−1), (St+1, st+1), . . .} by repeat-
edly removing the leaves that are incident with no external edges. Given
an internal edge e ∈ St, the decomposition D′ of the graph H is obtained
from D by splitting on e if D′ consists of trees S1, . . . , St−1, St+1, . . ., and the
two trees S ′

t and S ′′
t obtained from St by removing e. If st ∈ S ′

t then the
center of S ′

t is st and the center of S ′′
t is the common vertex of e and S ′′

t . The
edge e becomes external by this operation. Expunging of a center vertex v is
performed by first splitting on all the internal edges incident to v, and then
removing the tree consisting of v.

Lemma 3.8 Let H be a minimum degree (r, d)-witness with a decomposition

D = {(S1, s1), (S2, s2), . . .} and let d1 = r+1

√

d
4
. There exists a minimum de-

gree (r, d1)-witness H ′ ⊆ H with a decomposition D′ = {(S ′
1, s

′
1), (S

′
2, s

′
2), . . .}

such that the degree of each center is at least d1.

Proof: We construct the new decomposition D′ by repeatedly expunging
the vertices v such that v is a center and its degree is less than d1, as long
as any such vertices exist. Let us show that the decomposition D′ obtained
by this construction is non-empty.

Let k be the size of D and let e be the number of external edges of
D. Note that e ≥ d

2
k. Let us count the number of external edges that get

removed by expunging the vertices. If an edge e is removed by expunging a
vertex v, let us assign e to the tree in D that contains the vertex v. When
a vertex is expunged, its degree is less than d1. The depth of each tree
in the decomposition D is at most r, thus there are at most dr+1

1 edges
assigned to each tree. Therefore, at most dr+1

1 k external edges are removed.
Since e ≥ d

2
k > dr+1

1 k, the decomposition D′ is non-empty, and it obviously
satisfies the claim of the lemma.

Consider a minimum degree (r, d)-witness H with the decomposition D
such that the degree of each center is at least d. Given a non-center vertex
v ∈ Si, let B(v) be the component of Si − si that contains v. The vertex
vertex v ∈ Si is called lonely v is a center of Si, or if there is only one
external edge incident to the vertices in B(v) and this edge is incident to v.
Note that in this case, B(v) is a path with the end vertex v. An external
edge e = {u, v} is called critical if u or v is lonely, and bicritical if both u
and v are lonely. Observe that there exists an (r, d)-witness H ′ ⊆ H with a
decomposition D′ such that the degree of each center is at least d and each
external edge is critical.
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Theorem 3.9 Let r, d ≥ 1 be arbitrary integers and let p = 4 (4d)(r+1)2. If
∇r(G) ≥ p, then G contains a subgraph G′ that is a ≤ 2r-subdivision of a
graph with minimum degree d.

Proof: Let G be a graph with ∇r(G) ≥ p. As we noted before, there
exists a minimum degree (r, p)-witness H ⊆ G. Let d1 = r+1

√

p
4

= (4d)r+1.
By Lemma 3.8, there exists a minimum degree (r, d1)-witness H ′ ⊆ H with
a decomposition D′ = {(S ′

1, s
′
1), (S

′
2, s

′
2), . . .} such that the degree of each

center is at least d1. Furthermore, we may assume that each external edge
in the decomposition D′ is critical.

Let b = r+1
√

d1 = 4d. We create a new decomposition D′′ of a graph
H ′′ ⊆ H ′ by splitting on the parent edges of all non-center vertices whose
degree is greater than b. After splitting on edge uv, where u is the parent
vertex of v, if u is not lonely, then we also remove the edge e. Let us call
the center vertices of D′ the old centers, and the center vertices of D′′ that
are non-center in D′ the new centers. The decomposition D′′ satisfies the
following properties:

1) All old centers have degree at least d1 and all new centers have degree
at least b, and

2) all non-center vertices have degree at most b, and

3) all external edges are critical, and

4) all external edges between trees with the new centers are bicritical (all
such edges were internal in D′′), and

5) the lonely vertex of each external edge that is not bicritical belongs to
a tree whose center is old.

We construct a graph G′′ in the following way: For each tree S with
the center s in the decomposition D′′ and for each component C of S − s
that is incident with more than one external edge, we select one external
edge incident to a vertex in C arbitrarily. Let W be the set consisting of
all vertices incident with the selected edges or with the bicritical edges of
D′′. The graph G′′ is the induced subgraph of H ′′ with the vertex set that
consists of the centers of D′′, the vertices in W and the vertices on the paths
that join the vertices of W with the centers of their trees. Observe that all
the non-center vertices of G′′ have degree exactly 2, i.e., the graph G′′ is a
≤ 2r-subdivision of some graph F ′′.

Let us compute average degree of F ′′. Let nold be the number of old
centers, nnew the number of new centers, n = nold + nnew the number of
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vertices of F ′′ and m the number of edges of F ′′. The properties 1), 3), 4)
and 5) of D′′ imply that the degree of each new vertex in F ′′ is at least b,
hence m ≥ b

2
nnew. On the other hand, the total number of external edges in

D′′ is at least d1

2
nold, and by the properties 2) and 3) of D′′, the number of

external edges is decreased at most br times during the construction of G′′,
i.e., m ≥ d1

2br nold = b
2
nold. Hence m ≥ b

4
n, and the average degree of F ′′ is

at least b
2
.

Therefore, there exists a subgraph F ′ ⊆ F ′′ such that the minimum degree
of F ′ is at least b

4
= d. The corresponding subgraph G′ ⊆ G′′ is a ≤ 2r-

subdivision of F ′, hence the claim of the theorem holds.

On the other hand, if G is a graph with δ(G) = d, then ∇r(sd2r(G)) ≥ d
2
,

hence a graph has large rank r greatest reduced average density if and only if
it contains a ≤ 2r-subdivision of a graph with large minimum degree. More
precisely:

Corollary 3.10 For any integer r ≥ 0, there exist functions f1 and f2 such
that for any graph G,

• if G satisfies ∇r(G) ≥ f1(c), then it contains a ≤ 2r-subdivision of a
graph with minimum degree c, and

• if G contains a ≤ 2r-subdivision of a graph with minimum degree f2(d),
then ∇r(G) ≥ d.

3.1.4 Lower Bounds

Can the theorems derived in the previous sections can be strengthened, to
ensure existence of subdivisions with larger minimum degree or chromatic
number? In this section, we describe several constructions that constrain
such improvements.

Theorem 3.11 For each d ≥ 3 and r > 0, there exists a graph G with
maximum degree d and ∇r(G) = 1

2
d(d − 1)r.

Proof: The graph G is constructed from the complete graph G′ on d(d −
1)r+1 vertices in the following way: We replace each vertex v by a rooted tree
Tv of depth r, whose inner vertices have degree d (such a tree has d(d−1)r−1

leaves). For each pair of vertices u, v ∈ V (G′), we join by an edge arbitrary
leaves of Tu and Tv in such a way that each leaf has degree d in G. Since G′

is a minor of G of depth r, it follows that ∇r(G) ≥ 1
2
d(d− 1)r. On the other

hand, the maximum degree of G is d, thus each minor of depth at most r of
G has maximum degree at most d(d − 1)r, hence ∇r(G) = 1

2
d(d − 1)r.
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Theorem 3.12 For each d ≥ 3, there exists a graph G with maximum degree
d and arrangeability at least d(d−2)

8
.

Proof: Let G be an arbitrary d-regular graph of girth at least five, and L
be an ordering that witnesses that G is p-arrangeable. Let

dL
2 (v) =

∣

∣

∣

∣

∣

∣

L−(v) ∩
⋃

u∈N(v)∩L+(v)

N(u)

∣

∣

∣

∣

∣

∣

.

We count the sum S =
∑

v∈V (G) dL
2 (v) in two ways. Since dL

2 (v) ≤ p for
each vertex v, if n is the number of vertices of G, then S ≤ pn. On the
other hand, if x 6= y is a pair of vertices in N(v) ∩ L−(v) and x is before
y in the ordering L, then x is one of the vertices counted by dL

2 (y). Since
the girth of G is greater than four, for each vertex v, any pair of vertices
x, y ∈ N(v) ∩ L−(v) contributes exactly one to S, hence

S =
∑

v∈V (G)

(

d−(v)

2

)

= −1

4
dn +

1

2

∑

v∈V (G)

(

d−(v)
)2

.

Using the inequality between arithmetic and quadratic mean, we get

∑

v∈V (G)

(

d−(v)
)2 ≥

(

∑

v∈V (G) d−(v)
)2

n
=

1

4
d2n,

hence pn ≥ S ≥ d(d−2)
8

n, and the inequality p ≥ d(d−2)
8

follows.

The graphs constructed in Theorems 3.11 and 3.12 cannot contain sub-
divisions of graphs with minimum degree greater than d. It follows that in
Theorem 3.9, it is not possible to improve the bound for ∇r(G) to o(dr+1),
and in Theorem 3.7, we must require the arrangeability to be at least Ω(d2).

The gap between the bounds in the case of the acyclic chromatic number is
much wider. The best lower bound we know is the following: The graph Kn,n

has acyclic chromatic number n+1, but each graph whose 1-subdivision is a
subgraph of Kn,n has chromatic number O(

√
n). This sharply contrasts with

the exponential bound of Theorem 3.3. It would be interesting to decrease
the upper bound or to find an example showing that an exponential bound
is necessary.
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3.1.5 Game Chromatic Number

Zhu and Dinsky [35] have proved that the game chromatic number of a graph
is bounded by a function of the acyclic chromatic number, and conjectured
that each graph with high acyclic chromatic number contains a subgraph
with high game chromatic number, i.e., that the hereditary game chromatic
number and the acyclic chromatic number are bounded by a function of each
other. The consequence of Corollary 3.4 is that this conjecture is implied by
the following statement:

Conjecture 3.1 There exists a function f such that for each graph G, if
χ(G) ≥ f(c) then the game chromatic number of sd1(G) is at least c.

It is easy to show that the game chromatic number of sd1(Kn) is at least
log4 n. Rödl [88] has proved that a graph with large chromatic number con-
tains a large clique or a triangle-free subgraph with large chromatic number.
Therefore, it would suffice to prove the following equivalent claim:

Conjecture 3.2 There exists a function f such that for each triangle-free
graph G, if χ(G) ≥ f(c) then the game chromatic number of sd1(G) is at
least c.

There are known examples of graphs with acyclic chromatic number 3
and arbitrarily large game coloring number – Kierstead and Trotter [54] have
proved that the game coloring number of sd1(Kn,n) is θ(log n). On the other
hand, the game coloring number is bounded by the arrangeability of a graph.
It is natural to conjecture the following:

Conjecture 3.3 There exists a function f such that for each graph G, if G
is not f(c)-arrangeable then the game coloring number of G is at least c.

By Theorem 3.7, the equivalent statement is that there exists a function
f ′ such that δ(G) ≥ f ′(c) implies that the game coloring number of sd1(G)
is at least c.

3.2 Clique Subdivisions and Separators

We consider the problem outlined in Section 2.5: Do the graphs with large
bounded-depth minor expansion contain large subgraphs that do not have
small separators (i.e., have properties similar to expanders)? One notable
example that we have mentioned are the graphs sdlog n(Kn), that demonstrate
that an exponential expansion in general cannot imply a subgraph without
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a separator of size Ω
(

N
log N

)

, where N is the number of the vertices of the

subgraph. We show that this is the worst-case: We argue that every graph
with exponential expansion contains a subgraph “similar” to sdlog n(Kn), and

hence also a subgraph without a separator of size o
(

N
log N

)

.

3.2.1 Clique Subdivisions

We consider the existence of clique subdivisions in graphs with large min-
imum degree. A random graph on n vertices asymptotically almost surely
does not contain a clique of size greater than Ω(log n). On the other hand,
it is easy to see that a.a.s., it contains sd1(K√

n) as a subgraph. Mader [63]
and Erdős and Hajnal [40] have conjectured that there exists a constant c
such that any graph with average degree cp2 contains a subdivision of Kp.
This conjecture was finally proved by Komlós and Szemerédi [56, 57] and
Bollobás and Thomason [19]. A similar result holds for minors – a graph
with average degree Ω(p

√
log p) contains Kp as a minor, by Kostochka [59]

and Thomason [93].
Consider a graph G on n vertices with minimum degree nε, for some

constant 0 < ε < 1. If G is random, the expected diameter of G would
be constant (dependent on ε), and it is easy to prove that it contains a
subdivision of a large clique such that each edge is subdivided by a constant
number of vertices. The question is, whether this claim holds in general.
The proof of Bollobás and Thomason [19] uses an argument from that the
lengths of the paths that replace the edges of the clique are not easy to derive.
The proof of Komlós and Szemerédi [57] is more straightforward – it finds
a subgraph of G that behaves as an expander, shows that each expander
contains a subdivision of a graph with O(d) vertices and Ω(d2) edges (where
d is the average degree of G), and in this dense graph finds a subdivision
of a clique using Regularity Lemma. The edges of the clique are subdivided
polylogarithmic number of times (this comes from the use of the expander
to boost the degree).

Below, we derive a result that shows that a graph with minimum degree nε

contains the c-subdivision of a clique on nµ vertices as a subgraph, for some
constant c and µ (depending only on ε). The constant µ is much smaller
than ε

2
of the previous results, though. We use the following lemma to boost

the exponent in the minimum degree:

Lemma 3.13 For any ε (0 < ε < 1), there exists n0 such that every graph
G on n ≥ n0 vertices with minimum degree at least nε contains as a subgraph
sd1(Knε3 ) or the 1-subdivision of a graph with n1 = Ω(nε−ε3

) vertices and
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minimum degree at least d = Ω

(

n
ε+ε2 1−ε−ε2

1−ε+ε3

1

)

.

Proof: Let

n0 = max

(

40
1

ε−ε3 ,

(

4

3

)
1

1−ε+ε3

,

(

28

3

)
1
ε3

)

,

and p = 2n−ε+ε3
(note that p ≤ 1). Let A be a subset of V (G) obtained by

taking each vertex randomly independently with probability p. The expected
size of A is pn = 2n1−ε+ε3

, and by Chernoff Inequality,

Prob [|A| ≥ 2pn] < e−
3
8
pn ≤ e−1 <

1

2
,

since n ≥
(

4
3

)
1

1−ε+ε3 .
Consider an arbitrary vertex v ∈ V (G) of degree d ≥ nε. The expected

number of neighbors of v in A is dp ≥ 2nε3
, and by Chernoff Inequality,

the probability that the number of neighbors is at most nε3
is less than

e−
3
14

nε3 ≤ 1
5
, since n ≥

(

28
3

)
1

ε3 . Let B′ be the set of vertices in V (G) that

have at least nε3
neighbors in A. The expected value of the size |V (G) \ B′|

is at most 1
5
n, hence by Markov Inequality, Prob

[

|V (G) \ B′| ≥ 2
5
n
]

≤ 1
2
.

Therefore, with nonzero probability, |A| ≤ 4n1−ε+ε3
and |B′| ≥ 3

5
n; let us fix

such a pair of sets, and set B = B′ \A. Note that |B| ≥ n
2
, since n ≥ 40

1
ε−ε3 .

Let us form a graph G′ with the vertex set A, whose edges correspond to
the vertices of B: We order the vertices of B arbitrarily, and for each vertex
v ∈ B, if N(v)∩A is not yet a clique in G′, we join two nonadjacent vertices
in N(v)∩A. In the end, if there exists a vertex v ∈ B such that N(v)∩A is a
clique in G′, then G contains sd1(Knε3 ) as a subgraph. Otherwise, G′ (whose

1-subdivision is a subgraph of G) has |B| ≥ n
2

edges and |A| ≤ 4n1−ε+ε3

vertices, hence its average degree is at least 1
4
nε−ε3

. The graph G′ contains a

subgraph G′′ whose minimum degree is at least d1 = 1
8
nε−ε3

.

Let n1 = |V (G′′)|. Note that 1
8
nε−ε3 ≤ n1 ≤ 4n1−ε+ε3

, in particular,

n = Ω

(

n
1

1−ε+ε3

1

)

. Expressing d1 relatively to n1, we obtain

d1 = Ω

(

n
ε−ε3

1−ε+ε3

1

)

= Ω

(

n
ε+ε2 1−ε−ε2

1−ε+ε3

1

)

,

hence G′′ satisfies the conditions of the lemma.
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Note that if ε ≤
√

5−1
2

, then the application of Lemma 3.13 increases the
exponent in the expression for the minimum degree. The same technique
can be used to show that for ε > 0.5, the graph with minimum degree nε

contains the 1-subdivision of a large clique:

Lemma 3.14 There exists n0 such that every graph G with n ≥ n0 vertices
and minimum degree at least 4n0.6 contains sd1(Kn0.1) as a subgraph.

Proof: The proof proceeds analogically to the proof of Lemma 3.13. We
set p = 1

2
n− 1

2 , and choose elements of A randomly independently with prob-

ability p. With high probability, the set A has at most n
1
2 elements. We let

B′ be the set of vertices that have at least n0.1 neighbors in A, and show that
with high probability, |B′| ≥ 3

5
n. Then, we choose the set A of size at most

n
1
2 and a set B ⊆ B′ disjoint with A such that |B| ≥ n

2
.

We form a graph G′ with the vertex set A, whose edges correspond to
the vertices of B: For each vertex v ∈ B such that N(v) ∩ A is not yet a
clique in G′, we add an edge between two nonadjacent vertices in N(v) ∩A.
If there exists a vertex v ∈ B such that N(v) ∩ A is a clique in G′, then G
contains sd1(Kn0.1) as claimed. However, if this were not the case, then G′

would be a simple graph with at most n
1
2 vertices and at least n

2
edges, which

is a contradiction. We conclude that G must contain the 1-subdivision of a
clique with n0.1 vertices as a subgraph.

The main result is a simple consequence of Lemmas 3.13 and 3.14:

Theorem 3.15 For each ε (0 < ε ≤ 1) there exist integers n0 and c0 and a
real number µ > 0 such that every graph G with n ≥ n0 vertices and minimum
degree at least nε contains sdc(Knµ) as a subgraph, for some c ≤ c0.

Proof: If ε > 0.6, then the statement follows from Lemma 3.14. Consider
the case ε ≤ 0.6. We apply Lemma 3.13 repeatedly to increase the exponent –
note that if sda(G1) is a subgraph of G and sdb(G2) is a subgraph of G1, then
sd(a+1)(b+1)−1(G2) is a subgraph of G. On the interval 〈0, 0.6〉, the function
1−ε−ε2

1−ε+ε3 is greater than 0.06, hence each application of Lemma 3.13 increases

the exponent by at least 0.06ε2. After at most 10
ε2 applications of Lemma 3.13,

the exponent exceeds 0.6, and we apply Lemma 3.14. Each application of
Lemma 3.13 decreases the size of the graph only by a polynomial factor and
we need to repeat the lemma only a constant number of times (dependent on
ε), hence we can set n0 big enough so that the assumptions of Lemmas 3.13
and 3.14 are satisfied. It also follows that the size of the clique we find is
Ω(nµ) for some constant µ dependent on ε. The edges of this clique are

subdivided at most c0 = 2
10
ε2

+1 − 1 times.



3.2. CLIQUE SUBDIVISIONS AND SEPARATORS 47

3.2.2 Expander-like Subgraphs

Let us now apply Theorem 3.15 on the problems regarding graphs with the
exponential expansion.

Theorem 3.16 For any real number ε (0 < ε ≤ 1) and an integer k > 0,
there exist constants n0 and µ > 0 such that if a graph G with n ≥ n0

vertices satisfies ∇k log n(G) = Ω(nε), then G contains Knµ as a minor of
depth O(logn).

Proof: Since ∇k log n(G) = Ω(nε), G contains a minor G′ of depth k log n
with minimum degree Ω(nε). The graph G′ has at most n vertices, hence by
Theorem 3.15, there exist constants µ > 0 and c0 (depending only on ε) such
that G′ contains sdc(Knµ) as a subgraph, for some c ≤ c0. It follows that G′

contains Knµ as a minor of depth at most (c + 1)k log n ≤ (c0 + 1)k log n =
O(log n).

If G has Knµ as a minor of depth c log n, then ∇c log n(G) ≥ nµ, hence
G has exponential expansion if and only if it contains a minor of Knµ of
logarithmic depth. We use this fact to provide a counterpart to Theorem 2.11.

For a graph G and a set U ⊆ V (G), let ∂U be the number of edges
between U and V (G) \ U . We use the following (special case of) theorem
proved by Bollobás [18]:

Theorem 3.17 (Bollobás [18]) A random 3-regular graph G on n vertices
a.a.s. satisfies ∂U ≥ 3

20
|U | for every U ⊆ V (G) such that |U | ≤ n

2
.

Let w : E(G) → R+ be any function that assigns a positive number to
each edge of G. For H ⊆ G, let

w(H) = |V (H)| +
∑

{u,v}∈E(G),{u,v}∩V (H)6=∅
w({u, v}).

Lemma 3.18 Let G be a 3-regular graph G on n vertices such that ∂U ≥
3
20
|U | for every U ⊆ V (G) with |U | ≤ n

2
. Let w : E(G) → R+ be any

function that assigns a positive number to each edge of G. Let W = w(G)
and M = maxe∈E(G) w(e). If S ⊆ V (G) is a set such that each component H
of G − S satisfies w(H) ≤ 2

3
W , then |S| ≥ W

63(3M+1)
.

Proof: Let H1, H2, . . . , Hk be the components of G − S. By the assump-
tions, w(Hi) ≤ 2

3
W for each i = 1, . . . , k. Let s = |S|. The subgraph of G

induced by S has at most 3
2
s ≤ 3s edges, hence

∑k
i=1 w(Hi) ≥ W−(3M+1)s.
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Observe that the graphs Hi can be partitioned into two subgraphs G1

and G2 such that min(w(G1), w(G2)) ≥ W
3
− (3M + 1)s. At least one of the

subgraphs (say G1) contains at most n
2

vertices. Let n1 = |V (G1)|. Since
n1 ≤ n

2
, there are at least 3

20
n1 edges between G1 and S. The graph G is

3-regular, thus s ≥ n1

20
. On the other hand, the number of the edges incident

with the vertices of G1 is at most 3n1, hence w(G1) ≤ (3M +1)n1. It follows

that s ≥ n1

20
≥ w(G1)

20(3M+1)
≥ W/3−(3M+1)s

20(3M+1)
. Therefore, s ≥ W

63(3M+1)
.

We can now show that the graph with exponential expansion contains a
subgraph without a small separator:

Theorem 3.19 For each ε (0 < ε < 1) and each integer k > 0, there exist
constants µ > 0 and n0 such that if G is a graph on n ≥ n0 vertices with
∇k log n(G) ≥ nε, then G contains a subgraph H on N ≥ nµ vertices such that

each separator in H has size Ω
(

N
log N

)

.

Proof: By Theorem 3.16, there exists a constant µ such that if G is suffi-
ciently large, it contains Knµ as a minor of depth O(log n). By Theorem 3.17,
there exists a 3-regular graph H ′ on n′′ = nµ vertices such that ∂U ≥ 3

20
|U |

for every U ⊆ V (H ′) with |U | ≤ n′′

2
. The graph G contains H ′ as a minor

of depth O(log n). Since H ′ is 3-regular, a graph H that is a ≤ O(log n)-
subdivision of H ′ is a subgraph of G. Let N = |V (H)|.

Let us define a function w : E(H ′) → R+ by setting w(e) to be the number
of vertices of the path that replaces e in H , for each e ∈ E(H ′). Note that
w(H ′) = N and M = maxe∈E(H′) w(e) = O(log n) = O(log N). Let S be a
minimum separator in H . Suppose that a vertex v ∈ S has degree two, and
let v1 and v2 be the vertices of degree three such that v belongs to the path
that replaces the edge {v1, v2} of H ′. Then, assuming that n is large enough,
S \ {v} ∪ {v1} or S \ {v} ∪ {v2} is a separator in H , hence without loss on
generality, only vertices of degree three belong to S. Let F be a component
of H −S and let F ′ be the corresponding component of H ′ −S. Since S is a
separator in H , w(F ′) = |V (F )| ≤ 2

3
N , hence we can apply Lemma 3.18 and

conclude that |S| = Ω
(

N
M

)

= Ω
(

N
log N

)

. Therefore, H does not have small

separators.

We get the following corollary:

Corollary 3.20 If G is a class of graphs closed on taking subgraphs such

that each graph in G on n vertices contains a separator of size o
(

n
log n

)

, then

G has subexponential expansion.



Chapter 4

Algorithmic Aspects

Given the algorithmic applications of graphs with bounded expansion, the
question whether it is possible to determine the greatest reduced average
densities of a graph G quickly deserves a close attention.

In the algorithmic setting, it is more natural to study the complexity
of the problem of determining ∇d

r(G) for various graph classes. As men-
tioned before, ∇d

r(G) is a good approximation of ∇r(G), and it appears more
tractable – not only because ∇d

0(G) is much easier to determine than ∇0(G),
but also because the values of ∇d

r(G) are integers, whereas ∇r(G) may be an
arbitrary nonnegative rational number. Also, unlike the average degree, the
minimum degree can be verified locally. Nevertheless, we derive some results
regarding determining ∇r(G) as well.

It is a well-known fact that the greedy algorithm based on the following
formula can be used to determine ∇d

0(G): Let v be a vertex of minimum
degree d in G. Then ∇d

0(G) = max(d,∇d
0(G−v)). Therefore, it is possible to

determine ∇d
0(G) in linear time. It is also possible (but much more compli-

cated) to determine ∇0(G) in polynomial time using the matroid partition
algorithm of Edmonds [37].

Let us also note that problems of determining whether ∇r(G) ≥ x and
∇d

r(G) ≥ x are in NP – after guessing the rank r contraction, we verify that
the maximum average degree or the degeneracy of the contraction is at least
x. We could in fact avoid using the algorithms for maximum average degree
and degeneracy, by guessing the subgraph on that the maximum is achieved
as well.

In the rest of this chapter, we first show that for any r ≥ 1, the prob-
lems of determining ∇d

r(G) and ∇r(G) are NP-complete, even if restricted
to a class of graphs with bounded maximum degree. Then, we show several
classes of graphs for that the problems can be solved in polynomial time, and
present an approximation algorithm for general graphs. The existence of the

49
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approximation algorithm also has theoretical consequences, discussed later
in Section 5.2.

4.1 NP-completeness

Bodlaender et al. [17] have studied the problem of determining the maximum
degeneracy over all contractions of a graph, i.e., determining ∇d

|V (G)|(G).
They proved that this problem is NP-complete for general graphs and noted
that ∇d

|V (G)|(G) ≤ tw(G). They also showed that for a fixed constant x, it

is possible to determine whether ∇d
|V (G)|(G) ≥ x in cubic time: The set of

graphs such that ∇d
|V (G)|(G) < x forms a proper minor-closed class, hence we

can use the results of Robertson and Seymour [85, 87] and verify this property
by checking a finite number of forbidden minors. Also, since ∇d

|V (G)|(G) is
bounded by a constant for any proper minor-closed class, it follows that
∇d

|V (G)|(G) can be determined in a polynomial time for graphs in any such
class.

Note that this is not necessarily the case for fixed r – the graphs with
∇d

r(G) < x or ∇r(G) < x do not form a minor-closed class, and we show
that determining whether ∇d

r(G) ≥ 4 is NP-complete. Nevertheless, we do
not know whether the problem is NP-complete for graphs in some proper
minor-closed class.

The following theorems are simple variations of the construction of Bod-
laender et al. [17]:

Theorem 4.1 For any r ≥ 1, the problem of determining whether ∇d
r(G) ≥

x (where the input consists of both G and x) is NP-complete.

Proof: It suffices to show that the problem is NP-hard. We proceed by a
transformation from Vertex Cover Problem. The instance of Vertex Cover
Problem consists of a graph G and an integer k ≤ |V (G)|, and the question
is whether there exists a set W ⊆ V (G) such that |W | = k and every edge of
G is incident with at least one vertex in |W |. This problem is NP-complete,
see e.g. Garey and Johnson [42].

Let G be an arbitrary graph on n vertices and k an integer such that k ≤
n. For an integer t, the graph Gk

t is obtained by the following construction:
We take the complement G of G, a set U of k vertices u1, . . . , uk, and a set
of t vertices w1, . . . , wt. We add all edges of the clique on the vertices w1,
. . . , wt, and join each vertex u1, . . . , uk and w1, . . . , wt with each vertex of
G by an edge, see Figure 4.1.

Let us show that ∇d
r(G

k
2) ≥ n + 1 if and only if G has a vertex cover of

size at most k.
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u1

u2

u3

u4

w1

w2

w3

G

Figure 4.1: The construction of the graph Gk
t (for k = 4 and t = 3).

Suppose first that ∇d
r(G

k
2) ≥ n+1, and let H be the corresponding minor

of Gk
2 with minimum degree at least n + 1. Let X be the set of edges that

are contracted and R the set of vertices that are removed from Gk
2 to obtain

H . The degree of each vertex of U in Gk
2 is n, hence each such vertex either

belongs to R or is incident to an edge in X. It follows that H has at most n+2
vertices, hence H must be a complete graph on n + 2 vertices. In particular,
only the edges between vertices of U and the vertices of G may belong to X.
Note that we may assume that R = ∅ and that each vertex of U is incident
with exactly one edge of X. For each i = 1, . . . , k, let si be the vertex of
G such that the edge {si, ui} belongs to X. Let S = {si|i = 1, . . . , k}. Let
e = {v1, v2} be an edge of G. The pair {v1, v2} is a non-edge of G, but the
corresponding vertices must be joined by an edge in H . Therefore, at least
one of the vertices is incident with an edge of X and belongs to S. This
shows that S is a vertex cover of G of size at most k.

On the other hand, suppose that G has a vertex cover S such that |S| ≤ k.
We may add vertices to the vertex cover, hence we may assume that |S| = k.
Let s1, s2, . . . , sk be the vertices of Gk

2 corresponding to the vertices of S. We
contract all the edges {ui, si} (i = 1, . . . , k). Note that the graph obtained in
this way is a complete graph on n+2 vertices – a non-edge in G corresponds
to an edge in G, hence each non-edge in G contains at least one vertex si

of S, and the vertex ui identified with si is adjacent to all vertices of G.
Therefore, ∇d

r(G
k
2) ≥ n + 1.

We showed that ∇d
r(G

k
2) ≥ n + 1 if and only if G has a vertex cover of

size at most k. Since the graph Gk
2 can be constructed in polynomial time, it

follows that the problem of determining whether ∇d
r(·) ≥ x is NP-complete.

A similar result can be showed for ∇r(·):
Theorem 4.2 For any r ≥ 1, the problem of determining whether ∇r(G) ≥
x is NP-complete.
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Proof: It suffices to show that the problem is NP-hard. We again exhibit
a transformation from Vertex Cover Problem. We show that ∇r(G

k
n+1) ≥ n

if and only if G has a vertex cover of size at most k. If G has a vertex cover
of size k, we find K2n+1 (whose average density is n) as a rank r contraction
of Gk

n+1 analogically to Theorem 4.1.
On the other hand, let us assume that ∇r(G

k
n+1) ≥ n, and let H be the

corresponding minor of Gk
n+1 with average degree at least 2n. Let X be the

set of edges that are contracted and R the set of vertices that are removed
from Gk

n+1 to obtain H . We may assume that the minimum degree of H
is greater than n, since removing the vertex of degree at most n does not
decrease the average degree of H . Therefore, each vertex of U either belongs
to R or is incident with an edge in X. It follows that H has at most 2n + 1
vertices, hence H = K2n+1. The rest of the proof is identical to the proof of
Theorem 4.1 – we may assume that exactly one edge incident to each vertex
in U is contracted, and the matched vertices of G form a vertex cover in G.

Since the graph Gk
n+1 can be constructed in polynomial time, it follows

that the problem of determining whether ∇r(G) ≥ x is NP-complete.

Since the problem is NP-complete for general graphs, it makes sense to
consider its restrictions to smaller classes of graphs. The following lemma
presents a transformation for the problem of determining ∇d

r(·) from the
problem of determining ∇d

1(·) that shows that for graph classes closed on
subdivision of an edge, determining ∇d

r(·) is at least as hard as determining
∇d

1(·), for any r ≡ 1 (mod 3).

Lemma 4.3 Let G be a graph with minimum degree at least three and t ≥ 0
an integer, and let G1 = sd2t(G). Then, ∇d

3t+1(G1) = ∇d
1(G).

Proof: Let S be a star forest in G and X the set of edges of G that are
incident with two different trees of S, and let G′ be the minor of G whose
vertices correspond to the trees of S and the edges to the edges of X. For
each edge e ∈ E(G), let Pe be the corresponding path with 2t inner vertices
of degree two in G1.

We construct a forest S1 in G1 in the following way: We subdivide the
edges of each star of S by 2t vertices, and for each edge e = {x, y} ∈ X,
attach half of the path Pe to each of the trees that contain vertices x and
y. The minor of G1 obtained by contracting the trees in S1 is equal to G′,
hence ∇d

1(G) ≤ ∇d
3t+1(G1).

Let us now show the reverse inequality. Let S1 be a forest with trees of
depth at most 3t + 1 in G1. Note that ∇d

3t+1(G1) ≥ 3, hence we may assume
that the minor H obtained by contracting S1 has minimum degree at least
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three. For each tree T ∈ S1, let T ′ be the corresponding tree in G obtained
by suppressing all the vertices of T that have degree two in G1. Observe that
T ′ is a star: Suppose that v is a center of T , and let v′ be the vertex of G1

with degree greater than two that is nearest to v. Then, all the vertices of T
of degree greater than two in G1 are neighbors of v′ in G.

Let S be the set of all the stars T ′ for T ∈ S1. Contracting the stars
in S induces a minor that is a supergraph of H , hence ∇d

1(G) ≥ ∇d
3t+1(G1).

Consequently, ∇d
1(G) = ∇d

3t+1(G1)

Let us now consider the problem of determining whether ∇d
1(G) ≥ x,

for x fixed. Unlike the case studied by Bodlaender et al. [17], the class of
graphs such that ∇d

1(G) < x is not minor-closed, hence we do not obtain an
algorithm easily. In fact, it turns out that the problem is NP-complete for
x ≥ 4, and Lemma 4.3 implies that determining whether ∇d

3t+1(G) ≥ x is
also NP-complete, for any integer t > 0. For x = 2, the problem is trivial –
∇d

r(G) ≥ 2 if and only if G contains a cycle. We do not know what is the
complexity of the question whether ∇d

r(G) ≥ 3.
To prove the NP-hardness of determining whether ∇d

1(G) ≥ 4, we first
consider the following (a bit artificial looking) problem that we call Double
Matching Cover: The instance of the problem consists of a cubic graph G
together with a partial matching M (called the input matching) of G. The
question is whether there exists a perfect matching X of G such that for
every edge e = {u, v} ∈ E(G) \ (X ∪ M), at least one of the vertices u or
v is incident with an edge belonging to X ∩ M . We call X the solution
matching. If M were a perfect matching, X = M would obviously satisfy
the conditions of the problem specification, however we show that in general,
the problem is hard. The proof uses a reduction from Exact 3-Set Cover
Problem: the instance of the problem consists of a set Q and a set B of
3-element subsets of Q such that every element of Q belongs to exactly three
sets in B. The question is whether there exists Y ⊆ B such that every
element of Q belongs to exactly one set in Y . This problem is NP-complete
(see Garey and Johnson [42]).

In the proof, we need to construct several gadgets. A gadget is a graph G′

with a partial matching M ′ and several half-edges that are used to connect
it with other gadgets (in our constructions, the connecting half-edges never
belong to the input matching). When we construct a gadget, we also describe
the possible solution matchings restricted to G′, and especially concentrate
on their restrictions to the connecting half-edges. There are three possible
states a half-edge e may have with respect to the solution matching X: it
may be a solution half-edge, i.e., e ∈ X. Or, it may be a covered half-edge,
i.e., e 6∈ X, but the vertex of e that belongs to G′ is incident with an edge
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e1 e2

f1 f2

h1 h2

Figure 4.2: The gadget COVERED.

in X ∩ M ′. Finally, the half-edge may be isolated, i.e., it does not belong to
X ∪ M ′, and it is not incident with an edge in X ∩ M ′.

If (G′
1, M

′
1) and (G′

2, M
′
2) are two gadgets connected by an edge e, and

X1 and X2 are the restrictions of a solution matching X to G1 and G2, then
the half-edges corresponding to e may have one of the following states in the
restricted solutions X1 and X2: Both of them are solution half-edges, or both
of them are covered, or one of them is covered and the other one is isolated.
In particular, it is not possible for both of them to be isolated.

Let us now construct several useful gadgets. In the figures of the gadgets,
we draw the edges belonging to the input matching M ′ by solid lines and the
remaining edges by dotted lines. Note that the girth of all the gadgets is at
least five.

• The gadget COVERED(e1, e2) with two half-edges e1 and e2 (Fig-
ure 4.2) is obtained from the Petersen graph by splitting one edge and
putting all the edges between the inner and the outer cycle to the in-
put matching M . Since this gadget has even number of vertices, either
both e1 and e2 belong to the solution matching or neither of them does.
However, it is not possible for both of them to be solution edges – if
that were the case, f1 and f2 would have to be covered, hence h1 and
h2 would have to belong to the solution matching, and the matching
cannot be extended to the remaining four vertices. On the other hand,
we may set X = M and make both half-edges e1 and e2 covered.

• The gadget COPY(e1, e2) with two half-edges e1 and e2 (Figure 4.3)
is obtained from COVERED(f1, f2) by adding the end vertices v1 and
v2 of f1 and f2, joining them by an edge f belonging to the input
matching, and adding the half-edges e1 and e2 incident with v1 and v2.
The solution matching restricted to COPY(e1, e2) has either both e1

and e2 as solution half-edges, or f as a solution edge and both e1 and
e2 as covered half-edges.
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COVERED

v1 v2e1 e2

f1 f2

f

Figure 4.3: The gadget COPY.

COVERED

COVERED

e1

e2

e3

e4

Figure 4.4: The gadget PXOR.

• The gadget PXOR(e1, e2, e3, e4) is depicted in Figure 4.4. In the re-
striction of the solution to the gadget, there are the following possible
states of the half-edges:

– e1 and e3 are solution half-edges, e2 and e4 are covered.

– e2 and e4 are solution half-edges, e1 and e3 are covered.

– All the half-edges are covered.

– All the half-edges are isolated.

• The gadget XOR(e1, e2, e3, e4) is depicted in Figure 4.5. We claim that
in any solution matching X, either e1 and e4 are solution edges and
e2 and e3 are covered, or vice versa. For both of these choices, it is
easy to construct the appropriate restriction of the solution matching
to XOR(e1, e2, e3, e4), hence it suffices to show that there are no other
possibilities. By the properties of PXOR, at most one of e1 and e2

belongs to the solution, and similarly at most one of e3 and e4 does.

Consider first the case that e1 belongs to the solution matching X.
Then, f1, f4 and e4 belong to X as well, and e2, f2, f3 and e3 are
covered.
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Figure 4.5: The gadget XOR.

COVERED

XOR

COPY COPY

1

2 3

4
e1

e2 e3

e4

Figure 4.6: The gadget SPLIT.

By symmetry, it remains to consider the case that neither e1 nor e2

belong to the solution matching. By a parity argument and the prop-
erties of PXOR, neither e3 nor e4 belong to the solution matching in
this case. However, that means that none of f1, f2, f3 and f4 belong
to X. This is a contradiction, since X is a perfect matching.

• The gadget SPLIT(e1, e2, e3, e4) is depicted in Figure 4.6 (note the or-
dering of the connecting edges of the XOR gadget). In any solution
matching, either all the half-edges e1, e2, e3 and e4 belong to the solu-
tion, or all of them are covered.

• The gadget ONE(e1, e2, e3) (Figure 4.7) consisting of exactly one vertex
incident with three half-edges has exactly one of the half-edges in the
solution and all the remaining ones isolated.

Let us prove the auxiliary hardness result regarding Double Matching
Cover Problem:

Lemma 4.4 Double Matching Cover Problem is NP-hard, even when re-
stricted to graphs of girth five.

Proof: We show a reduction from Exact 3-Set Cover Problem, let (Q, B) be
its instance. Using the gadgets we constructed, the transformation proceeds
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e1

e2e3

Figure 4.7: The gadget ONE.

in the obvious manner – we use a copy Cb of the COPY gadget for each
element b ∈ B to choose whether it is included in the cover (the half-edges
of the gadget are solution edges) or not (the half-edges are covered), a copy
Oq of the ONE gadget for each element q ∈ Q to ensure that exactly one
of the sets it belongs to is chosen to the cover, and the SPLIT gadgets to
join the half-edges of Oq with the gadgets Cb for the sets b such that q ∈ b,
thus obtaining an instance (G, M) of Double Matching Cover Problem. The
minor complication arises from the parity constraints – the gadgets Cb used
to represent the sets b ∈ B cannot have only one output edge – hence we need
two copies of the graphs Oq and the connecting SPLIT gadgets. Nevertheless,
the size of the construction is linear in |Q| + |B|, and the properties of the
gadgets imply that the exact set covers of (Q, B) correspond to the solution
matchings in (G, M) and vice versa. The construction of the gadgets also
ensures that G does not contain any cycles shorter than five, hence the claim
of the lemma follows.

For the sake of completeness, let us describe the construction of (G, M)
and the bijection between the solutions of the two problems more precisely:
The graph G (and the input matching M) consists of

• the copies Cb of the COPY gadget with half-edges eb and e′b for each
set b ∈ B, and

• the copies Oq and O′
q of the ONE gadget with half edges fq,1, fq,2, fq,3

and f ′
q,1, f

′
q,2, f

′
q,3, for each q ∈ Q, and

• the copies Sb and S ′
b of the gadgets SPLIT with the half-edges gb, hb,1,

hb,2, hb,3 and g′
b, h′

b,1, h′
b,2, h′

b,3, for each b ∈ B.

For each q ∈ Q, let bq
1, bq

2 and bq
3 be the three sets in B that contain

Q. For each b ∈ B, let us assign numbers 1, 2 and 3 to its elements in an
arbitrary order, and for q ∈ b, let idx(b, q) be the number of the element q in
the set b. The half-edges are connected in the following way: We connect eb

with gb and e′b with g′
b for each b ∈ B. For each q ∈ Q and b ∈ B such that
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Figure 4.8: The replacement of an edge in the input matching.

q ∈ b, if i is the integer such that bq
i = b and j = idx(b, q), then we connect

hb,j with fq,i and h′
b,j with f ′

q,i.
Let Y ⊆ B be the solution of the exact set cover instance (Q, B). We

construct the solution matching in (G, M) by including all the edges incident
to Sb and S ′

b for b ∈ Y , and extending this matching to all the gadgets. Prop-
erties of the gadgets and of the exact set cover ensure that this is possible.

On the other hand, if X is a solution matching in (G, M), we let Y consist
of the sets b ∈ B such that the edges incident to Sb are in X (the properties
of the SPLIT gadget ensure that either all of them belong to X or none
does). The properties of the ONE gadget imply that Y is an exact set cover
of (Q, B).

We showed that (G, M) has a solution matching if and only if (Q, B) has
an exact set cover, hence Double Matching Cover Problem is NP-hard.

We are now ready to prove the result regarding the hardness of determin-
ing ∇1(·) in the fixed parameter case:

Theorem 4.5 The problems of determining whether ∇d
1(·) ≥ 4 and ∇1(·) ≥

2 are NP-complete.

Proof: We show a reduction from Double Matching Cover Problem. Let G
be a cubic graph of girth five and M a partial matching in G. We construct a
graph G′ by subdividing each edge of E(G)\M by one vertex and replacing all
edges e = {x, y} of M by copies Ue of the graph U depicted in Figure 4.8(a),
where x is identified with u1 and y with u4. We need to show that ∇d

1(G
′) ≥ 4

if and only if there exists a solution matching X in (G, M).
Suppose first that X is a solution matching in (G, M). We construct the

minor of G′ of depth one and minimum degree 4 by:
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• For all edges e = {v1, v2} ∈ X \ M , identifying the vertex that subdi-
vides e in G′ with the vertices v1 and v2, and

• for all edges e ∈ X∩M , contracting the edges of Ue that are emphasized
in Figure 4.8(b), except possibly for the edges f1, f2, f3 and f4, in case
the vertices of degree two incident with them were already identified
with vertices in another copy of U , and

• for all edges e ∈ M \ X, contracting the edges of Ue emphasized in
Figure 4.8(c). Note that in this case, one of u0 and u′

0, and one of u′′
0

and u′′′
0 is a center of a star.

These rules ensure that every vertex of degree two is suppressed and each
vertex of degree three is identified with one other vertex of degree three.
Since the girth of G is five, the vertices created this way have degree four.
An inspection of Figures 4.8(b) and (c) shows that the minimum degree of
all vertices inside the copies of U is four as well. Therefore, if (G, M) has a
solution matching, then ∇d

1(G
′) ≥ 4.

Let us prove the reverse implication. Suppose that H is a minor of G′

of depth one and minimum degree at least 4. We let X be the set of edges
e = {u, v} of G such that

• e 6∈ M , and repr(G′, H, u) = repr(G′, H, v), or

• e ∈ M , and the edges of Ue were contracted in the way depicted in
Figure 4.8(b).

We need to show that X is a solution matching. We first show that no
vertex of G′ is removed during the construction of H , i.e., that every vertex
v ∈ V (G′) belongs to the subgraph sgofv(G′, H, v′) for some v′ ∈ V (H).

Let us for contradiction assume that this is not the case – let v ∈ V (G′) be
a removed vertex. Since G′ is connected, we may assume that v is adjacent
to a vertex u ∈ V (G′) such that u ∈ sgofv(G′, H, u′) for a vertex u′ ∈
V (H), and that the degree of u in G′ is at least three (otherwise we could
remove u as well, without affecting the degree of any vertex of H). Let
W = V (sgofv(G′, H, u′)). Since d(u′) ≥ 4 and ∆(G′) = 4, the set W must
contain at least three vertices of degree ≥ 3, or one vertex of degree ≥ 3 and
one vertex of degree four. Also, as the depth of H is at most one, the vertices
of W form a star in G′. These two conditions can only be satisfied if all the
vertices of W of degree ≥ 3 belong to one of the copies of U . We label the
vertices of this copy in the way depicted in Figure 4.8(a). Note that at least
one of u1 and u4 is not removed, as U − {u1, u4} does not have a minor of
depth 1 and minimum degree 4. Let us assume that u1 is not removed.
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If u5 were removed, then the degree of u2 and u3 is at most two, hence both
of them must be suppressed or removed. Since the degree of repr(G′, H, u1)
is at least four, u2, u3 and u4 are not removed. But it is impossible to
suppress the vertices u2 and u3 and at the same time make the degree of both
repr(G′, H, u1) and repr(G′, H, u4) at least four, thus u5 cannot be removed.
Similarly, u5 must be the center of sgofv(G′, H, u5), otherwise the vertices u6

and u7 would have to be removed, which leads to a contradiction. Also, an
analogical argument shows that the vertices u6, . . ., u10 are not removed.

Neither u2 nor u3 can be removed, since the degree of repr(G′, H, u5)
is four. If u4 were removed, u3 would have to be suppressed, but then the
degree of repr(G′, H, u5) would be at most three. We conclude that no vertex
of U is removed, and we may assume that the removed vertex is u0. Let us
consider the set W . Obviously, {u1, u2} ⊆ W , and W must have at least
three elements. Since u5 is a center of sgofv(G′, H, u5), it cannot belong to
W , hence W = {u1, u2, u3}. This is a contradiction, since in that case the
degree of repr(G′, H, u5) would be at most three.

Next, we show that the edges of each copy of U in G′ are contracted in
the ways depicted in Figure 4.8(b) or (c). Let W1 = V (sgofv(G′, H, u1)) and
W4 = V (sgofv(G′, H, u4)). There are three cases:

• u2, u3 ∈ W1. As we argued before, u5 is a center of sgofv(G′, H, u5),
but then the degree of repr(G′, H, u5) would be at most three, hence
this case cannot occur.

• u2 ∈ W1, and u3 6∈ W1. Since the degree of repr(G′, H, u1) is four,
repr(G′, H, u3) 6= repr(G′, H, u5), and since the degree of repr(G′, H, u3)
is four, u3 ∈ W4. This is the situation depicted in Figure 4.8(b).

• u2 6∈ W1. By symmetry, it follows that u3 6∈ W4. The only way
how the degree of all the vertices repr(G′, H, u2), repr(G′, H, u3) and
repr(G′, H, u5) can be four in this case is the one depicted in Fig-
ure 4.8(c).

Let us now show that X is a perfect matching. Let v be any vertex of
G. Consider first the case that v is incident with an edge e of M , and let e1

and e2 be the other edges incident with v. Consider the copy Ue of U that
replaces e in G′, and assume that u1 = v. If e 6∈ X, then the edges of Ue

are contracted as in Figure 4.8(c). Since the degree of repr(G′, H, u1) is four,
one of the vertices that subdivide e1 or e2 must be a center of a star, hence
either e1 or e2 belongs to X. Similarly, in the case that v is not incident
with an edge of M , to make the degree of repr(G′, H, v) four, the vertex v
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must be identified with a vertex v′ of degree three corresponding to one of
the neighbors of v in G, and the edge {v, v′} belongs to X.

Finally, we prove that X is a solution matching. Consider an arbitrary
edge e ∈ E(G) \ (X ∪M), and let x be the 2-vertex that splits the edge e in
G′. Since x is not removed, it must be identified with one of the vertices v
incident with e (it cannot be identified with both, since in that case e would
belong to X). However, this is only possible if an edge f ∈ M is incident
with v, and the corresponding copy of U is contracted as in Figure 4.8(b).
Therefore, f ∈ X, and X indeed satisfies the properties of the solution
matching.

We proved that ∇d
1(G

′) ≥ 4 if and only if there exists a solution matching
X in (G, M). Since G′ can be constructed from G and M in polynomial
time, the problem of determining whether ∇d

1(·) ≥ 4 is NP -hard.
Regarding the problem of determining whether ∇1(·) ≥ 2, observe that

any minor of G′ of depth at most one that does not contain a vertex of degree
≤ 2 has maximum degree at most four. Therefore, ∇1(G

′) ≥ 2 if and only
if all the vertices of the minor have degree four, i.e., ∇d

1(G
′) ≥ 4. It follows

that the problem of determining whether ∇1(·) ≥ 2 is NP-complete as well.

Note that this theorem also implies that determining ∇d
1(·) or ∇1(·) is

NP-complete even if restricted to graphs with maximum degree four. The
result of Theorem 4.5 can be easily generalized for any fixed constant ≥ 4:

Theorem 4.6 For any constant x ≥ 4, the problem of determining whether
∇d

1(·) ≥ x is NP-complete.

Proof: We proceed by induction. The basic case is Theorem 4.5. Let x > 4
be an arbitrary constant, and let us assume that it is NP-hard to determine
whether ∇d

1(·) ≥ x − 1. Let G be a graph, and let G′ be the graph obtained
from G by adding a universal vertex v joined with all the vertices of G. We
prove that ∇d

1(G) ≥ x − 1 if and only if ∇d
1(G

′) ≥ x, thus showing that the
problem of determining whether ∇d

1(·) ≥ x is NP-complete.
Suppose first that ∇d

1(G) ≥ x − 1, and let H be a minor of G of depth
one with minimum degree x − 1. The graph H has least x vertices, hence
the graph H ′ obtained from H by adding a universal vertex joined to all the
vertices of H has minimum degree x. The graph H ′ is a minor of depth one
of G′, thus ∇d

1(G
′) ≥ x.

Let us show the reverse implication. Suppose that ∇d
1(G

′) ≥ x and let
H ′ be a minor of G′ of depth one with minimum degree x. If repr(G′, H ′, v)
does not exist, then H ′ is a minor of G and ∇d

1(G) ≥ x, thus assume that
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v′ = repr(G′, H ′, v) exists. The graph H ′−v′ is a minor of G′ and its minimum
degree is at least x − 1, hence ∇d

1(G
′) ≥ x − 1.

4.2 Polynomial Cases

The problems of determining ∇r(G) and ∇d
r(G) can be solved in polynomial

time for graphs with bounded tree-width (note that ∇d
r(G) ≤ tw(G)). Let us

formulate the algorithm for determining ∇1(G) more precisely, the algorithms
for determining the other parameters are similar.

Theorem 4.7 If G is a graph on n vertices with tree-width at most k and
a tree U of the construction that witnesses that its tree-width is at most k is
given, then ∇1(G) can be determined in time O(4k2

n3).

Proof: Let G be a graph of tree-width at most k. We may assume that
G is connected, otherwise we can determine ∇1(•) for each component of
G separately, and return the maximum. A graph Gu together with a set
Su ⊆ V (Gu) of at most k + 1 border vertices is associated with each node u
of the tree U . A description D = (R∪ T1 ∪ T2 ∪ . . .∪ Tt, C, O, N) for Gu and
Su consists of

• a partition of Su into several sets, Su = R ∪ T1 ∪ T2 ∪ . . . ∪ Tt (the set
R may be empty, all the sets Ti are nonempty), and

• a set C ⊆ Su such that C ∩ R = ∅, each set Tt contains at most one
vertex of C, and if c ∈ C ∩ Ti for some i, then all other elements of Ti

are adjacent to c, and

• a set O whose elements are some of the sets Ti such that C ∩ Ti = ∅,
and

• a graph N whose vertices are the sets Ti, such that if there are adjacent
vertices belonging to the sets Ti and Tj, then Ti and Tj form an edge
in N (there may be also other edges in N).

The description characterizes a minor of G of depth one with respect to
the vertices in Su. The set R corresponds to the vertices that are removed,
the vertices in each set Ti are contracted into a single vertex. The set C
contains the centers of the contracted stars that belong to Su. The sets Ti

that do not contain any element of C are rays of a star whose center does
not belong to Su – the center for Ti belongs to V (G) \ V (Gu) if Ti ∈ O, and
to V (Gu) \Su otherwise. The graph N describes which vertices of the minor
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are adjacent inside Gu. Note that there are less then d = O(2k2
) different

descriptions.
Given a minor H of G of depth one, we may construct a description D in

an obvious way, according to the rules described in the previous paragraph.
A description D′ is consistent with H if D′ is equal to D up to a permutation
of the sets Ti. For a minor H , let H [Gu] be the graph obtained from Gu

by removing all vertices that are removed and identifying all the vertices of
Gu that are identified during the construction of H . The edges of H [Gu]
correspond to the edges of Gu, however H [Gu] does not have to be a minor
of Gu, in case the centers of the stars Ti are outside of Gu. Let G be the class
of all connected graphs G′ such that Gu is an induced subgraph of G′ and Su

is a cut in G′. For a description D, let Hu(D) be the set of all graphs H [Gu],
where H is a minor of G′ of depth at most one for a graph G′ ∈ G, and H is
consistent with D.

For a graph Gu and Su, a description D, and for every m ≤ V (Gu), let
eu(D, m) be the maximum number of edges of a graph H ′ ∈ Hu(D) with
m vertices. We set eu(D, m) = −∞ if no such minor exists. The root r
of the construction tree contains the graph G with the empty set of border
vertices. There exists only one description D for the empty set, and G = {G},
hence ∇1(G) = max{ er(D,m)

m
|1 ≤ m ≤ |V (G)|}. It suffices to show how to

determine the numbers eu(D, m). The algorithm processes the O(n) nodes of
the tree U recursively, starting from the leaves. Let us consider the possible
types of the nodes of U separately:

• u is a leaf, Gu is a graph with a single vertex v, and Su = {v}. There
are the following descriptions in this case: The description D1 in that
R = {v} and all the other sets are empty, the description D2 such that
T1 = {v}, C = ∅ and O = {T1}, and the description D3 such that
T1 = {v}, C = {v} and O = ∅. The values of eu that are not −∞ are
eu(D1, 0) = 0, eu(D2, 1) = 0 and eu(D3, 1) = 0.

• u is a node with a single child w such that Gu = Gw and Su = Sw \{v}.
Suppose D is a description for Gw and Sw. In this case, we call D
valid if v ∈ R, or v ∈ C, or v ∈ Ti for some i such that Ti 6∈ O. A
description that is not valid cannot be consistent with any minor of
G of depth one, as if v ∈ Ti such that Ti ∈ O, v could not be joined
with the center of Ti that is outside Gu (since Su is a cut). Given a
valid description D, the restricted description D′ is obtained from D
by removing v from the set of the partition R ∪ T1 ∪ . . . it belongs to,
from the set C, and in case Ti = {v} for some i, removing Ti from the
graph N . Observe that for a description D′ for Gu and Su, eu(D

′, m)
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is the maximum of ew(D, m) over all valid descriptions of Gw and Sw

whose restricted description is D′.

• u is a node with a single child w such that Gw = Gu − v and Su =
Sw ∪ {v}. In this case, we call a description D for Gu and Su valid if
the following cases are avoided:

– Ti = {v} for some i, and Ti is in N joined with some Tj such that
v is not adjacent to any vertex in Tj , or

– v ∈ Ti such that Ti ∩ C = ∅ and Ti 6∈ O, or

– v ∈ Ti such that Ti ∩ C = {c} and v 6= c is not adjacent to c, or

– v ∈ Ti ∩ C and there exists a vertex in Ti that is not adjacent to
v.

Since N(v) ∩ V (Gu) ⊆ Sw, eu(D, m) = −∞ for the descriptions D
that are not valid. The description D′ of Gw and Sw is extended with
adding x edges to a valid description D = (R ∪ T1 ∪ . . . Tt, C, O, N) if
D′ = (R′ ∪ T ′

1 ∪ . . . T ′
t′ , C

′, O′, N ′) satisfies the following properties:

– The partition R′ ∪ T ′
1 ∪ . . . T ′

t′ is obtained from the partition R ∪
T1 ∪ . . . Tt by removing the vertex v, and

– C ′ = C \ {v}, and

– if v ∈ C ∩ Ti, then O′ = O ∪ {Ti \ {v}}, otherwise O′ = O, and

– N ′ is a subgraph of N , and all the edges in E(N) \ E(N ′) corre-
spond to the edges incident with v, and

– x = |E(N)| − |E(N ′)|.

For a description D for Gu and Su, let δD = 1 if Ti = {v} for some
some i, and δD = 0 otherwise. The value eu(D, m) is the maximum of
x + ew(D′, m − δD) over all descriptions D′ of Gw and Sw that extend
by adding x edges to D, where x = 0, 1, . . . ,

(

k+1
2

)

.

• Finally, let us consider the case that u is a node with children w1 and
w2 such that Su = Sw1 = Sw2 = V (Gw1)∩V (Gw2) and Gu = Gw1 ∪Gw2.
For each description D for Gu and Su with t sets Ti and for each m,
we consider all pairs m1 and m2 such that m1 + m2 = m + t, and all
pairs D1 and D2 of descriptions for Gw1, Sw1 and Gw2 , Sw2 that satisfy
the following properties:

– The partition R ∪ T1 ∪ . . . of the vertices of Su is the same in D,
D1 and D2, and
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– the sets C, C1 and C2 of centers of D, D1 and D2 are the same,
and

– the graph N of the description D is the union of the graphs N1

and N2 of the descriptions D1 and D2, and

– the set O of D is the intersection of the sets O1 and O2 for D1 and
D2.

Observe that eu(D, m) is the maximum of ew1(D1, m1)+ ew2(D2, m2)−
|E(N1) ∩ E(N2)| over all such pairs m1, m2 and D1, D2.

It is easy to perform each of these steps in time O(d2n2), where d is the
maximum number of descriptions. It follows that the time complexity of the
algorithm is O(4k2

n3).

Using the result of Gurski and Wanke [46], this implies that determining
whether ∇1(G) ≤ k for a fixed k can be done in polynomial time for graphs
with bounded clique-width:

Theorem 4.8 Let k and c be constants. There exists a polynomial time
algorithm that for any graph G with cw(G) ≤ c decides whether ∇1(G) ≤ k.

Proof: If K2k+1,2k+1 were a subgraph of G, then ∇1(G) ≥ ∇0(G) ≥ k + 1
2
.

Therefore, if ∇1(G) ≤ k then tw(G) < 6k cw(G) ≤ 6kc by Theorem 1.1.
Using the algorithm of Bodlaender [12], we can determine whether tree-
width of G is at most 6kc in linear time, and find the tree of its construction.
Therefore, we can apply Theorem 4.7 to determine whether ∇1(G) ≤ k.

4.3 Approximation

Since determining ∇r(·) is hard, we are interested in approximating it. We
were not able to find a constant factor approximation algorithm, but we
describe an algorithm that given a graph G and an integer d ≥ 0, finds either
a minor of depth ≤ r and minimum degree at least d, or a witness that

∇r(G) = O
(

d(2r+1)(r+1)2
)

. This approximation algorithm is a generalization

of the algorithm used in the proof of Theorem 3.7. We also use the fact
that since we are only interested in polynomial approximation, we may use
Theorem 3.9 and look for bounded depth subdivisions rather than minors.

Let us recall that given a graph G and a set T ⊆ V (G), the (T, t)-
degree dT

t (v) of a vertex v ∈ V (G) is the maximum number of rays of a
≤ t-star S in G with center v, such that all the ray vertices of S belong to
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T . Consider the following algorithm APPROX NABLA(t, D): Given a graph G
with n vertices and integers t, D ≥ 0, we construct an ordering of vertices
v1, . . . , vn of G such that the dTi

t (vi+1) < D for i = 1, . . . , n − 1, where Ti =
{v1, . . . , vi}. The algorithm selects the vertices starting from vn. Suppose
we have already determined vi+1, . . . , vn, i.e., we know the set Ti = V (G) \
{vi+1, . . . , vn}. If there exists a vertex v ∈ Ti such that d

Ti\{v}
t (v) < D, we

set vi = v. Otherwise, the algorithm fails. Let us show several properties of
this algorithm:

Lemma 4.9 If the algorithm APPROX NABLA(t, D) succeeds for a graph G and
a graph H ′ ⊆ G is a ≤ t-subdivision of a graph H, then the average degree
of H is at most 2(D − 1).

Proof: Let L = v1, . . . , vn be the ordering of the vertices of G found by
the algorithm. Let H ′ ⊆ G be a ≤ t-subdivision of a graph H . Let f be
the function that maps vertices of H to the corresponding vertices of G,
and let L′ = w1, . . . , wk be the ordering of vertices of H such that f(wi) is
before f(wi+1) in the ordering L for i = 1, . . . , k − 1. By the properties of
the APPROX NABLA algorithm, the back-degree of each vertex of H is at most
D − 1, hence H has at most (D − 1)k edges, and the average degree of H is
at most 2(D − 1).

This lemma together with Theorem 3.9 shows that if the algorithm suc-

ceeds for G and t = 2r, then ∇r(G) = O
(

(4D)(r+1)2
)

. We need to show

that on the other hand, if the algorithm fails, then ∇r(G) is large. We start
with the following technical claim:

Lemma 4.10 Let G be a directed graph without loops on n vertices in that
the outdegree of each vertex is at most one. Then, there exists a set U ⊆ V (G)
of size at least n

3
such that the subgraph of G induced by U contains no edges.

Proof: We use induction. The claim is obviously true if n ≤ 3; suppose
that n > 3, the lemma holds for all graphs with less than n vertices and G
is a graph on n vertices. Note that we may assume that G is connected.

Suppose first that G contains a vertex v with indegree zero. Since G is
connected, v has outdegree one. Let (v, u) be the edge going from v. We
use the induction hypothesis on G−{u, v}, thus obtaining a set U ′ of size at
least n−2

3
, and let U = U ′ ∪ {v}. The size of U is at least n−2

3
+ 1 > n

3
, hence

the claim holds.
Next, consider the case that each vertex of G has non-zero indegree. Since

the outdegree of each vertex is at most one and G is connected, this is only
possible if G is a directed cycle. We can put

⌊

n
2

⌋

≥ n
3

of its vertices to U .
Therefore, the size of U is at least n

3
as required.
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Let us now show that failure of the algorithm APPROX NABLA implies the
existence of an obstacle for small ∇r(G).

Theorem 4.11 Let t, D ≥ 0 be integers such that d =
t+1√3D

3
≥ 5

3
. If G is

a graph such that the algorithm APPROX NABLA(t, D) fails, then there exists
H ′ ⊆ G such that H ′ = sd≤t(H) and H is a graph with the average degree at
least d.

Proof: Assume for contradiction that the algorithm fails on a graph G, but
every subgraph whose ≤ t-subdivision is a subgraph of G has the average
degree less than d. Let T ⊆ V (G) be the set of vertices that causes the

algorithm to fail, i.e., such that each vertex v ∈ T satisfies d
T\{v}
t (v) ≥ D.

Let k = |T |. For a vertex v ∈ T , let Sv be an arbitrary ≤ t-star with center
v and at least D ray vertices in T \ {v}, and let S0 = {Sv|v ∈ T}. We may
assume that the middle vertices of the stars Sv belong to V (G) \ T .

We construct sets M1, . . . , Mt ⊆ V (G) \ T and sets of ≤ t-stars S1, . . . ,
St such that for i = 1, . . . , n,

(P1) the centers of the stars in Si are mutually distinct and belong to T ,
and

(P2) each ≤ t-star S ∈ Si is a subgraph of a ≤ t-star S ′ ∈ Si−1 obtained by
removing some of the rays, i.e., each ray of S is also a ray of S ′, and

(P3) the level of each ray vertex of any star S ∈ Si is at least i + 1, and

(P4) each vertex v ∈ Mi appears as a vertex of level i in exactly one of the
≤ t-stars in Si, and if v belongs to any other ≤ t-star S ∈ Si, then the
level of v in S is greater than i, and

(P5) mi = |Mi| ≥ D
(3d)i k.

We generate the sets Mi and Si sequentially, starting with i = 1. Suppose
we have already constructed the sets Mj and Sj for j < i, and let us describe
how to obtain the sets Mi and Si.

Note that the stars in Si−1 have together exactly mi−1 rays if i > 1 and at
least m0 = Dk rays if i = 1. For each ≤ t-star in Si−1, let us remove all the
rays whose ray vertex has level i. Let S ′

i be the set of the stars obtained this
way and let m′

i be the total number of rays of the ≤ t-stars in S ′
i. Let x be the

number of the removed rays, and let us consider the subgraph G1 ⊆ G formed
by the removed rays. By Properties (P2) and (P4), the middle vertices of
the removed rays are mutually distinct, hence G1 contains as a subgraph a
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(i − 1)-subdivision of a graph with at least x
2

edges (each edge may appear
twice, once for each of its end vertices) and with at most k vertices. By the
assumption, the average degree of this graph is less then d, hence x < dk and
m′

i > mi−1 − dk. This step ensures that Si will satisfy Property (P3).
If i = 1, we let S ′′

i = S ′
i and m′′

i = m′
i. If i > 1, we find a set of stars

S ′′
i that ensures that Si will satisfy the second part of Property (P4), i.e.,

that if a vertex v appears on level i in one of the stars, its level in any other
star is at least i. We form a directed graph F whose vertices are the rays of
≤ t-stars in S ′

i such that rays r1 and r2 form an edge (r1, r2) if the vertex of
r1 of level i belongs to r2 and its level in r2 is less than i. Since the vertices
of the rays with level less than i are mutually distinct (by Properties (P2)
and (P4)), the outdegree of each ray is at most one, hence we may apply

Lemma 4.10 – there exists a set of m′′
i ≥ m′

i

3
rays such that their vertices with

level i are distinct from all vertices with level less than i. Let S ′′
i be the set

of ≤ t-stars with these rays.
We set Mi to be the set of the level i vertices of the stars in S ′′

i , and let G2

be the subgraph of G formed by the rays of the ≤ t-stars of S ′′
i truncated to

the level i. Note that Mi ⊆ V (G)\T . The graph G2 is an (i−1)-subdivision
of a graph with m′′

i edges and k + mi vertices. The average degree of this
graph is less than d, hence 2m′′

i < d(k + mi). It follows that

mi >
2m′′

i

d
− k ≥ 2

mi−1 − dk

3d
− k ≥

(

2

D
(3d)i−1 − d

3d
− 1

)

k

mi >

(

2
D

(3d)i
− 5

3

)

k ≥ D

(3d)i
k,

hence Mi satisfies Property (P5).
For each vertex v ∈ Mi, let rv be an arbitrary ray of a ≤ t-star in S ′′

i such
that v belongs to rv and its level is i, and let Si be the set of ≤ t-stars with
rays {rv|v ∈ Mi}. Observe that Si satisfies Properties (P1), (P2) and (P4).

Let H ′′ ⊆ G be the graph formed by the rays of the ≤ t stars of St. By
Properties (P1)–(P5), H ′′ contains a subgraph H ′ with at least mt

2
edges such

that H ′ is the t-subdivision of a graph H with at most k vertices. This is a
contradiction, since the average degree of H is at least mt

k
= d.

Therefore, the algorithm APPROX NABLA can indeed be used to approxi-
mate ∇r(G). A bit problematic part of the algorithm is determining dT

2r(v),
as Itai, Perl and Shiloach [51] proved that finding the maximum number of
vertex disjoint paths of length at most ℓ between two vertices is NP-complete
if ℓ ≥ 5 (and found polynomial-time algorithms in case ℓ ≤ 4). Nevertheless,
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this problem is easy to approximate within ℓ − 1 factor, which suffices for
our purposes. Given a graph G, a set T ⊆ V (G), a vertex v ∈ V (G) \ T and
an integer t > 0, let aT

t (v) be the number of vertex-disjoint paths found by
the following algorithm: We choose an arbitrary path of length at most t+1
from v to a vertex in T , and remove all the vertices of the path except for v.
We repeat this procedure until the distance from v to T exceeds t + 1. By
maintaining the first t+1 levels of the breath-first search from v, we can im-
plement this algorithm with time complexity O(t(n + e)), where n = |V (G)|
and e = |E(G)|. Let P1 be the set of paths found by this algorithm, and P2

the set of dT
t (v) rays of a ≤ t-star with center v and all ray vertices in T .

Each path in P1 intersects at most t+1 paths in P2 in vertices different from
v, hence aT

t (v) ≤ dT
t (v) ≤ (t + 1)aT

t (v).

Theorem 4.12 For each integer r > 0, there exists an algorithm that for a
connected graph G on n vertices with ∇r(G) = d returns a subgraph H ′ ⊆ G

such that H ′ = sd≤2r(H) and the average degree of H is Ω
(

d
1

(2r+1)(r+1)2

)

.

The time complexity of the algorithm is O(rn2e).

Proof: We use the variant APPROX NABLA
⋆ of the algorithm APPROX NABLA

in that we replace determining dT
t (v) by determining aT

t (v): We construct an
ordering v1, . . . , vn of vertices of G in reverse. Suppose that we already know
vi+1, . . . , vn. When we are selecting vi, we choose a vertex such that vi ∈ T =

V (G) \ {vi+1, . . . , vn} and the value Di = a
T\{vi}
2r (vi) is minimal. We let D =

max{Di|i = 1, . . . , n}. Observe that the algorithm APPROX NABLA(2r, D)

cannot succeed on G, since a
T\{vi}
2r (vi) ≤ d

T\{vi}
2r (vi), and let T be the set

of vertices on that the algorithm fails. We construct the sets Si and Mi

as described in the proof of Theorem 4.11, and finally obtain a subgraph

H ′ = sd≤2r(H) ⊆ G such that the average degree of H is at least
2r+1√3D

3
.

Since dT
2r(v) ≤ (2r + 1)aT

2r(v) for all sets T and vertices v, the algorithm
APPROX NABLA(2r, (2r + 1)D + 1) succeeds on G, hence by Lemma 4.9, the
average degree of any graph whose ≤ 2r-subdivision is a subgraph of G is at
most 2(2r + 1)D. By Theorem 3.9, d = ∇r(G) < 4 (8(2r + 1)D + 4)(r+1)2 ,

i.e., D = Ω
(

d
1

(r+1)2

)

. It follows that the average degree of H is at least

Ω
(

d
1

(2r+1)(r+1)2

)

.

Let us now consider the time complexity of the algorithm. Let e = |E(G)|.
First we run the the algorithm APPROX NABLA

⋆, this requires time O(rn2e).
Then we construct the graph H ′. Creating sets Mi and Si takes linear time,
hence this phase requires time O(re), and it is dominated by the first phase.



70 CHAPTER 4. ALGORITHMIC ASPECTS

The algorithm APPROX NABLA can be used to produce a witness that the
expansion of a graph is small. This witness is a linear ordering of the ver-
tices of G that satisfies certain properties, thus emphasizing the connection
between the arrangeability and the greatest reduced average density. This
ordering may also be useful for design of algorithms for graphs with bounded
expansion, and provides some information about the structure of such graphs.
We present one application of this fact in Section 5.2.



Chapter 5

Tree-depth and Subgraph
Coloring

In this chapter, we provide several simple results regarding the tree-depth,
especially properties of the tree-depth critical graphs. Also, we study the low
tree-depth and subgraph coloring and their variations.

5.1 Forbidden Subgraphs

Nešetřil and Ossona de Mendez [74] have showed that the class of graphs with
td(G) ≤ k has a finite number of forbidden subgraphs. Their proof is based
on the fact that the class of graphs with td(G) ≤ k is minor-closed and hence
it has a finite number of forbidden minors. Since we have no description of
what the forbidden minors are, this proof does not provide an explicit bound
on the size of the minimal forbidden subgraphs. A tower function bound can
be derived from their result stating that for any integer k, there are only
finitely many cores with tree-depth ≤ k. However, a direct argument shows
a much better bound – these graphs have at most 22k−1

vertices:

Theorem 5.1 For any integer k > 0, if G is a graph with td(G) > k, then
G contains a connected subgraph H with td(H) > k and |V (H)| ≤ 22k−1

.

Proof: We may assume that G is connected, otherwise we focus on the
component of G that determines its tree-depth. Also, without loss on gener-
ality, td(G) = k + 1. We prove the statement by induction:

If td(G) = 2, then G contains at least one edge, and we may set H = K2.
If td(G) = 3, then G is not a star forest, i.e., it contains P4 or K3 as a
subgraph.

71
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Suppose now that td(G) = k+1 for k ≥ 3, and assume that the statement
holds for all smaller values of tree-depth. If G contains P2k as a subgraph,
then we may set H = P2k . Otherwise, each two vertices in G are connected
by a path of length at most 2k − 2.

Since td(G) > k − 1, by induction hypothesis G contains a subgraph H0

with td(H0) ≥ k and m ≤ 22k−2
vertices v1, . . . , vm. For each i = 1, . . . , m,

the graph G − vi has tree-depth greater than k − 1, hence G − vi contains a
subgraph Hi with at most 22k−2

vertices and tree-depth at least k.

If there exists i such that V (H0) ∩ V (Hi) = ∅, then we let H consist of
H0, Hi and the shortest path that connects them. For every vertex v of H ,
the graph H − v contains H0 or Hi as a subgraph, hence the tree-depth of
H − v at least k and td(H) > k. Also, |V (H)| ≤ 22k−2+1 + 2k − 3 ≤ 22k−1

(for k ≥ 3).

On the other hand, if all the graphs Hi intersect H0, then we set H =
H0 ∪ H1 ∪ . . . ∪ Hm. Since all the graphs Hi are connected, the graph H
is connected as well, and it has at most m + m(22k−2 − 1) ≤ 22k−1

vertices.
Similarly to the previous case, the graphs H − vi contain Hi as a subgraph
(for i = 1, . . . , m), and the graph H − v for v different from v1, . . . , vm

contains H0 as a subgraph, hence td(H) > k.

We call a graph G tree-depth critical if any proper subgraph of G has
strictly smaller tree-depth than G. The double-exponential bound of Theo-
rem 5.1 seems to be far from optimal. Indeed, we do not know any example
of a tree-depth critical graph with more than exponential size. We can obtain
more precise descriptions of tree-depth critical graphs under some additional
assumptions, for example, we can fully characterize the tree-depth critical
trees.

We call a tree G decomposable, if it is a single vertex, or it has 2k vertices
for some integer k > 0 and it contains an edge e such that both components
of G − e are decomposable. Note that the edge e splits the tree into two
components of the same size. We show that a tree is tree-depth critical if
and only if it is decomposable.

Let us note that for each tree G, td(G) ≤ ⌊log2 |V (G)|⌋+ 1 – this follows
by induction from the fact that each tree G contains a vertex v such that
each component of G − v has at most |V (G)|

2
vertices.

Lemma 5.2 Every decomposable tree G has tree-depth 1+log2 |V (G)| and it
is tree-depth critical. Additionally, if G is a decomposable tree with |V (G)| >
1, then for any vertex v ∈ V (G) there exists a leaf u 6= v of G such that the
tree created from G − u by adding a leaf adjacent to v is decomposable.
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Proof: We proceed by induction. Obviously, the claims hold for the trees
with at most two vertices, thus we consider the case G is a decomposable tree
on 2k (k > 1) vertices, and we assume that the statement of the lemma is
true for all smaller trees. Let e be the edge that splits G into two halves, and
let G1 and G2 be the components of G−e; both G1 and G2 are decomposable,
and by the induction hypothesis, their tree-depth is k.

As we noted, the tree-depth of G is at most 1 + log2 |V (G)| = k + 1. On
the other hand, for every v ∈ V (G), the graph G− v contains G1 or G2 as a
subgraph, hence td(G) = k+1. Also, td(G−v) ≤ 1+⌊log2(|V (G)|−1)⌋ = k,
hence G is tree-depth critical.

Consider an arbitrary vertex v ∈ V (G), and let us show that there exists a
leaf u of G that we can move to v while preserving decomposability. Without
loss of generality, we may assume that v ∈ V (G1). By the the induction
hypothesis, there exists a vertex u′ ∈ V (G1) such that the tree created from
G1−u′ by adding a leaf adjacent to v is decomposable. If u′ is not incident to
the edge e, we may set u = u′. Otherwise, let v′ be the vertex of G2 incident
to e, and let u′′ be the leaf of G2 that can be moved to v′. In this case, we
can set u = u′′: Moving the leaf u′′ to v has the same result as moving it to
v′, moving the leaf u′ to v, and replacing the edge e by an edge between u′′

and the vertex of G1 that used to be adjacent to u′.

We are now ready to prove the characterization of the tree-depth critical
trees. If G is a tree and u and v two distinct vertices of G, let Gu(v) be the
component of G − u that contains v.

Theorem 5.3 For any integer k ≥ 0, a tree G is tree-depth critical with
td(G) = k + 1 if and only if G is a decomposable tree with 2k vertices.

Proof: Lemma 5.2 shows that a decomposable tree on 2k vertices is tree-
depth critical and has tree-depth k + 1, hence we only need to show that
a tree-depth critical tree is decomposable. We proceed by induction. The
statement holds for graphs with td(G) = 1, thus consider some tree-depth
critical tree G with td(G) = k + 1 for k > 0 and assume that the statement
holds for all trees with smaller tree-depth.

For any vertex v of G, the graph G − v contains a component of tree-
depth k. We first show that G contains an edge {x, y} such that td(Gx(y)) =
td(Gy(x)) = k: We let v0 be an arbitrary vertex of G, and for each i > 0, we
let vi be a vertex adjacent to vi−1 that belongs to a component of G − vi−1

of tree-depth k. The sequence v0, v1, . . . is a walk in G, and since G is a tree,
there exists i such that vi = vi+2. We let x = vi and y = vi+1. The graph
Gx(y) contains a tree-depth critical subgraph G1 of tree-depth k, and Gy(x)
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contains a tree-depth critical subgraph G2 of tree-depth k. Additionally,
there is the unique path P in G that connects G1 with G2. Observe that
since G is tree-depth critical, G is exactly the union of G1, G2 and P .

By the induction hypothesis, G1 and G2 are decomposable. We need to
show that P has no inner vertices, thus proving that G is decomposable.
Suppose that this is not the case, and let w be the inner vertex of P adjacent
to a vertex v of G1. By Lemma 5.2, the graph G1 contains a leaf u such that
the graph obtained from G1 by moving the leaf u to v is decomposable, and
thus also tree-depth critical. This however implies that we may remove the
vertex u from G and consider w to be its replacement. The created graph
has tree-depth k + 1, thus contradicting the criticality of G. Therefore, G is
just a union of G1 and G2 joined by a single edge, hence it is decomposable.

It is also possible to enumerate the forbidden subgraphs for some small
values of k: A graph G has tree-depth greater than one if and only if G
contains K2 as a subgraph, and td(G) > 2 if and only if G is not a star
forest, i.e., if G contains K3 or P4 as a subgraph. The list of forbidden
subgraphs for td(G) ≤ 3 is a bit harder to obtain:

Theorem 5.4 For any graph G, td(G) > 3 if and only if G contains one of
the graphs depicted in Figure 5.1 as a subgraph.

Proof: Since each of the graphs in Figure 5.1 has tree-depth four, it suffices
to show that any connected graph with tree-depth four contains one of them
as a subgraph. Suppose for contradiction that this is not the case, and let G
be a connected graph with tree-depth four that contains none of the graphs
in Figure 5.1 as a subgraph. We may assume that G is minimal, i.e., that
td(G − e) = 3 and td(G − v) = 3 for any edge e ∈ E(G) and any vertex
v ∈ V (G). The graph G cannot contain any cycles of length greater than
four.

Let G′ be a 2-connected subgraph of G. The graph G′ can be constructed
from an arbitrary cycle in G′ by repeatedly appending paths joining two
distinct vertices. Suppose that |V (G′)| ≥ 5, then G′ must contain a 4-cycle
C whose vertices (in the order along the cycle) are v1v2v3v4, and we may
start the construction of G′ from this cycle. Since G′ does not contain a
cycle of length greater than four, we can only join two of its opposite vertices
(say v1 and v3) by paths of length two – let v5 be a vertex of such a path.
If the subgraph induced by V (C) ∪ {v5} contains any of the edges {v2, v4},
{v2, v5} or {v4, v5}, then G contains C5 as a subgraph, hence we may assume
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P8 P ′

7
P ′′
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C5 C6 C7

K4 Q1 Q2

T1

T2

T3

T4 T5

Figure 5.1: Forbidden subgraphs for td(G) ≤ 3.
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that this is not the case. Also, none of v2, v4 and v5 may be incident with
any other vertex of G, otherwise G would contain Q1. Consider the graph
H obtained from G by removing the edge {v1, v5}. By the minimality of G,
td(H) = 3. The graph H is connected, hence H contains a vertex v such
that H − v is a star forest. If v = v1 or v = v3, then G − v is a star forest,
which is contradiction with td(G) = 4. However, H − v for any other vertex
v contains P4 as a subgraph. This is a contradiction, hence we may assume
that any 2-connected subgraph of G has at most four vertices.

Let us now consider the case that G contains a 4-cycle C = v1v2v3v4. If
both edges {v1, v3} and {v2, v4} are in G, then G contains K4 as a subgraph,
thus we may assume this is not the case. Suppose first that {v1, v3} is an
edge (thus {v2, v4} is not an edge). If v2 or v4 is adjacent to a vertex outside
of C, then G contains Q2 as a subgraph. Otherwise, consider the graph H
obtained from G by removing the edge {v1, v3}. By the minimality of G,
there exists a vertex v such that H − v is a star forest. The vertex v must
belong to C. Since G − v is not a star forest, v 6= v1 and v 6= v3, hence we
may assume that v = v2. But then H = C, and tree-depth of G would be
only three, which is a contradiction; therefore, any 4-cycle in G is induced.

Let C = v1v2v3v4 be an induced 4-cycle in G. Since G does not contain
Q1 as a subgraph, the vertices of V (G) \ V (C) can only be adjacent to two
non-adjacent vertices of C, say v1 and v3. We may also assume that at least
one such vertex v5 is adjacent to v1. Let us consider the graph H obtained
from G by removing the edge v1v4. By the minimality of G, there exists a
vertex v such that H − v is a star forest. Since v5v1v2v3v4 is a path, v must
be v1, v2 or v3. If v = v1 or v = v3, then G− v is a star forest, hence v = v2.
However, this means that G − v1 is a star forest, which is a contradiction,
thus G does not contain any 4-cycle.

Consider now the case that G contains a triangle C = v1v2v3. The graph
G cannot contain another triangle disjoint from C, since otherwise it would
contain T1 or T4 as a subgraph. Together with the fact that each nontrivial
2-connected subgraph of G is a triangle, this implies that all the triangles in
G intersect in one vertex. We may assume that there is at least one vertex
v4 not belonging to C adjacent to v1, and that all triangles in G contain the
vertex v1. The vertex v1 is a cut-vertex in G. The graph G− v1 is not a star
forest, hence one of its components contains a triangle or P4. All triangles
in G contain the vertex v1, hence one of the components of G − v1 contains
a path P of length three.

If P is disjoint with C, then G contains a subgraph T1 or T5. It follows
that G contains only one triangle C, and that the path P intersects C−v1. If
the degree of both v2 and v3 is greater than two, then G contains the subgraph
T2, thus we may assume that degree of v2 is two and that P = v2v3v5v6 for
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some vertices v5 and v6. Similarly, G − v3 contains P4 as a subgraph, hence
we may assume that there is a vertex v7 adjacent to v4. However, the graph
G then would contain T3 as a subgraph. Therefore, G does not contain a
triangle, and it must be a tree.

It is however easy to verify using Lemma 5.3 that the only tree-depth
critical trees with tree-depth four are P8, P ′

7 and P ′′
6 . It follows that any

graph with td(G) > 3 contains one of the graphs in Figure 5.1 as a subgraph.

The inspection of the forbidden subgraphs of Theorem 5.4 also gives us
the set of forbidden minors for the property td(G) ≤ 3: all the graphs in
Figure 5.1 except for C6 and C7 (that have C5 as a minor). Note that the
forbidden subgraphs have at most 8 vertices, hence Theorem 5.1 is not sharp
even in this case (it only claims that the subgraphs have at most 16 vertices).

5.2 Low Tree-depth Coloring

The algorithm APPROX NABLA described in Section 4.3 can be used to provide
a proof that the expansion of the graph is small – the ordering L of vertices
of the graph G such that Lemma 4.9 and Theorem 3.9 can be applied. By
Theorems 2.3 and 2.4 (proved by Nešetřil and Ossona de Mendez [70]), a
graph has small expansion if and only if it has a low tree-depth coloring by
a small number of colors. Naturally, there should be a way how to use the
ordering L to find a low tree-depth coloring of G, thus proving a result similar
to Theorem 2.4:

Theorem 5.5 Let G be a graph with n vertices and e edges, p, D > 0 inte-
gers, and let b = 2p − 2. Given a linear ordering L of vertices of G such that

d
L−(v)
b < D for each v ∈ V (G), one can find a p-tree-depth coloring of G by

at most D(b+1)2 colors in time O(D(b+1)2n).

The easy consequence of Theorem 5.5 is the following claim that strength-
ens Theorem 2.4:

Theorem 5.6 For each p > 0, there exists a polynomial f of degree O(8p)
such that for each graph G,

χp(G) ≤ f (∇2p−1−1(G)) .

Proof: Let d = ∇2p−1−1(G) and b = 2p − 2. This means that any graph
H whose ≤ b-subdivision is a subgraph of G has average density at most
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d. Let D = (6d+3)b+1

3
. By Theorem 4.11, the algorithm APPROX NABLA(b, D)

succeeds on G, hence there exists a linear ordering L of the vertices of G

such that d
L−(v)
b < D for each v ∈ V (G). By Theorem 5.5, there exists a

p-tree-depth coloring of G by at most D(b+1)2 = O(d(b+1)3) colors. The degree
of the polynomial that bounds the number of colors is (b+1)3 = O(8p).

For a vertex v ∈ V (G) and a set T ⊆ V (G), let QT
b (v) be the set of

vertices in T that are reachable from v by a path of length at most b + 1
whose inner vertices do not belong to T . To show the correctness of the
algorithm of Theorem 5.5, we need the following lemmas.

Lemma 5.7 Let b ≥ 0 and D > 0 be integers and G be a graph together

with an ordering L. If d
L−(v)
b (v) < D for each v ∈ V (G), then |QL−(v)

b (v)| ≤
(D − 1)b+1 for each vertex v.

Proof: For each vertex v there exists a tree R rooted in v whose depth is at

most b + 1, its leaves are the members of Q
L−(v)
b (v) and all the inner vertices

belong to L+(v). Each vertex inner vertex or root u ∈ V (R) has degree less
than D in R, since R contains a ≤ b-star with center u and dR(u) rays whose
middle vertices belong to L+(u) and the ray vertices belong to L−(u). It
follows that the number of the leaves of the tree is at most (D − 1)b+1, i.e.,

|QL−(v)
b (v)| ≤ (D − 1)b+1.

Lemma 5.8 For any k > 0, if G is a connected graph with td(G) = k + 1
and v a vertex of G such that td(G − v) = k, then the eccentricity of v is at
most 2k − 1.

Proof: Let u be the vertex of G whose distance d from v is maximal (i.e.,
equal to the eccentricity of v), and let P be the shortest path joining u and
v. The graph G − v contains the path P − v, whose length is d − 1. Since
td(P2k) = k+1, it follows that G−v does not contain a path of length 2k−1,
hence d ≤ 2k − 1.

For a fixed graph G, its ordering L and an integer b, let Q(v) = Q
L−(v)
b (v),

and let Q′(v) ⊆ {v} ∪ L−(v) be the set of vertices obtained by iterating
the operation Q b + 1 times, i.e., Q′(v) = Xb+1(v), where X0(v) = {v}
and Xi+1(v) = Xi(v) ∪ ⋃u∈Xi(v) Q(u) for i ≥ 0. Lemma 5.7 implies that

|Q′(v)| ≤ D(b+1)2 . We use the following algorithm TDCOLOR to color the
vertices of the graph G: We process the vertices in the order given by L, and
we color each vertex by the smallest color that does not appear on any other
vertex in Q′(v).
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Proof of Theorem 5.5: Since v ∈ Q′(v) and |Q′(v)| ≤ D(b+1)2 , the algo-
rithm TDCOLOR colors the graph by at most D(b+1)2 colors. We need to argue
that the coloring produced by the algorithm is a proper p-tree-depth coloring
of G. We show this by induction: let G′ be a nonempty connected subgraph
of G of tree-depth p′ ≤ p+1, and assume that the algorithm TDCOLOR assigns
at least k colors to any subgraph of G of tree-depth k < p′. We may assume
that p′ > 1, since at least one color is used in any nonempty subgraph of
G. Furthermore, we may assume that G′ is tree-depth critical, i.e., for any
vertex u of G′, td(G′ − u) < td(G′).

Let u be the first vertex of G′ in the ordering L. Since td(G′−u) < td(G′),
the distance from u to any other vertex of G′ is at most 2p − 1 = b + 1 by
Lemma 5.8. Consider a vertex v ∈ V (G′) \ {u} and let P be a shortest
path from u to v in G′. We can partition P to at most b + 1 edge-disjoint
paths P1, P2, . . . , such that for each path Pi = v1

i v
2
i . . . vℓ

i , the vertex v1
i

belongs to L−(vℓ
i ) and all the inner vertices of the path belong to L+(vℓ

i ).
This implies that v1

i ∈ Q(vℓ
i ), hence u ∈ Q′(v), and the color assigned to u by

the algorithm TDCOLOR is different from the colors assigned to all the other
vertices of G′. The tree-depth of G′ − u is p′ − 1, hence by the induction
hypothesis, G′ − u is colored by at least p′ − 1 colors. This implies that G′ is
colored by at least p′ colors. Therefore, the algorithm TDCOLOR constructs a
proper p-tree-depth coloring.

Let us now consider the time complexity of the algorithm. If we already
have constructed the sets Q(v) for each vertex v, we can compute the sets
Q′(v) in time O(D(b+1)2n), and select for each vertex v a color unused on
Q′(v) with the same time complexity. We construct the sets Q(v) in the
reverse ordering to L. Note that

Q(v) ⊆ (N(v) ∩ L−(v)) ∪
⋃

u∈N(v)∩L+(v)

Q(u).

Also, if Ru is a tree of the shortest paths from u to the vertices in Q(u)
whose inner vertices belong to L+(u), we may choose the trees so that

Rv − (N(v) ∩ L−(v)) ⊆
⋃

u∈N(v)∩L+(v)

R(u).

Therefore, we may construct Rv and Q(v) by finding the shortest paths
in the union of the trees of vertices in N(v) ∩ L+(v). Since the size of each
tree Ru is O(bDb+1), we can do that in time O(bDb+1d(v)). Thus, we can
construct all the sets Q(v) in time O(n + bDb+1e), where e = |E(G). Since
e ≤ Dn, the time complexity of the whole algorithm is O(D(b+1)2n).
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5.3 Induced Subgraph Coloring

In this section, we consider the variant of the subgraph coloring in that we
require that induced subgraphs have many colors. Let us recall that for a
graph H and an integer k, ϕH,k is the graph function defined by ϕH,k(H) = k
and ϕH,k(H

′) = 1 for any H ′ 6= H . Analogically to the upper chromatic num-
ber, we define the induced upper chromatic number χ̄i(H) as the maximum
k such that the function χi

ϕH,k
(·) is bounded by a constant on any proper

minor closed class.

The induced upper chromatic number of a graph H can be expressed in
the terms of a structural property of H similar to the tree-depth, although
the description is more complicated. We need several definitions:

Given a connected graph G, let us call a rooted tree T whose set of vertices
is a superset of V (G) a spine of G if for each edge {u, v} ∈ E(G), u is an
ancestor of v in T or vice versa. Note that the minimum depth of a spine of
G is equal to td(G) − 1. Let ℓT (v) denote the level of a vertex v ∈ V (G) in
T . Given a rooted tree T of depth t, a graph G is a partial closure of T if
V (G) = V (T ), T is a spine of G, and between each two levels of T , either all
the possible edges are present or none is. In other words, there exists a set
MT ⊆

({0,1,...,t}
2

)

such that {u, v} ∈ E(G) if and only if u is an ancestor of v
in T or vice versa, and {ℓT (u), ℓT (v)} ∈ MT .

For a graph H , let t be the the minimum depth of a rooted tree T such that
there exists a partial closure of T that contains H as an induced subgraph.
We define the induced tree-depth of H as tdi(H) = t + 1. Each graph is
a partial closure of a path, hence td(H) ≤ tdi(H) ≤ |V (H)|. If H ′ is an
induced subgraph of H , then tdi(H ′) ≤ tdi(H). Also, the induced tree-depth
of a graph is bounded by a function of its tree-depth:

Lemma 5.9 For any connected graph H, tdi(H) < 2td(H). Additionally, if
∆(H) = k, then tdi(H) ≤∑k

j=0

(

td(H)
j+1

)

.

Proof: Let T be a spine of H of depth d = td(H) − 1 such that V (T ) =
V (H). For a vertex v ∈ V (H) and an integer i (0 ≤ i < ℓT (v)), let ai(v)
be the ancestor of v in T whose level is i. Let ∼T be the equivalence in
that u ∼T v if ℓT (u) = ℓT (v) and {v, ai(v)} ∈ E(G) ⇔ {u, ai(u)} ∈ E(G)
for each i = 0, 1, . . . , ℓT (v) − 1. The maximum number of the classes of the
equivalence ∼T on the level i is 2i, hence the total number D of the classes
of ∼T satisfies D ≤∑d

i=0 2i = 2d+1 − 1.

If ∆(H) = k, we can improve this bound – the maximum number of the
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classes of this equivalence on the level i is
∑k

j=0

(

i
j

)

, hence

D ≤
k
∑

j=0

d
∑

i=0

(

i

j

)

=

k
∑

j=0

(

d + 1

j + 1

)

.

Let us assign numbers c(v) ∈ {0, . . . , D − 1} to the vertices of H in such
a way that c(u) = c(v) if and only if u ∼T v and ℓT (u) < ℓT (v) ⇒ c(u) <
c(v). We create a tree T ′ from T by subdividing each edge {u, v} ∈ T by
|c(u)−c(v)|−1 vertices. Note that the level of each vertex v ∈ V (H) in T ′ is
c(v). Let G be the partial closure of T ′ in that the vertices at levels i < j are
adjacent if and only if there exists an edge {u, v} ∈ E(H) such that c(u) = i
and c(v) = j. We claim that H is an induced subgraph of G, thus showing
that tdi(H) ≤ D.

If {u, v} is an edge in H and u is an ancestor of v in T , then u is also
an ancestor of v in T ′ and by the construction of G, the vertices u and
v are adjacent in G. On the other hand, consider the case that u and v
are not adjacent in H and ℓT (u) ≤ ℓT (v). Suppose for contradiction that
{u, v} ∈ E(G). This means that u is an ancestor of v and there exist vertices
u′ ∼T u and v′ ∼T v such that {u′, v′} ∈ E(H). This contradicts the
definition of the equivalence ∼T , since u = aℓT (u)(v) and u′ = aℓT (u)(v

′), but
{u, v} ∈ E(H) 6⇔ {u′, v′} ∈ E(H). Therefore, H is an induced subgraph of
G.

Let us now apply the same idea as Nešetřil and Ossona de Mendez [74]
used to show that χ̄(H) ≤ td(H):

Lemma 5.10 For any connected graph H, χ̄i(H) ≤ tdi(H).

Proof: Let t = tdi(H) and n = |V (H)|. The graph H is an induced
subgraph of a partial closure G of a rooted tree S of depth t − 1. We may
assume that each vertex of S has at most n sons. Let k > 0 be an integer.
Let S ′ be the rooted tree of depth t− 1 in that all vertices on level i < t− 1
have (n − 1)kt−i−1 + 1 sons. Let G′ be the partial closure of S ′ in that the
vertices on the levels i < j are adjacent if and only if the vertices on levels i
and j are adjacent in G.

Consider an arbitrary coloring of G′ by k colors, and the corresponding
coloring of S ′. By a repeated application of the pigeonhole principle, S ′

contains a subtree T ′ of depth t − 1 in that each inner vertex has n sons,
such that all the vertices of T ′ on the same level have the same color. Let
F be the corresponding induced subgraph of G′. The graph H is an induced
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subgraph of G and G is an induced subgraph of F , hence G′ contains H as
an induced subgraph colored by at most t colors.

Consider the class G of all graphs with tree-depth at most tdi(H). This
is a proper minor-closed class, and by the argument we presented, for any
integer k > 0, there exists a graph G′ ∈ G such that for any coloring of G′ by
k colors, G′ contains H as an induced subgraph colored by at most tdi(H)
colors. The inequality χ̄i(H) ≤ tdi(H) follows.

Given a rooted tree T , a tree is obtained from T by expunging a level i
if all the vertices of T on level i are removed, and we add the edges between
the vertices of T on level i+1 and their ancestors on level i−1. To prove the
other inequality between χ̄i(H) and tdi(H), we need the following lemma:

Lemma 5.11 Let H be a connected graph with tdi(H) = t and G a graph
with tree-depth at most t− 1. Then, there exists a coloring of G by less than
2t−1 colors such that every induced subgraph of G isomorphic to H contains
at least t colors.

Proof: By Lemma 5.9, the graph G is an induced subgraph of a partial
closure G′ of a tree T with depth at most 2t−1 − 2. Let us color each level of
the tree T by a separate color, and consider the corresponding coloring ϕ of
G. This coloring uses at most 2t−1 − 1 colors.

Let H be an induced subgraph of G. Let T ′ be the graph obtained from T
by removing all the vertices that do not lie on a path connecting two vertices
of H . Note that T ′ is a rooted tree whose root and leaves belong to V (H).
Let T ′′ be the rooted tree obtained from T ′ by expunging all levels that do
not contain a vertex of H . Let d be the depth of T ′′. Note that the coloring
ϕ assigns d + 1 colors to H . On the other hand, the subgraph G′′ of G′

induced by V (T ′′) is a partial closure of T ′′, and H is an induced subgraph of
G′′, hence d + 1 ≥ tdi(H). Therefore, the coloring ϕ assigns at least tdi(H)
colors to any induced subgraph of G isomorphic to H .

Let us now show that χ̄i(H) and tdi(H) are equal.

Theorem 5.12 For any connected graph H, χ̄i(H) = tdi(H).

Proof: Let t = tdi(H). By Lemma 5.10, χ̄i(H) ≤ t, hence it suffices to
show that χ̄i(H) ≥ t. Let G be any class with bounded expansion, and G
any graph in G. By Theorem 2.4, there exists a constant k (independent on
the choice of G) such that G has a t− 1-tree-depth coloring ϕ0 by at most k
colors. For a color a, let Sa be the set of vertices of G colored by a. For a set
A ⊆ {1, . . . , k}, let GA be the subgraph of G induced by

⋃

a∈A Sa. If |A| < t,
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then the tree-depth of GA is at most t − 1. By Lemma 5.11, there exists a
coloring ϕA of each such graph GA by at most D = 2t−1 − 1 colors such that
any induced subgraph of GA isomorphic to H is colored by at least t colors.
Let us extend all the colorings ϕA to G by setting the color of each vertex
that does not belong to V (GA) to 1.

Let A1, A2, . . . , Am (where m =
(

k
t−1

)

) be all the subsets of {1, . . . , k}
whose size is t − 1. We define the coloring ϕ of G such that the color ϕ(u)
of each vertex u ∈ V (G) is the tupple (ϕ0(u), ϕA1(u), . . . , ϕAm(u)). The
function ϕ is a coloring of G by at most kDm colors, which is a constant
independent on the graph G.

Suppose H is an induced subgraph of G. Either H intersects at least t
classes of the coloring ϕ0, or it is an induced subgraph of GA for some set
A ⊆ {1, . . . , k} of size t − 1. In that case, the coloring ϕA assigns at least
t colors to H . Therefore, the coloring ϕ assigns at least t colors to H . It
follows that χ̄i(H) ≥ t.

We can use Theorem 5.12 to determine χ̄i(H) for some graphs.

Theorem 5.13 The smallest graph H for that χ̄i(H) 6= χ̄(H) is C5.

Proof: By Theorems 2.5, 2.2 and 5.12, it suffices to consider the tree-depth
and the induced tree-depth of the graphs. Let H be any connected graph
with at most four vertices. If H is a single vertex, then td(H) = tdi(H) = 1.
If td(H) = 2, then H is a star, and td(H) = tdi(H) = 2. If td(H) = 4,
then H = K4 and tdi(H) = 4. Therefore, it suffices to consider the case
td(H) = 3.

If H is a tree, then we can root it in an arbitrary non-leaf vertex, thus
showing that H is its own partial closure. If H = C4 or H is K4 without
one edge, then H is a partial closure of the star K1,3 rooted in one of its
leaves. Finally, if H is a triangle with one added edge, then it is a partial
closure of the ≤ 1-star with two rays of length one and two. In all these
cases, tdi(H) = 3. The smallest graph H with td(H) 6= tdi(H) thus has at
least five vertices.

The path P5 is equal to the 1-star with two rays, hence tdi(P5) = td(P5) =
3, thus the smallest graph with td(H) 6= tdi(H) has at least five edges.

Let us now show that tdi(C5) = 5 > td(C5). Suppose for contradiction
that T is a spine with depth three of a 5-cycle H , and that H can be extended
to a partial closure of T . Such a spine has the root v1 and exactly one vertex
v2 of level one, where both v1 and v2 belong to V (H), since H is 2-connected
and its tree-depth is four. There also are exactly two vertices v3, v4 ∈ V (H)
whose level is the same (either two or three). Since the complement of C5
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does not contain K2,2 as a subgraph and we may exchange the position of v1

and v2 in the tree T , we may assume that {v1, v3} is an edge. Since T can
be extended to a partial closure, {v1, v4} is an edge as well. Since v3 and v4

do not have a common neighbor other than v1, exactly one of v3 and v4 must
be adjacent with v2. However, this contradicts the assumption that H can
be extended to a partial closure of T .

Therefore, C5 is indeed the smallest graph for that the tree-depth and
the induced tree-depth differ.

Lemma 5.9 shows that tdi(Pn) ≤ O(log3 n). In fact, the induced tree-
depth of a path is logarithmic:

Theorem 5.14 For any integer k > 1, tdi(P2k−1) ≤ 2k − 2.

Proof: Let T be the complete binary rooted tree of depth k−1, and let us
embed the path P = P2k−1 to the closure of T . Note that the embedding is
unique. We analyze the number D of classes of the equivalence ∼T . As we
showed in Lemma 5.9, the induced tree-depth of P is bounded by D.

Each edge of P is incident with a leaf of T , hence all the vertices on level
i < k − 1 are equivalent. Let us now consider the classes on the level k − 1.
The end vertices of P are equivalent, and they are not equivalent with any
other leaf of T . Every other leaf of T is adjacent to a vertex on level k − 2
and a vertex on level less than k − 2, hence there are k − 2 other classes of
∼T on level k − 1. Together, D ≤ 2k − 2.

5.4 Coloring Bounded Functions

As described in Section 2.2, the values of the minor-closed class coloring
bounded and the bounded expansion class coloring bounded functions are
bounded from above by td(G). However, not all functions that are smaller
than td(G) + 1 are coloring bounded, e.g. if ϕ(G) = td(G), then χϕ(H) =
td(H) is not bounded even for paths. Also, although the results for the
minor-closed class coloring bounded and the bounded expansion class color-
ing bounded functions referenced in Section 2.2 are similar, the two classes of
functions are not identical: Consider the function ϕ such that ϕ(sdn(Kn)) =
n for each n > 0, and ϕ(G) = 1 otherwise. This function is minor-closed class
coloring bounded, but not bounded expansion class coloring bounded. The
precise characterizations of the minor-closed class coloring bounded func-
tions and the bounded expansion class coloring bounded functions are easy
to derive, though:
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Theorem 5.15 A graph function ϕ is minor-closed class coloring bounded if
and only if ϕ(G) ≤ td(G) for each graph G, and additionally for each h > 0
exists N such that all graphs with ϕ(H) > N contain Kh as a minor.

Proof: Suppose first that ϕ is minor-closed class coloring bounded. By
Theorem 2.5, ϕ(G) ≤ td(G). For an arbitrary h > 0, consider the class Gh

of all graphs that do not contain Kh as a minor. The class Gh is a proper
minor-closed class, hence there exists a constant N such that χϕ(G) ≤ N for
each G ∈ Gh. Since χϕ(G) ≥ ϕ(G), it follows that ϕ(G) ≤ N for each graph
in Gh, which is equivalent to the statement of the lemma.

On the other hand, suppose that ϕ is a graph function such that ϕ(G) ≤
td(G) for each graph G and that for each h > 0 exists N such that all graphs
with ϕ(H) > N contain Kh as a minor. Let G be any proper minor-closed
class of graphs. Since G is proper, there exists h such that Kh is not a minor
of any graph in G. Let N be an integer such that all graphs with ϕ(H) > N
contain Kh as a minor. Then, all graphs G ∈ G satisfy ϕ(G) ≤ N . This
implies that χϕ(G) ≤ χN−1(G) for each G ∈ G, and by Theorem 2.2, χϕ(·)
is bounded by a constant on G.

Similarly, for the bounded expansion class coloring bounded functions,
we have the following statement:

Theorem 5.16 A function ϕ is bounded expansion class coloring bounded
if and only if ϕ(G) ≤ td(G) for each graph G, and additionally for each
nondecreasing function f there exists N such that all graphs H with ϕ(H) >
N satisfy ∇r(H) > f(r) for some r.

Proof: If ϕ is bounded expansion class coloring bounded, then ϕ(G) ≤
td(G) by Theorem 2.5. Let f be an arbitrary function, and let G be the class
of all graphs with expansion bounded by f . There exists a constant N such
that χϕ(H) ≤ N for each graph H ∈ G, hence no graph with ϕ(H) > N
belongs to this class.

Let us now prove the reverse implication. Let ϕ be a graph function
such that ϕ(G) ≤ td(G) for each graph G, and let G be a graph class with
expansion bounded by f . By the assumptions of the theorem, the function
ϕ is bounded by some constant N on G, hence χϕ(G) ≤ χN−1(G) for each
G ∈ G. By Theorem 2.2, the number χN−1(G) is bounded by a constant on
the class G.
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Chapter 6

Conclusion

We conclude by a quick overview of the contributions of the thesis, and posing
several open problems motivated by our results.

• We have provided a characterization of graphs with small acyclic chro-
matic number (Section 3.1.1), arrangeability (Section 3.1.2) and expan-
sion (Section 3.1.3) in the terms of forbidden subdivision.

• We used these results to simplify some problems regarding game chro-
matic number (Section 3.1.5).

• We characterized graphs with exponential expansion by the existence
of clique minors with small depth. To obtain this result, we showed
that graphs with large minimal degree contain a subdivision of a clique
in that each edge is subdivided only by a constant number of ver-
tices (Section 3.2.1). We also showed that these graphs contain large
expander-like subgraphs (Section 3.2.2).

• We studied the complexity of determining ∇r(·) and ∇d
r(·), showing

their NP-completeness even for graphs with bounded maximum degree
(Section 4.1) and an algorithm to compute them in polynomial time for
graphs with bounded tree-width and for graphs with bounded clique-
width in the fixed parameter case (Section 4.2). We also found an
approximation algorithm for general graphs (Section 4.3).

• We applied the witness of the small expansion obtained from the ap-
proximation algorithm to construct a low tree-depth coloring of a graph
(Section 5.2).

• We considered the set of forbidden subgraphs for small tree-depth, de-
scribed precisely the tree-depth critical trees and determined the set of
forbidden subgraphs for td(·) ≤ 3 (Section 5.1).

87
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• We introduced the induced upper chromatic number and showed an
equivalent graph property similar to tree-depth.

6.1 Open problems

Many of our results seem to be far from tight, or leave open questions:

• Is it possible to improve the bounds of Theorems 3.3, 3.7 or 3.9 re-
garding the existence of the subdivisions of graphs with high minimum
degree or chromatic number? While the bounds of Theorem 3.7 and
Theorem 3.9 have at least the correct order of magnitude, the gap
between the bounds for Theorem 3.3 is quite large.

• Conjectures 3.1 and 3.2 for the game chromatic number are wide open.
It seems that proving them would require a deep understanding of the
properties of the chromatic number of subgraphs of a graph with high
chromatic number. Conjecture 3.3 regarding the game coloring number
might be easier to prove or disprove.

• The size of the clique guaranteed by Theorem 3.15 is quite small. Is it
true that a graph with minimum degree Ω(nε) contains a subdivision
of Knε/2 in that each edge is subdivided a constant number of times?
Perhaps a more refined analysis similar to the proof of Komlós and
Szemerédi [57] could provide such a result.

• Is it possible to approximate ∇r(G) within a better factor than the one
of Section 4.3? Possibly within a constant factor? Since determining
whether ∇d

1(·) ≥ 4 is NP-complete, ∇d
1(·) cannot be approximated

within factor better than 4
3
. A more involved analysis of the proof

of Theorem 4.5 using the inapproximability of set cover also rules out
PTAS for ∇1(·).

• What is the complexity of the problem of determining whether ∇d
1(G) ≤

3?

• We showed that determining whether ∇1(G) ≤ k is solvable in polyno-
mial time for graphs with bounded clique-width if k is fixed. What is
the complexity of the problem if k is a part of the input?

• Does there exist a proper minor-closed class for that determining ∇1(G)
is NP-complete? There exists such a class with bounded expansion
(graphs with maximum degree four), by Theorem 4.5.
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• By Theorem 5.3, a tree-depth critical tree with tree-depth k +1 has 2k

vertices, and among the forbidden subgraphs in Theorem 5.4, the trees
have the largest number of vertices. Is it possible that 2k is the correct
upper bound on the size of the tree-depth critical graphs, rather than
the double-exponential bound of Theorem 5.1?

• By Theorem 5.6, χp(G) is bounded by a function of ∇2p−1−1(G). Is the
exponential depth of the considered minors necessary? The fact that
the tree-depth of a path is logarithmic in its length (thus we may need
to have a control of vertices in the exponential distance) indicates that
this indeed might be the case, but we were not able to construct an
example of graphs with bounded ∇2o(p)(G) and unbounded χp(G).

• Is computing the induced tree-depth of a graph NP-complete? What
about the fixed parameter case? Do there really exist graphs whose
induced tree-depth is exponential in their tree-depth?

• An important area of research regarding the planar graphs and graphs
on surfaces is the study of light configurations, i.e., existence of sub-
graphs such that all of their vertices have a small degree (see e.g. the
survey paper of Jendrol’ and Voss [52]). The graphs with bounded
maximum degree (another canonical example of a class with bounded
expansion) obviously contain light subgraphs. Can something be told
about the existence of light configurations in graphs with bounded ex-
pansion in general? There are obstacles for their existence that need
to be forbidden in some way (e.g., Kc,n for constant c), which however
is the case for planar graphs as well (minimum degree or connectivity
constraints are used to avoid K2,n).
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[36] P. Dreyer, Ch. Mallon and J. Nešetřil, Universal h-colorable graphs with-
out a given configuration, Discrete Math. 250 (2002), 245-252.

[37] J.R. Edmonds, Minimum partition of a matroid into independent sub-
sets, J. Res. Nat. Bur. Standards 69B (1965), 67-72.

[38] D. Eppstein, Subgraph isomorphism in planar graphs and related prob-
lems, Proc. 6th Symp. Discrete Algorithms, ACM and SIAM (1995),
632-640.

[39] D. Eppstein, Subgraph isomorphism in planar graphs and related prob-
lems, J. Graph Algorithms & Applications 3 (1999), 1-27.
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[57] J. Komlós and E. Szemerédi, Topological cliques in graphs II, Comb.
Probab. Comput. 5 (1996), 79-90.

[58] A.V. Kostochka and L.S. Melnikov, On a lower bound for the isoperimet-
ric number of cubic graphs, in Probabilistic Methods in Discrete Math.
(1993), 251-265.

[59] A.V. Kostochka, A lower bound for the Hadwiger number of a graph as
a function of the average degree of its vertices, Discret. Analyz, Novosi-
birsk, 38 (1982), 37-58.

[60] R. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM
Journal of Applied Mathematics 36 (1979), 177-189.

[61] R. Lipton and R.E. Tarjan, Applications of a planar separator theorem,
SIAM J. Comput. 9 (1980), 615–627.

99



[62] L. Lovász, Three Short Proofs in Graph Theory, J. Combin. Th. Ser. B
19 (1975), 111-113.

[63] W. Mader, Hinreichende Bedingungen für die Existenz von Teilgraphen
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[66] J. Nešetřil and P. Ossona de Mendez, Colorings and homomorphisms
of minor closed classes, in: J. Pach, et al. (Eds.), J. Goodman and
R. Pollack Festschrift, Springer, Berlin, 2003, pp. 651-664.
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[88] V. Rödl, On the chromatic number of subgraphs of a given graph, Proc.
Amer. Math. Soc. 64 (1977), no. 2, 370-371.
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[92] E. Szemerédi, Colloquium at Emory University, Atlanta, GA, April 22,
1994.

[93] A. Thomason, An extremal function for complete subgraphs, Math. Proc.
Camb. Phil. Soc. 95 (1984), 261-265.

[94] A. Wigderson, D. Zuckerman, Expanders That Beat the Eigenvalue
Bound: Explicit Construction and Applications, Combinatorica 19
(1999), 125-138.

[95] D. R. Wood, Acyclic, Star and Oriented Colourings of Graph Sub-
divisions, Discrete Mathematics and Theoretical Computer Science 7
(2005), 37-50.

102


