Chapter 1

Definitions and basic examples

Matroids were established as a generalization of different concepts in two areas of mathematics: the concept of graphs in the graph theory and the concept of vector spaces in the linear algebra. The matroid theory uses and extends results from both the graph theory and the linear algebra and provides a link between them. The pioneering work in the matroid theory was the paper of Whitney entitled "On abstract properties of linear dependence" [29] which appeared in the 1930's and since then the matroid theory flourished a lot. We do not aim to cover its whole area and refer the reader particularly to the classical monograph by Oxley on this subject [16] for topics not covered here.

In this chapter, we provide main motivations for introducing the notion of matroids, give basic examples and explain notation that we use.

1.1 Independent sets, circuits and bases

A matroid \mathcal{M} is an ordered pair (E, \mathcal{I}) of a finite set E and a family \mathcal{I} of subsets of E satisfying the following properties:
(I1) $\emptyset \in \mathcal{I}$
(I2) if $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$ and
(I3) if $I_{1}, I_{2} \in \mathcal{I}$ and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element e of $I_{2}-I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.

The third property (I3) is called the independence augmentation axiom. If \mathcal{M} is a matroid (E, \mathcal{I}), then E is called the ground set of \mathcal{M}, the elements of E elements of \mathcal{M} and the members of \mathcal{I} independent sets. \mathcal{M} is also referred to as a matroid on E and sets contained in \mathcal{I} are also said to be independent in \mathcal{M}. Any subset of E not included in \mathcal{I} is called dependent. We also write $E(\mathcal{M})$ and $\mathcal{I}(\mathcal{M})$ for the ground set and the family of independent sets of a matroid \mathcal{M} or just E and \mathcal{I} if \mathcal{M} is clear from the context.

Let $\mathcal{M}_{1}=\left(E_{1}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(E_{2}, \mathcal{I}_{2}\right)$ be two matroids. A map $\varphi: E_{1} \rightarrow E_{2}$ is an isomorphism of the matroids \mathcal{M}_{1} and \mathcal{M}_{2} if φ is a bijection from E_{1} to E_{2} and $I_{1} \in \mathcal{I}_{1}$ if and only if $\varphi\left(I_{1}\right) \in \mathcal{I}_{2}$.

An inclusion-wise minimal dependent set in a matroid \mathcal{M}, i.e., a set X such that $X \notin \mathcal{I}(\mathcal{M})$ but every proper subset if X is independent in \mathcal{M}, is called a circuit of \mathcal{M}; the family of circuits of \mathcal{M} is denoted by $\mathcal{C}(\mathcal{M})$ or \mathcal{C} if \mathcal{M} is clear from the context. Those elements x of \mathcal{M} such that $\{x\}$ is a circuit are called loops. Observe that the family of independent sets uniquely determine the family of circuits of \mathcal{M} and vice versa.

The family of circuits of a matroid has several important properties which we summarize in the next lemma.

Lemma 1.1. The family \mathcal{C} of circuits of a matroid \mathcal{M} has the following properties:
(C1) $\emptyset \notin \mathcal{C}$
(C2) if $C_{1}, C_{2} \in \mathcal{C}$ and $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$, and
(C3) if $C_{1}, C_{2} \in \mathcal{C}, C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$.

Before proving the lemma, let us point out one particular less common notation which we use: if X is a set and x an element of X, then $X-x$ denotes the set $X \backslash\{x\}$. Similarly, we use $X+y$ for $X \cup\{y\}$.

Proof. The properties (C1) and (C2) immediately follow from the definition of a circuit. To prove (C3), assume that $\left(C_{1} \cup C_{2}\right)-e$ does not contain any circuit and thus it is independent. $\mathrm{By}(\mathrm{C} 2)$, there is an element $f \in C_{2}-C_{1}$ and $C_{2}-f$ is independent. Let I be a maximal independent subset of $C_{1} \cup C_{2}$ containing $C_{2}-f$. Clearly, $f \notin I$. On the other hand, there exists $g \in C_{1} \backslash I$ since $I \nsubseteq C_{1}$. As $f \in C_{2}-C_{1}$, the elements f and g are distinct. Hence

$$
|I| \leq\left|\left(C_{1} \cup C_{2}\right) \backslash\{f, g\}\right|=\left|C_{1} \cup C_{2}\right|-2<\left|\left(C_{1} \cup C_{2}\right)-e\right| .
$$

We now apply (I3) to the independent sets I and $\left(C_{1} \cup C_{2}\right)-e$; the resulting independent set contradicts the maximality of I.

The property (C3) is called the circuit elimination axiom. We show that the properties (C1)-(C3) fully characterize those families of sets that can be families of circuits of a matroid.

Theorem 1.2. Let E be a set and \mathcal{C} a family of subsets of E satisfying the properties (C1), (C2) and (C3). Let \mathcal{I} be a family of all subsets of E that contain no member of \mathcal{C}. Then, the pair (E, \mathcal{I}) is a matroid and \mathcal{C} is its family of circuits.

Proof. First, we prove that the family \mathcal{I} satisfies (I1)-(I3). By (C1), $\notin \mathcal{C}$ and thus $\emptyset \in \mathcal{I}$, i.e., (I1) holds. If I contains no member of \mathcal{C}, then any subset I^{\prime} of I also contains no member of \mathcal{C}, i.e., (I2) holds.

To prove (I3), let I_{1} and I_{2} be members of \mathcal{I} and $\left|I_{1}\right|<\left|I_{2}\right|$. Assume that (I3) fails for I_{1} and I_{2}. Let I_{3} be a subset of $I_{1} \cup I_{2}$ contained in \mathcal{I} with more elements than I_{1} and $\left|I_{1} \backslash I_{3}\right|$ minimal. As (I3) fails, $I_{1} \backslash I_{3}$ is non-empty, in particular, there is an element $e \in I_{1} \backslash I_{3}$. Fix such e.

Let $T_{f}=\left(I_{3}-f\right)+e$ for an element $f \in I_{3} \backslash I_{1}$. Since $T_{f} \subseteq I_{1} \cup I_{2}$ and $\left|I_{1} \backslash T_{f}\right|<\left|I_{1} \backslash I_{3}\right|$, the choice of I_{3} implies that $T_{f} \notin \mathcal{I}$. By the definition of \mathcal{I}, there exists a circuit $C_{f} \subseteq T_{f}$. Clearly, $e \in C_{f}$ but $f \notin C_{f}$.

If $C_{f} \cap\left(I_{3} \backslash I_{1}\right)=\emptyset$ for some $f \in I_{3} \backslash I_{1}$, then $C_{f} \subseteq\left(\left(I_{1} \cap I_{3}\right)+e\right)-f \subseteq I_{1}$ which is impossible since I_{1} is independent. Therefore, there is an element $g \in C_{f} \cap\left(I_{3} \backslash I_{1}\right)$. Since $e \in C_{f} \cap C_{g}$, there is a circuit $C \subseteq\left(C_{f} \cup C_{g}\right)-e \subseteq I_{3}$ by (C3). which contradicts the choice of I_{3}. We conclude that (E, \mathcal{I}) is a matroid.

Finally, the definition of \mathcal{I} and the property (C2) implies that the family \mathcal{C} is the family of circuits of the matroid (E, \mathcal{I}).

Lemma 1.1 and Theorem 1.2 yield the following.
Corollary 1.3. A family \mathcal{C} of subsets of a set E is a family of circuits of a matroid if and only if \mathcal{C} satisfies the properties (C1), (C2) and (C3).

We now introduce a notion dual to circuits. Inclusion-wise maximal independent sets are called bases; the name used is not a coincidence since bases of a matroid have a lot of common properties with bases of a vector space. Let us start with a simple fact that all bases of a matroid have the same size.

Proposition 1.4. If B_{1} and B_{2} are two bases of a matroid \mathcal{M}, then $\left|B_{1}\right|=\left|B_{2}\right|$.
Proof. Suppose that $\left|B_{1}\right|<\left|B_{2}\right|$. Then by (I3), there exists an element $e \in$ $B_{2}-B_{1}$ such that $B_{1}+e$ is independent which contradicts the maximality of B_{1}.

As in the case of circuits, the family of bases of a matroid \mathcal{M} is denoted by $\mathcal{B}(\mathcal{M})$ or just \mathcal{B} if \mathcal{M} is clear from the context. We now give several important properties of bases of a matroid.

Lemma 1.5. Let \mathcal{M} be a matroid on E and let \mathcal{B} be the family of its bases. The family \mathcal{B} has the following properties:
(B1) \mathcal{B} is non-empty, and
(B2) if $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1} \backslash B_{2}$, then there is an element $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$.

Proof. Since $\mathcal{I}(\mathcal{M})$ is non-empty by (I1), the family \mathcal{B} must also be non-empty, i.e., the property (B1) holds.

In order to prove (B2), consider two bases B_{1} and B_{2} and an element $e \in$ $B_{1} \backslash B_{2}$. Both $B_{1}-e$ and B_{2} are independent sets and $\left|B_{1}-e\right|<\left|B_{2}\right|$ by Proposition 1.4. (I3) implies that there exists $f \in B_{2} \backslash\left(B_{1}-e\right)$ such that $\left(B_{1}-e\right)+f$ is independent. As $f \in B_{2} \backslash B_{1}$ and $\left|\left(B_{1}-e\right)+f\right|=\left|B_{1}\right|,\left(B_{1}-e\right)+f$ is the sought base of \mathcal{M} by Proposition 1.4.

The property (B2) from Lemma 1.5 is usually called the base exchange axiom. On the other hand, the properties (B1) and (B2) fully characterize families of sets that can be families of bases of a matroids. Before we prove this fact, we have to establish the following lemma.

Lemma 1.6. Let E be a set and \mathcal{B} be a family of subsets of E. If \mathcal{B} satisfies the properties (B1) and (B2), then all the members of \mathcal{B} have the same size.

Proof. Suppose that there are two members of \mathcal{B} with different sizes. Choose such two members B_{1} and $B_{2},\left|B_{1}\right|>\left|B_{2}\right|$ with minimal $\left|B_{1} \backslash B_{2}\right|$. Fox every $e \in B_{1} \backslash B_{2}$, (B2) yields the existence of an element $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$. Clearly, $\left|\left(B_{1}-e\right)+f\right|=\left|B_{1}\right|>\left|B_{2}\right|$ and $\left|\left(\left(B_{1}-e\right) \cup f\right)-B_{2}\right|<\left|B_{1} \backslash B_{2}\right|$ which is impossible by the choice of B_{1} and B_{2}.

We are now ready to show that the properties (B1) and (B2) fully characterize families of bases of matroids.

Theorem 1.7. Let E be a set and \mathcal{B} be a family of subsets of E satisfying the properties (B1) and (B2). Let \mathcal{I} be the family of subsets of E that are contained in some member of \mathcal{B}. Then, the pair (E, \mathcal{I}) is a matroid and \mathcal{B} are its bases.

Proof. The definition of \mathcal{I} implies that the property (I2) holds. Since $\mathcal{B} \neq \emptyset$ by (B1), it also holds $\emptyset \in \mathcal{I}$ and the property (I1) is satisfied.

Suppose that (I3) fails, i.e., there are members I_{1} and I_{2} of \mathcal{I} with $\left|I_{1}\right|<\left|I_{2}\right|$ such that for each $e \in I_{2} \backslash I_{1}$, the set $I_{1}+e$ is dependent.

By the definition of \mathcal{I}, there are bases B_{1} and B_{2} such that $I_{1} \subseteq B_{1}$ and $I_{2} \subseteq B_{2}$. Let B_{2} be chosen that $\left|B_{2} \backslash\left(I_{2} \cup B_{1}\right)\right|$ is minimal possible. If there is an element $e \in B_{2} \backslash\left(I_{2} \cup B_{1}\right)$, then there would be an element $f \in B_{1} \backslash B_{2}$ by (B2) such that $\left(B_{2}-e\right)+f \in \mathcal{B}$. Since

$$
\left|\left(\left(B_{2}-e\right)+f\right) \backslash\left(I_{2} \cup B_{1}\right)\right|<\left|B_{2} \backslash\left(I_{2} \cup B_{1}\right)\right|
$$

this would contradict the choice of B_{2}. We conclude that $B_{2} \backslash\left(I_{2} \cup B_{1}\right)=\emptyset$, i.e., $B_{2} \backslash B_{1}=I_{2} \backslash B_{1}$. The choice of I_{1} and I_{2} implies that $I_{2} \backslash B_{1}=I_{2} \backslash I_{1}$ (otherwise, an element of $B_{1} \cap I_{2}$ could be added to I_{1} to form an independent set). The two equalities now combine to the following:

$$
\begin{equation*}
B_{2}-B_{1}=I_{2}-I_{1} \tag{1.1}
\end{equation*}
$$

We next show that $B_{1} \backslash\left(I_{1} \cup B_{2}\right)$ is empty. If not, there exists an element $e \in B_{1} \backslash\left(I_{1} \cup B_{2}\right)$. The property (B2) yields the existence of an element $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$. Clearly, $I_{1}+f \subseteq\left(B_{1}-e\right) \cup f$ is an independent set which is impossible since $f \in I_{2} \backslash I_{1}$ by (1.1). Hence, $B_{1} \backslash\left(I_{1} \cup B_{2}\right)=\emptyset$ which implies that

$$
\begin{equation*}
B_{1} \backslash B_{2}=I_{1} \backslash B_{2} \subseteq I_{1} \backslash I_{2} \tag{1.2}
\end{equation*}
$$

By Lemma 1.6, both B_{1} and B_{2} have the same size and thus $\left|B_{1} \backslash B_{2}\right|=$ $\left|B_{2} \backslash B_{1}\right|$. Consequently, (1.1) and (1.2) imply that $\left|I_{1} \backslash I_{2}\right| \geq\left|I_{2} \backslash I_{1}\right|$ which yields $\left|I_{1}\right| \geq\left|I_{2}\right|$. This contradicts the choice of I_{1} and I_{2}.

Lemma 1.5 and Theorem 1.7 together yield the following characterization of families of subsets that can be a family of bases of a matroid.
Corollary 1.8. Let E be a set and \mathcal{B} a family of subsets of E. \mathcal{B} is the family of bases of a matroid if and only if \mathcal{B} satisfies conditions (B1) and (B2).

1.2 The rank function

We define the rank function of a matroid \mathcal{M} as a function $r_{\mathcal{M}}$ from $2^{E(\mathcal{M})}$ to nonnegative integers where $r_{\mathcal{M}}(X)$ is defined to be the size of largest independent subset of X. By the property (I3), all inclusion-wise maximal independent subsets of X have the same size. Instead of $r(E(\mathcal{M}))$, we just write $r(\mathcal{M})$ and we also use $r(X)$ if \mathcal{M} is clear from the context.
Lemma 1.9. Let \mathcal{M} be a matroid on a set E. The rank function r of \mathcal{M} has the following properties:
(R1) $0 \leq r(X) \leq|X|$ for every $X \subseteq E$,
(R2) $r(X) \leq r(Y)$ for every $X \subseteq Y \subseteq E$, and
(R3) $r(X \cup Y)+r(X \cap Y) \leq r(X)+r(Y)$ for every $X, Y \subseteq E$.
Proof. The properties (R1) and (R2) directly follow from the definition of the rank function. To prove (R3), fix subsets X and Y of E. Let B_{\cap} be an inclusionwise maximal independent subset of $X \cap Y$ and B_{\cup} an inclusion-wise maximal independent subset of $X \cup Y$ such that $B_{\cap} \subseteq B_{\cup}$. Clearly, $B_{\cup} \cap X$ and $B_{\cup} \cap Y$ are independent subsets of X and Y, respectively. The properties (R1) and (R2) imply that $\left|B_{\cup} \cap X\right| \leq r(X)$ and $\left|B_{\cup} \cap Y\right| \leq r(Y)$. We now obtain that

$$
\begin{aligned}
r(X)+r(Y) & \geq\left|B_{\cup} \cap X\right|+\mid B_{\cup \cap Y} \cap \\
& =\left|\left(B_{\cup} \cap X\right) \cup\left(B_{\cup} \cap Y\right)\right|+\left|\left(B_{\cup} \cap X\right) \cap\left(B_{\cup} \cap Y\right)\right| \\
& =\left|B_{\cup} \cap(X \cup Y)\right|+\left|B_{\cup \cap} \cap(X \cap Y)\right| \\
& =\left|B_{\cup}\right|+\left|B_{\cap}\right|=r(X \cup Y)+r(X \cap Y) .
\end{aligned}
$$

The property (R3) from the lemma is an important property of the rank function and is known as the submodularity.

As with the previously studied properties of circuits and bases of matroids, we shall see that the properties (R1), (R2) and (R3) characterize functions that are rank functions of matroids. Before we prove this formally, we need to establish an auxiliary lemma.
Lemma 1.10. Let E be a finite set and r a function mapping 2^{E} to non-negative integers that has the properties (R1), (R2) and (R3). If X and Y are subsets of E such that $r(X+y)=r(X)$ for every $y \in Y \backslash X$, then $r(X \cup Y)=r(X)$.

Proof. The proof proceeds by the induction on the size of $Y \backslash X$ which is further denoted by k. Let $Y \backslash X=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. If $k=1$, the lemma clearly holds.

Assume that $k \geq 2$. Using the induction assumption, we infer from (R2) and (R3) that

$$
\begin{aligned}
r(X)+r(X) & =r\left(X \cup\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\}\right)+r\left(X+y_{k}\right) \\
& \geq r\left(X \cup\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}\right)+r(X) \geq r(X)+r(X)
\end{aligned}
$$

Since the first and last terms of the inequality are the same, the inequalities are in fact equalities and $r\left(X \cup\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}\right)=r(X)$.

We now show that the properties (R1), (R2) and (R3) guarantees that the considered function is the rank function of a matroid.

Theorem 1.11. Let E be a finite set and r a function mapping 2^{E} to nonnegative integers that has the properties (R1), (R2) and (R3). Let \mathcal{I} be a family of all subsets X of E with $r(X)=|X|$. Then, the pair (E, \mathcal{I}) is a matroid and r is its rank function.

Proof. By (R1), $r(\emptyset)=0=|\emptyset|$ which implies that $\emptyset \in \mathcal{I}$, i.e., (I1) holds. Suppose that $I \in \mathcal{I}$, i.e., $r(I)=|I|$, and consider a subset $I^{\prime} \subseteq I$. The property (R3) implies that

$$
\begin{aligned}
r\left(I^{\prime} \cup\left(I \backslash I^{\prime}\right)\right)+r\left(I^{\prime} \cap\left(I \backslash I^{\prime}\right)\right) & \leq r\left(I^{\prime}\right)+r\left(I \backslash I^{\prime}\right) \\
r(I)+r(\emptyset) & \leq r\left(I^{\prime}\right)+r\left(I \backslash I^{\prime}\right) .
\end{aligned}
$$

Since $r\left(I^{\prime}\right) \leq\left|I^{\prime}\right|$ and $r\left(I \backslash I^{\prime}\right) \leq\left|I \backslash I^{\prime}\right|$ by (R1), we obtain that

$$
|I| \leq r\left(I^{\prime}\right)+r\left(I \backslash I^{\prime}\right) \leq\left|I^{\prime}\right|+\left|I \backslash I^{\prime}\right|=|I|
$$

Since the first and the last terms are equal, the inequalities must be equalities. We conclude that $r\left(I^{\prime}\right)=\left|I^{\prime}\right|$, i.e., $I^{\prime} \in \mathcal{I}$, which proves (I2).

It remains to verify that \mathcal{I} also satisfies (I3). Consider two sets I_{1} and I_{2} contained in \mathcal{I} such that $\left|I_{1}\right|<\left|I_{2}\right|$. Assume that $I_{1}+e$ does not belong to \mathcal{I} for every $e \in I_{2} \backslash I_{1}$. Hence, for every $e \in I_{2} \backslash I_{1}$, it holds that

$$
\left|I_{1}\right|+1>r\left(I_{1}+x\right) \geq r\left(I_{1}\right)=\left|I_{1}\right|
$$

which implies $r\left(I_{1}+e\right)=\left|I_{1}\right|$. By Lemma 1.10, it holds that $r\left(I_{1}\right)=r\left(I_{1} \cup I_{2}\right)$. Since $r\left(I_{1} \cup I_{2}\right) \geq r\left(I_{2}\right)$ by (R2), we obtain that

$$
r\left(I_{2}\right) \leq r\left(I_{1}\right)=\left|I_{1}\right|<\left|I_{2}\right|
$$

which implies that I_{2} should not be contained in the family \mathcal{I}.
To complete the proof of the theorem, we also need to show that r is the rank function $r_{\mathcal{M}}$ of the matroid $\mathcal{M}=(E, \mathcal{I})$. Consider $X \subseteq E$. If X is independent in \mathcal{M}, then $r(X)=|X|=r_{\mathcal{M}}(X)$. Otherwise, let I be a maximal subset of X independent in \mathcal{M}. Since $I+x \notin \mathcal{I}$ for every $x \in X \backslash I$, Lemma 1.10 yields that $r(X)=r(I)=r_{\mathcal{M}}(I)$. Hence, r and $r_{\mathcal{M}}$ coincide, i.e., r is the rank function of \mathcal{M}.

Lemma 1.9 and Theorem 1.11 imply that the properties (R1), (R2) and (R3) fully characterize those functions that are the rank function of a matroid.

Corollary 1.12. Let E be a set. A non-negative integer function r on 2^{E} is the rank function of a matroid on E if and only if r satisfies properties (R1), (R2) and (R3).

It is not hard to give characterizations of independent sets, bases, and circuits of matroids by their rank functions. We state this in the following proposition.

Proposition 1.13. Let \mathcal{M} be a matroid with the rank function r. A set $X \subseteq$ $E(\mathcal{M})$
(i) is independent if and only if $|X|=r(X)$,
(ii) is a base if and only if $|X|=r(X)=r(\mathcal{M})$, and
(iii) is a circuit if and only if X is non-empty and $r(X-x)=|X|-1=r(X)$ for every $x \in X$.

The set $H \subset E$ is called a hyperplane of the matroid \mathcal{M} if it is an inclusionwise maximal set such that $r(H)<r(\mathcal{M})$. It is easy to see that the properties of the rank function imply that the rank of any hyperplane is $r(\mathcal{M})-1$.

1.3 Vector and affine matroids

Let us start with examples of matroids stemming from linear algebra which will justify the use of some terms from linear algebra in the matroid theory. Consider a multiset E of vector of a vector space. A subset of E is called independent if it is linearly independent. It is clear that conditions (I1)-(I3) are satisfied. Such a matroid is called the vector matroid. This example is captured in the following proposition.

Proposition 1.14. Let E be the set of columns of an $m \times n$ matrix A over a field \mathbb{F}, and let \mathcal{I} be the family of subsets X of E that are linearly independent in the m-dimensional vector space over \mathbb{F}. The pair (E, \mathcal{I}) is a matroid.

The definition of affine matroids is similar to vector matroids but we use affine independence of vectors instead of the linear independence. Recall that a multiset $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of d-dimensional vectors over a field \mathbb{F} is affinely dependent if $k \geq 1$ and there are elements $a_{1}, a_{2}, \ldots, a_{k}$ of \mathbb{F} such that $\sum_{i=1}^{k} a_{i} v_{i}=0, \sum_{i=1}^{k} a_{i}=0$ and all the elements a_{1}, \ldots, a_{k} are not zero. The multiset is affinely independent if it is not affinely dependent.

We now give an example of matroids based on the notion of affine independence.

Proposition 1.15. Let E be the set of columns of an $m \times n$ matrix A over a field \mathbb{F}, and let \mathcal{I} be the family of subsets X of E that are affinely independent in the m-dimensional vector space over \mathbb{F}. The pair (E, \mathcal{I}) is a matroid.

Matroids (E, \mathcal{I}) of the type given in the previous proposition are called affine matroids on E. To familiarize with this notion, we give two particular examples of such matroids.

Figure 1.1: An affine matroid of rank 3.

We start with affine matroids of rank at most 3 over \mathbb{R}. Let E be a multiset of vectors of \mathbb{R}^{2}. Let us view these vectors as points in the plane. A subset $A \subseteq E$ is affinely dependent if it contains two identical points, three collinear points or four points. An example of such a matroid can be found in Figure 1.1. The ground set of this matroid is $E=\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$ and a subset $A \subseteq E$ is dependent if $|A| \geq 4$ or A is one of the sets $\{(0,0),(1,0),(2,0)\}$, $\{(0,0),(0,1),(0,2)\}$ and $\{(0,2),(1,1),(2,0)\}$.

It is also easy to geometrically describe affine matroids of rank four. Again, we view the vectors of \mathbb{R}^{3} as points in the space. A subset A is affinely dependent
if it contains two identical points, three collinear points, four coplanar points, or five or more points.

Figure 1.2: An affine matroid of rank 4.

Matroids of rank at most four can be visualized by diagrams drawn according to the rules we now describe. All loops are represented outside the figure. For each element that is not a loop, there is a point in the diagram labeled by this element. Parallel elements are represented by multiple labels of a single point. If three elements form a circuit, the corresponding points are collinear in the diagram. Likewise, if four points form a circuit, the corresponding points are coplanar. In Figure 1.2, there is a diagram of an affine matroid of rank 4 with three dependent sets of size four, $\{(0,0,0),(0,1,0),(1,0,0),(1,1,0)\}$, $\{(0,0,0),(0,1,0),(0,0,1),(0,1,1)\}$ and $\{(1,0,0),(1,1,0),(0,0,1),(0,1,1)\}$. Any subset of the ground set of size at least five is also dependent.

An important example of a matroid is the Fano matroid. It is closely related to affine matroids but its construction is based on a projective plane of rank 2. Let E be the set of points of the Fano plane, i.e., the projective plane over $\mathrm{GF}(2)$. A subset X of E is independent if the points of X are independent in the Fano plane, i.e., they are not collinear. The Fano matroid is denoted by F_{7}. Its diagram can be found in Figure 1.3; note that the collinearity of points $\{2,4,6\}$ cannot be depicted by a straight line. Hence, diagrams with non-straight lines and twisted planes are used to represent matroids which are not affine matroids over \mathbb{R}.

Not all diagrams with points, lines and planes are geometric visualizations of matroids. As an example, consider the diagram in Figure 1.4 which does not represent a matroid. To see this, consider sets $X=\{1,2,3,6,7\}$ and $Y=$

Figure 1.3: The Fano matroid.
$\{1,4,5,6,7\}$ and observe that $r(X)=r(Y)=3, r(X \cup Y)=4$ and $r(X \cap Y)=3$ violating the submodularity of the rank function. Note that if points $\{1,6,7\}$ are changed to be collinear in Figure 1.5, we obtain a diagram of a matroid of rank 4.

Figure 1.4: A diagram not representing a matroid.

As not every diagram represents a matroid, it is desirable to have a characterization of diagrams representing matroids. Clearly, every line contains at least two points and any two distinct points lie on a line. Observe that two-element lines can be omitted in the diagram as they correspond to parallel elements. Moreover, any plane contains at least three non-collinear points and any three distinct non-collinear points lie in a common plane (three-element planes can be omitted). For diagrams of matroids of rank at most three, there is only one additional rule: any two distinct lines meet in at most one point.

For diagrams representing matroids of rank four, there are three rules instead of the last one given in the previous paragraph.
i Any line not lying in the plane intersects it in at most one point.
ii Any two intersecting lines lie in the common plane.

Figure 1.5: A modification of the diagram from Figure 1.4 which represents a matroid.
iii Any two planes meeting in more than two points do so in a line.

1.4 Representability

Vector matroids described in Proposition 1.14 provide a link between linear algebra and the matroid theory. A matroid given in a different way can be isomorphic to a vector matroid. This leads us to the notion of a representation.

Let \mathbb{F} be any field and let A be an $m \times n$ matrix over \mathbb{F}. If the vector matroid given by A is isomorphic to a matroid \mathcal{M}, then A is a representation of \mathcal{M} over \mathbb{F}. A matroid with a fixed representation over \mathbb{F} is said to be represented. In general, the representation of \mathcal{M} over \mathbb{F} is not unique. In particular, any of the following operations yields to another representation of \mathcal{M} over \mathbb{F} :
i Interchange two rows of A.
ii Multiply a row of A by a non-zero element of \mathbb{F}.
iii Replace a row of A by the sum of this row and another one.
iv Delete a zero row of A (unless it is the only row of A).
v Interchange two columns of A (note that this affects the isomorphism between the vector matroid and \mathcal{M}).
vi Multiply a column of A by a non-zero element of \mathbb{F}.
vii Replace each entry of A by its image under a fixed automorphism of F.

We will later see that not every matroid can be represented. The matroids that have a representation over some field are called representable matroids.

Let A be a representation of a matroid \mathcal{M} such that the number of rows of A is equal to the rank r of \mathcal{M}. It is well known (and easy to check) that a non-zero matrix A can be transformed by a sequence of operations i-viii into a matrix of the form $\left[I_{r} \mid D\right]$ where I_{r} is the $r \times r$ identity matrix and D is an $r \times(n-r)$

$$
\left(\begin{array}{c|c}
e_{1} \ldots e_{r} & e_{r+1} \ldots e_{n} \\
I_{r} & D
\end{array}\right)
$$

Figure 1.6: A standard representation of a matroid.
matrix over \mathbb{F} (see Figure 1.6). Such a matrix is called a standard representation of \mathcal{M} over \mathbb{F}.

1.5 Graphic matroids

In this section, we introduce matroids stemming from the graph theory. Let $G=(V, E)$ be a graph (with loops and parallel edges allowed). The cycle matroid, or the graphic matroid, $\mathcal{M}(G)$ of the graph G is the matroid on the ground set E with a subset $X \subseteq E$ independent if it is acyclic in G. Circuits of $\mathcal{M}(G)$ can be described using graph-theoretic terms: the family of circuits of $\mathcal{M}(G)$ is precisely the set of edges of cycles of G. A matroid \mathcal{M} is called graphic if it is isomorphic to $\mathcal{M}(G)$ for some graph G.

We now observe that every graphic matroid is representable. Consider a graph G with incidence matrix I_{G}, i.e., I_{G} is an $n \times m$ matrix where n is the number of vertices of G and m is the number of edges such that the rows of I_{G} one-to-one correspond to vertices of G, the columns of I_{G} one-to-one correspond to edges of G and the entries in each column equal to 1 correspond to the end-vertices of the corresponding edge; other entries are equal to zero. The columns corresponding to loops of G have only zero entries. The oriented incidence matrix O_{G} is obtained from the usual incidence matrix I_{G} by replacing one ' 1 ' in each column by -1 , i.e., the inverse element of 1 under the additive operation in a considered field. Over fields of characteristic two, the matrix O_{G} contains only entries equal to 0 and 1 as $1=-1$ for such fields.

The matrix O_{G} is a representation of $\mathcal{M}(G)$ over any field as stated in the next proposition.

Proposition 1.16. Every graphic matroid is representable over any field; in particular, the oriented incidence matrix O_{G} of a graph G is a representation of the matroid $\mathcal{M}(G)$.

We finish this section with a proposition on the rank function of graphic matroids.

Proposition 1.17. Let $G=(V, E)$ and let $\mathcal{M}=\mathcal{M}(G)$. The rank function of \mathcal{M} satisfies,

$$
r_{\mathcal{M}}(X)=|V(G[X])|-c(G[X])
$$

for any $X \subseteq E$ where $G[X]$ is a spanning subgraph (V, X) of G containing exactly the edges of X and $c(G[X])$ denotes the number of components of $G[X]$.
Proof. The rank function $r_{\mathcal{M}}(X)$ is defined as the number of edges of a maximal acyclic subgraph T_{X} of $G[X]$. For every component of $G[X], T_{X}$ contains one of its spanning trees, i.e., there are exactly $n-1$ edges of that component where n is the number of its vertices. Summing over all the components of $G[X]$, we obtain the formula from the statement.

1.6 Other examples

In this section, we give several other constructions of matroids. We let the proofs as straightforward exercises for readers. Let us start with the most simple one. A matroid is the uniform matroid $U_{m, n}$ which is described in the next proposition.
Proposition 1.18. Let $m \leq n$ be non-negative integers, E any n-element set and \mathcal{I} the family of all subsets X of E with $|X| \leq m$. The pair $U_{m, n}=(E, \mathcal{I})$ forms a matroid on E.

A more complex example of matroids are transversal matroids described in the next proposition.
Proposition 1.19. Let A_{1}, \ldots, A_{k} be a family of disjoint sets and let $E=A_{1} \cup$ $\cdots \cup A_{k}$. Let \mathcal{I} be a family of subsets X of E such that X contains at most one element from each of the sets A_{1}, \ldots, A_{k}. The pair (E, \mathcal{I}) is a matroid on E.

We finish this chapter with a construction of matroids called the matroid union, also known as the direct sum of matroids which allows us to form larger matroids using matroids with disjoint ground sets.
Proposition 1.20. Let $\mathcal{M}_{1}=\left(E_{1}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(E_{2}, \mathcal{I}_{2}\right)$ be two matroids with disjoint ground sets. Let \mathcal{I} be a family of subsets X of $E_{1} \cup E_{2}$ such that $X \cap E_{1}$ is independent in \mathcal{M}_{1} and $X \cap E_{2}$ in \mathcal{M}_{2}. The pair $\left(E_{1} \cup E_{2}, \mathcal{I}\right)$ is a matroid on $E_{1} \cup E_{2}$.

Let us remark that the matroid $\left(E_{1} \cup E_{2}, \mathcal{I}\right)$ from Proposition 1.20 is usually denoted by $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ and is called the union of \mathcal{M}_{1} and \mathcal{M}_{2}. We finish this section with several basic properties of matroid unions. All of them directly follow from Proposition 1.20.
Proposition 1.21. Let \mathcal{M}_{1} and \mathcal{M}_{2} be two matroids with disjoint ground sets. The matroid union $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ satisfies the following:
(i) $\mathcal{C}\left(\mathcal{M}_{1} \oplus \mathcal{M}_{2}\right)=\mathcal{C}\left(\mathcal{M}_{1}\right) \cup \mathcal{C}\left(\mathcal{M}_{2}\right)$,
(ii) $\mathcal{B}\left(\mathcal{M}_{1} \oplus \mathcal{M}_{2}\right)=\left\{B_{1} \cup B_{2} \mid B_{1} \in \mathcal{B}\left(\mathcal{M}_{1}\right), B_{2} \in \mathcal{B}\left(\mathcal{M}_{2}\right)\right.$, and
(iii) $r_{\mathcal{M}_{1} \oplus \mathcal{M}_{2}}(X)=r_{\mathcal{M}_{1}}\left(X \cap E\left(\mathcal{M}_{1}\right)\right)+r_{\mathcal{M}_{2}}\left(X \cap E\left(\mathcal{M}_{2}\right)\right)$ for every subset X of the ground set of $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$.

