
Chapter 7

Graphic matroids

Let us summarize some facts on graphic matroids, in particular, those stated in
Propositions 1.16 and 1.17 and Corollary 2.15. Every graphic matroid is repre-
sentable over any field. The same holds for duals of graphic matroids. If G is
a graph and M(G) is the matroid associated to G, then rM(X) is equal to the
number of vertices of G decreased by the number of components of the spanning
subgraph of G containing the edges of X.

Matroids associated to planar graphs can be characterized in the spirit of
Kuratowski theorem.

Theorem 7.1. The following statements are equivalent for a graph G:

(i) The graph G is planar.

(ii) Both matroids M(G) and M∗(G) are graphic matroids.

(iii) The matroid M(G) has no minor isomorphic to M(K5) or M(K3,3).

Proof. Since a graph is planar if and only if it does contain K5 or K3,3 as a
minor, the equivalence of (i) and (iii) is just another formulation of Kuratowski’s
Theorem. By Theorem 2.22, (i) implies (ii). On the other hand, if G is a non-
planar graph, then G contains a minor isomorphic to either K5 or K3,3. Hence,
M∗(G) contains M∗(K5) or M∗(K3,3) as a minor and thus M∗(G) cannot be
graphic by Proposition 2.24.

7.1 Whitney’s theorem

All graphic matroids associated with m-edge trees are isomorphic. Hence, ma-
troids associated to non-isomorphic graphs can be isomorphic. Whitney [28]
characterized which graphs have isomorphic graphic matroids. We present this
result in this section. In this section, we consider only graphs without isolated
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78 CHAPTER 7. GRAPHIC MATROIDS

vertices since the (non-)presence of isolated vertices in a graph does not change
its associated matroid.

Let us introduce a graph operation that preserves the structure of the associ-
ated matroid. Let us consider the following three graph operations:

(i) Vertex identification. Let v1 and v2 be two vertices of distinct components
of a graph G. The new graph is obtained from G by identifying v1 and v2

to a single vertex. into a new vertex v.

(ii) Vertex cleaving. This is the reverse operation of vertex identification. The
new graph is obtained by cleaving a cut-vertex of a graph.

(iii) Twisting. Suppose that a graph G can be obtained from two vertex-disjoint
graphs G1 and G2 by identifying vertices u1 of G1 and u2 of G2 into a vertex
u of G, and identifying vertices v1 of G1 and v2 of G2 into a vertex v of
G. The graph obtained from G1 and G2 by identifying u1 with v2 and
v1 with u2 is a twist of G. The graphs G1 and G2 are called pieces and the
vertices u and v are called twisting vertices.

Two graphs are said to be 2-isomorphic if they can be transformed to each other
by a sequence of vertex identifications, vertex cleavings and twistings. An exam-
ple of 2-isomorphic graphs can be found in Figures 7.1 and 7.2. The relation of
being 2-isomorphic is an equivalence relation on graphs.

v1

v2

v
(i)

(ii)

Figure 7.1: An example of vertex identification and vertex cleaving.

Since neither vertex identifications, vertex cleavings nor twistings change the
structure of cycles in a graph, the matroids associated to two 2-isomorphic graphs
are the same. The rest of the section is devoted to the proof of the converse
implication.

Let us start with 3-connected graphs. Clearly, each 3-connected graph is the
only element of its equivalence class under 2-isomorphism.

Lemma 7.2. Let G and H be loopless graphs without isolated vertices and let G
be 3-connected. If ϕ : E(G) → E(H) is an isomorphism from M(G) to M(H),
then the mapping ϕ induces an isomorphism between the graphs G and H.
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Figure 7.2: An example of twisting.

Proof. A vertex bond is the set of all edges incident with a single vertex. The
complement of every vertex bond of G is connected in M(G) (since G stays
2-connected after removing any vertex) and it is a hyperplane of M(G), i.e.,
an inclusion-wise maximal subset of rank r(M(G)) − 1. Since every connected
hyperplane in a graphic matroid must be a complement of a vertex bond (but,
in general, there can be complements of vertex bonds that are not connected),
no graphic matroid can contain more than r(M(G)) + 1 connected hyperplanes.
Hence, if a graphic matroid associated to a graph G′ contains r(M(G′)) + 1
connected hyperplanes, they uniquely determine vertex bonds of G′. As the
matroids M(G) and M(H) are isomorphic, M(H) contains r(M(G)) + 1 =
r(M(H)) + 1 connected hyperplanes and they uniquely determine the vertex
bonds of H . It follows that the graphs G and H are isomorphic and the mapping
ϕ induces an isomorphism between them.

In the analysis of 2-connected graphs, we will have to employ Tutte’s struc-
tural characterization of these graphs. A generalized cycle is a graph obtained
from a cycle of length k ≥ 2 by replacing some of its edges with 2-connected
graphs H in the following way: an edge of the cycle is removed and its end-
vertices are identified with two distinct vertices of H . The two vertices shared
by H and the rest of the graph are called contact vertices.

We show that every 2-connected graph is a generalized cycle.

Lemma 7.3. Let G be a 2-connected graph with at least four vertices. If G is
not 3-connected graph, then G is a generalized cycle.

Proof. Let {u, v} be a vertex cut of G. Let H1 be any component of G \ {u, v}
and let H2 be the graph G\ ({u, v}∪V (H1)). For i = 1, 2, let Gi be the subgraph
of G induced by V (Hi) ∪ {u, v}. Finally, G′

2 is the graph obtained from G2 by
deleting all edges joining u and v. If both G1 and G′

2 are 2-connected, then G
is a generalized cycle obtained by identifying vertices of G1 and G′

2. If G1 is
not 2-connected, it has a cut-vertex w. As G is 2-connected, the vertex w is
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neither u nor v. The vertex w splits G1 into parts G1,1 and G1,2. If all G1,1,
G1,2 and G′

2 are 2-connected, then G is a generalized cycle obtained from G1,1,
G1,2 and G′

2. If not, we split the one that is not into two parts delimited by its
cut-vertex. We continue until we obtain a sequence of 2-connected graphs that
form the generalized cycle isomorphic to G.

Using Lemma 7.3, we can make the first step towards the proof of Whitney’s
theorem.

Lemma 7.4. Let G be a generalized cycle obtained by replacing edges of a cycle
of length k with graphs G1, . . . , Gk which are either multiple edges or 2-connected
graphs. If the matroid M(G) is isomorphic to the matroid M(H) of a graph H,
then H is a generalized cycle obtained from a cycle of length k by replacing its
edges with graphs H1, . . . , Hk. Moreover, if ϕ is an isomorphism of M(G) and
M(H), then E(Hi) = ϕ(E(Gi)) for a suitable permutation of indices.

Proof. For i ∈ {1, 2, . . . , k}, let Hi be the subgraph of H formed by the edges
ϕ(E(Gi)) and the vertices incident with at least one of these edges. Further, let
G−i =

⋃

j 6=iGj and H−i =
⋃

j 6=iHj. Our aim is to show that the following holds
for every i = 1, . . . , k:

|V (Hi) ∩ V (H−i)| = 2 (7.1)

If Gi is a single or multiple edge, then Hi is, too. If Gi is 2-connected, then
ϕ(E(Gi)) is connected (in the matroidal sense) and thus Hi is a 2-connected
subgraph of H . Consider a cycle C of G passing through all the subgraphs
G1, . . . , Gk. Let P be a maximal path of ϕ(C) contained in H−i, and let x and y
be the first and the last vertex of P . Clearly, both x and y are contained in both
Hi and H−i. The proof of (7.1) will be completed by showing that

V (Hi) ∩ V (H−i) = {x, y} (7.2)

Let u be one of the contact vertices of Gi. The set Eu of edges of Gi incident
with u is an edge-cut of Gi and thus Hi \ ϕ(Eu) has two components. Observe
that every circuit of M(H) that contains both an edge Hi and an edge of H−i

must contain an edge of ϕ(Eu): indeed, any cycle of G containing an edge of
Gi and an edge G−i must pass through both contact vertices of Gi and thus it
contains an edge of Eu.

The vertices x and y are in different components of Hi \ ϕ(Eu). If they were
in the same components, the path between them and P would be a cycle of H
avoiding all the edges of ϕ(Eu) which is impossible since any circuit of M(H)
containing an edge of Hi and an edge of H−i must contain an edge of ϕ(Eu). Let
Hx

i be the component of Hi \ ϕ(Eu) containing x and Hy
i the one containing y.

If (7.2) does not hold, there is a vertex z ∈ (V (Hi) ∩ V (H−i)) \ {x, y}. By
symmetry, we can assume that z is contained in Hx

i . Let g be an edge of H−i
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incident with z and h such an edge of Hi. Since H is 2-connected, it contains
a cycle passing through both g and h. Walk along this cycle from z through an
edge g as long as Hi or P is hit. Let w be the vertex that we hit and Q the path
we have traversed.

We distinguish three cases based on the position of w: w is a vertex of P , w
is a vertex of Hx

i not contained in P , or w is a vertex of Hy
i not contained in P .

If w is contained in P , consider the following cycle of H : walk from z to w along
Q, continue to x along P and to z along any path in Hx

i . However, this cycle of
H corresponds to a circuit of M(H) containing both an edge of Hi and an edge
of H−i avoiding all edges of ϕ(Eu) which is impossible. Hence, w is not contained
in the path P .

If w is a vertex of Hx
i , consider the following cycle of H : walk from z to w

along Q and then continue from w to z along any path in Hx
i . Again, the obtain

cycle corresponds to a circuit of M(H) containing both an edge of Hi and an
edge of H−i avoiding all edges of ϕ(Eu).

Finally, if w is a vertex of Hy
i , consider the following cycle of H : walk from

z to w along Q, continue from w to y along any path in Hy
i , then from y to x

along P and close the close following any path from x to w in Hx
i . Again, the

corresponding circuit of M(H) contains both an edge of Hi and an edge of H−i

and avoids all edges of ϕ(Eu).
We have now proven the equation (7.1). Since H is 2-connected, it must be

a generalized cycle with parts H1, H2, . . . , Hk (start in H1 and continue along
contact vertices through other parts until H1 is again reached).

We are now ready to prove that 2-connected graphs with the same associated
matroids can be transformed by a sequence of twistings.

Lemma 7.5. Let G be a 2-connected graph with n ≥ 2 vertices. If the matroid
M(H) of a graph H is isomorphic to M(G), then the graph H can be transformed
by at most n− 2 twistings to a graph H∗ isomorphic to G.

Proof. We prove a slightly stronger statement where we allow a single edge to be
directed and require the considered isomorphism between M(G) and M(H) to
map the directed edge of G to the directed edge of H . Note that the direction
of this edge can always be “fixed” by twisting its end-vertices when a particular
isomorphism of G and H is considered.

The proof proceeds by induction on n. If n = 2, the graphs G and H must be
isomorphic (they are either single edges or parallel edges of the same multiplicity).
Let n ≥ 3. If G is 3-connected, then G andH are isomorphic as undirected graphs
by Lemma 7.2 and using at most one twisting on a directed edge, they become
isomorphic with the directed edges.

Hence, both G and H are generalized cycles by Lemma 7.3. Let G1, . . . , Gk be
the subgraphs forming the generalized cycle and let H1, . . . , Hk be the subgraphs
forming the generalized cycle of H in such an order that E(Hi) = ϕ(E(Gi)) which
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exists by Lemma 7.4. Finally, let ni be the number of vertices of Gi (and thus of
Hi).

By symmetry, we can assume that G1 (and thus H1) contains the directed
edge and the parts G1, . . . , Gk follow the original cycle of G in this order. We
first apply k− 2 twistings to rearrange Hi to follow the original cycle of H in the
order H1, . . . , Hk.

Let G′
1 be the graph obtained from G1 by adding an edge between its contact

vertices and H ′
1 the graph obtained from H1 by adding an edge between its

contact vertices. By induction, there exists a sequence of at most n1−2 twistings
transforming H1 to H∗

1 isomorphic to G1 while the rest of H is unchanged. Let
vg be the contact vertex shared by G1 and G2 and wg the other contact vertex
of G2. Let vh be the image of vg under the isomorphism of G1 and H∗

1 . Using
at most one twisting which can be included among the k − 2 twisting needed to
rearrange the parts into the right order, vh becomes a contact vertex of H2. Let
wh be the other contact vertex of H2. Consider graphs G′

2 and H ′
2 obtained from

G2 and H2 by adding directed edges vgwg and vhwh, respectively. By induction,
the graphs H ′

2 can be transformed to a graph isomorphic to G′
2 using at most

n2 − 2 twistings. Note that the reversal of the added directed edge corresponds
to a twisting around the contact vertices of H2 in H .

Proceed analogously with G3, . . . , Gk and H3, . . . , Hk. In this way, we have
transformed H to a graphH∗ isomorphic to G using at most k−2 initial twistings
to reorder the parts and ni − 2 twistings for each of the parts. Altogether, the
number of twistings does not exceed

k
∑

i=1

(ni − 2) + (k − 2) =
k
∑

i=1

(ni − 1) − 2 = n− 2 .

The proof of the lemma is now finished.

We can now characterize 2-connected graphs with isomorphic graphic ma-
troids.

Theorem 7.6. Let G be a loopless 2-connected graph with n vertices. If the
matroid M(H) of a graph H is isomorphic to M(G), then H can be transformed
into a graph that is isomorphic to G by a sequence of at most n − 2 twistings.
Moreover, for every d ≥ 1, there exist 2-connected graphs G and H with 3d + 2
vertices such that their associated matroids are isomorphic such that at least 3d
twistings are needed to transform H into a graph isomorphic to the graph G

Proof. The first part of the theorem follows directly from Lemma 7.5. To show
that the bound is the best possible, we proceed as follows: for d = 1, consider two
cycles of length five with edges labeled with 1, 2, 3, 4, 5 and 1, 3, 5, 2, 4. Replace
each edge with the number of parallel edges equal to its label. A straightforward
case analysis yields that at least 3 twistings are necessary to transform one of
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the graphs to one isomorphic to the other one. For d > 1, consider several such
cycles of length five, each having one edge labeled with 1 and remaining edges
with mutually distinct numbers and identify the edges labeled with 1.

We can now characterize all graphs with isomorphic graphic matroids. Recall
that a block of a graph G is an inclusion-wise maximal 2-connected subgraph of
G.

Theorem 7.7. (Whitney’s 2-Isomorphism Theorem) Let G and H be two
graphs without isolated vertices. The matroids M(G) and M(H) are isomorphic
if and only if the graphs G and H are 2-isomorphic.

Proof. First, cleave all cut vertices of G to obtain a graph G+ and cleave all cut
vertices of H to obtain H+. In other words, the components of G+ are blocks
of G and the components of H+ are blocks of H . Clearly, the graphs G and
G+ are 2-isomorphic as well as the graphs H and H+ are 2-isomorphic. Since
blocks of a graph one-to-one correspond to components of its graphic matroid,
the matroids M(G+) and M(H+) and such an isomorphism naturally gives a
one-to-one correspondence between components of G+ and components of H+.
Components of G+ can be transformed to components of H+ by a sequence
of twistings by Theorem 7.6. This implies that the graphs G+ and H+ are 2-
isomorphic which combines with the facts that G and G+ as well as H and H+

are 2-isomorphic to the fact that G and H are 2-isomorphic.

7.2 Recognizing graphic matroids

In this section, we discuss the complexity of testing whether a matroid is graphic.
The input matroid will be given by its independence oracle which we introduced
in Chapter 3.

The algorithm that we present will be divided into several steps. First, we
show that if a matroid M is graphic, then we can construct a graph G such that
the associated matroid M(G) is isomorphic to M in polynomial time.

Proposition 7.8. There exists a polynomial-time algorithm that decides whether
an oracle-given binary matroid M is graphic and if so, it constructs a graph G
such that the associated matroid M(G) is isomorphic to the input matroid M.

Proof. We first find a base B of M and fix it. With the base B fixed, we
construct its partial representation [Ir|D] with respect to B which can easily be
done by identifying fundamental circuits. Since M is binary, the matrix [Ir|D]
is a representation of M over the field GF(2). Using the matrix [Ir|D], it is
easy to decompose the matroid M into its connectivity components and solve
the problem separately for each of these components. Hence, we can assume in
the rest that the matroid M is connected.
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Let n be the number of columns of D and let Dk, 1 ≤ k ≤ n, be the matrix
obtained from D from its first k columns by deleting all the rows that are zero
and let Mk be the binary matroid represented by [Im|Dk] where m is the number
of rows of Dk. Since M is connected, it is possible to rearrange columns of M
in such a way that all the matroids M1, . . . ,Mn are connected. In other words,
if Ek, 1 ≤ k ≤ n, is the union of fundamental circuits with respect to B for the
elements corresponding to the first k columns, then Mk = M|Ek.

We will now construct graphs G1, . . . , Gn such that the matroid M(Gk), 1 ≤
k ≤ n, is isomorphic to Mk or decide that no such graph Gk exists. The graph
G1 is easy to construct as it is a cycle comprised of the edges corresponding
to the elements of M1. Since the graph G1, in general, all graphs Gk, is not
unique, we will employ an almost-linear time data structure for representing all
graphs 2-isomorphic to a 2-connected graph [2]. Assume that Gk−1 has already
been constructed and test using our data structure whether Gk−1 contains a path
comprised by the elements contained both in Ek−1 and in the fundamental circuit
with respect for the element corresponding to the k-th column of D. If so, we will
transform Gk−1 to a 2-isomorphic graph containing such a path and update the
data structure by adding the edges of Ek \ Ek−1. If not, the matroid Mk is not
graphic. The latter implies that the matroid M is also not graphic. If we obtain
in this way a graph Gn, then the matroid associated with Gn is isomorphic to
M.

We now turn our attention to the case of general matroids. We state that
it can be tested in polynomial time whether a given matroid is isomorphic to a
given graphic matroid. Recall that a vertex bond is the set of all edges incident
with a single vertex of a graph.

Theorem 7.9. Let G be a graph and M a matroid with the ground set E(G).
The matroids M and M(G) are isomorphic if and only if

(i) r(M) ≤ r(M(G)) and

(ii) every vertex bond of G is a union of cocircuits of M.

Proof. It is easy to see that if the matroids M and M(G) are isomorphic, then
both (i) and (ii) hold. So, we have to show that the conditions (i) and (ii)
are also sufficient to guarantee that M and M(G) are isomorphic. We proceed
by induction on the number of edges of G. Without loss of generality, we can
assume that G is connected. Suppose that (i) and (ii) hold, but M and M(G)
are not isomorphic. In particular, there exists a set X of elements of M that is
dependent in one of the matroids M and M(G) and independent in the other.
Such an inclusion-wise minimal set X is a circuit in one of the matroids (and
independent in the other).
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Fix an edge e of G. For every vertex v of G, the bond of v in G\{e} is a union
of cocircuits of M\{e} (this directly follows from the definition of a cocircuit as
an inclusion-wise minimal set meeting every base of a matroid). If e 6∈ X, then
X is dependent in one of the matroids M\{e} and M(G\{e}) and independent
in the other. By induction, the condition (i) must fail for this pair of matroids,
i.e., r(M \ {e}) > r(M(G \ {e})). Since the choice of e 6∈ X is arbitrary, we
conclude that every edge not contained in X is a bridge of G but not a coloop of
M.

Observe that the minimum degree of G is at least two: if G contained a vertex
v of degree one, then the single edge e incident with v is a bridge of G and, by
(ii), it must be a coloop of M since {e} is cocircuit of M. By the choice of X, e is
not contained in X but we have seen that none of the elements not contained in
X is a coloop. We have shown that the minimum degree of G is at least two. In
particular, X is not independent in M(G) (otherwise, G would be tree as all the
edges not contained in X are bridges in G). Hence, X corresponds to a cycle of
the graph G and X is its unique cycle (this follows from the choice of X and the
fact that all the edges of G not contained in X are bridges). Since the minimum
degree of G is at least two, there are no edges not contained in X and thus G is a
cycle. Consequently, r(M(G)) = |X|−1 and r(M) = |X| which violates (i).

For 2-connected graphs, Theorem 7.9 implies the following.

Corollary 7.10. Let G be a 2-connected graph and M a matroid with the ground
set E(G). The matroids M and M(G) are isomorphic if and only if r(M) =
r(M(G)) and every vertex bond of G is a cocircuit of M.

The main algorithmic result of this section follows.

Theorem 7.11. There exists a polynomial-time algorithm that decides whether
an oracle-given matroid M is graphic and if so, it constructs a graph G such that
the associated matroid M(G) is isomorphic to the input matroid M.

Proof. We first construct a partial representation [Ir|D] of M where r is the
rank of M. This allows us to split M into connectivity components and we then
proceed separately for the restrictions of M to its connectivity components. At
the end of the algorithm, the sought graph G is obtained as a disjoint union of
the constructed graphs for the restrictions of M. Hence, we assume in the rest
that M is connected.

If M is binary, it is possible to construct the graph G in polynomial-time
by Proposition 7.8. We then verify that M(G) is isomorphic to G using Corol-
lary 7.10. Clearly, if G is binary, then the above procedure is correct. If G is not
binary, then we either fail to construct the graph using the algorithm from Propo-
sition 7.8 (and we correctly output that M is not graphic) or the test described
in Corollary 7.10 fails (and we again correctly output that M is not graphic).
This establishes that the described algorithm is correct.
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In the proof of Theorem 7.11, we had to circumvent the test whether an
oracle-given matroid is binary. We show that this has been necessary since it
is not possible to algorithmically test in subexponential time whether an oracle-
given matroid M is binary.

Proposition 7.12. There is no subexponential algorithm for testing whether an
oracle-given matroid is binary.

Proof. Fix a 2k-element set E = {x1, . . . , xk, y1, . . . , yk}. Let C1 be the family of
all sets of the form {xi, yi, xj , yj}, where 1 ≤ i < j ≤ k, and let C2 be the family of
all sets {z1, . . . , zk}, where zi ∈ {xi, yi}, 1 ≤ i ≤ k, and |{z1, . . . , zk}∩{y1, . . . , yk}|
is even. The family C = C1∪C2 for k ≥ 3 is a family of circuits of a binary matroid
M. Consider the following family of (k+1)-dimensional vectors over GF(2): the
elements xi, 1 ≤ i ≤ k − 1, are represented by vectors (0|ei) where ei is the unit
vector, the elements yi, 1 ≤ i ≤ k − 1, by (1|ei), the element xk by (0, 1, . . . , 1)
and yk by (1, 1, . . . , 1). The just defined vectors form a binary representation of
M.

Observe that every Z ∈ C2 is a hyperplane of M. Since Z is both a cir-
cuit and a hyperplane of M, we can relax it (see Proposition 6.2) and ob-
tain a matroid MZ . Since the partial representations of M and MZ with re-
spect to the base x1, . . . , xk−1, yk are the same for Z 6= {x1, . . . , xk} and Z 6=
{x1, . . . , xi−1, yi, xi+1, . . . , xk−1, yk}, the matroid MZ cannot be binary. However,
to distinguish M and MZ , we have to query the independence of all 2k−1 − k
such subsets Z. Since the number of elements of M is 2k, running time of any
algorithm deciding whether an oracle-given matroid is binary must be (at least)
exponential in the number of its elements.


