
Chapter 1

Definitions and basic examples

Matroids were established as a generalization of different concepts in two areas of
mathematics: the concept of graphs in the graph theory and the concept of vector
spaces in the linear algebra. The matroid theory uses and extends results from
both the graph theory and the linear algebra and provides a link between them.
The pioneering work in the matroid theory was the paper of Whitney entitled
“On abstract properties of linear dependence” [29] which appeared in the 1930’s
and since then the matroid theory flourished a lot. We do not aim to cover its
whole area and refer the reader particularly to the classical monograph by Oxley
on this subject [16] for topics not covered here.

In this chapter, we provide main motivations for introducing the notion of
matroids, give basic examples and explain notation that we use.

1.1 Independent sets, circuits and bases

A matroid M is an ordered pair (E, I) of a finite set E and a family I of subsets
of E satisfying the following properties:

(I1) ∅ ∈ I

(I2) if I ∈ I and I ′ ⊆ I, then I ′ ∈ I and

(I3) if I1, I2 ∈ I and |I1| < |I2|, then there is an element e of I2 − I1 such that
I1 ∪ e ∈ I.

The third property (I3) is called the independence augmentation axiom. If
M is a matroid (E, I), then E is called the ground set of M, the elements of E
elements of M and the members of I independent sets. M is also referred to as
a matroid on E and sets contained in I are also said to be independent in M.
Any subset of E not included in I is called dependent. We also write E(M) and
I(M) for the ground set and the family of independent sets of a matroid M or
just E and I if M is clear from the context.
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Let M1 = (E1, I1) and M2 = (E2, I2) be two matroids. A map ϕ : E1 → E2

is an isomorphism of the matroids M1 and M2 if ϕ is a bijection from E1 to E2

and I1 ∈ I1 if and only if ϕ(I1) ∈ I2.
An inclusion-wise minimal dependent set in a matroid M, i.e., a set X such

that X 6∈ I(M) but every proper subset if X is independent in M, is called a
circuit of M; the family of circuits of M is denoted by C(M) or C if M is clear
from the context. Those elements x of M such that {x} is a circuit are called
loops. Observe that the family of independent sets uniquely determine the family
of circuits of M and vice versa.

The family of circuits of a matroid has several important properties which we
summarize in the next lemma.

Lemma 1.1. The family C of circuits of a matroid M has the following proper-
ties:

(C1) ∅ 6∈ C

(C2) if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2, and

(C3) if C1, C2 ∈ C, C1 6= C2 and e ∈ C1 ∩ C2, then there exists C3 ∈ C such that
C3 ⊆ (C1 ∪ C2) − e.

Before proving the lemma, let us point out one particular less common nota-
tion which we use: if X is a set and x an element of X, then X − x denotes the
set X \ {x}. Similarly, we use X + y for X ∪ {y}.

Proof. The properties (C1) and (C2) immediately follow from the definition of a
circuit. To prove (C3), assume that (C1 ∪ C2) − e does not contain any circuit
and thus it is independent. By (C2), there is an element f ∈ C2 −C1 and C2 − f
is independent. Let I be a maximal independent subset of C1 ∪ C2 containing
C2 − f . Clearly, f 6∈ I. On the other hand, there exists g ∈ C1 \ I since I 6⊆ C1.
As f ∈ C2 − C1, the elements f and g are distinct. Hence

|I| ≤ |(C1 ∪ C2) \ {f, g}| = |C1 ∪ C2| − 2 < |(C1 ∪ C2) − e| .

We now apply (I3) to the independent sets I and (C1 ∪ C2) − e; the resulting
independent set contradicts the maximality of I.

The property (C3) is called the circuit elimination axiom. We show that the
properties (C1)–(C3) fully characterize those families of sets that can be families
of circuits of a matroid.

Theorem 1.2. Let E be a set and C a family of subsets of E satisfying the
properties (C1), (C2) and (C3). Let I be a family of all subsets of E that contain
no member of C. Then, the pair (E, I) is a matroid and C is its family of circuits.
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Proof. First, we prove that the family I satisfies (I1)–(I3). By (C1), ∅ 6∈ C and
thus ∅ ∈ I, i.e., (I1) holds. If I contains no member of C, then any subset I ′ of
I also contains no member of C, i.e., (I2) holds.

To prove (I3), let I1 and I2 be members of I and |I1| < |I2|. Assume that (I3)
fails for I1 and I2. Let I3 be a subset of I1∪I2 contained in I with more elements
than I1 and |I1 \ I3| minimal. As (I3) fails, I1 \ I3 is non-empty, in particular,
there is an element e ∈ I1 \ I3. Fix such e.

Let Tf = (I3 − f) + e for an element f ∈ I3 \ I1. Since Tf ⊆ I1 ∪ I2 and
|I1 \ Tf | < |I1 \ I3|, the choice of I3 implies that Tf 6∈ I. By the definition of I,
there exists a circuit Cf ⊆ Tf . Clearly, e ∈ Cf but f 6∈ Cf .

If Cf∩(I3\I1) = ∅ for some f ∈ I3\I1, then Cf ⊆ ((I1∩I3)+e)−f ⊆ I1 which is
impossible since I1 is independent. Therefore, there is an element g ∈ Cf∩(I3\I1).
Since e ∈ Cf ∩ Cg, there is a circuit C ⊆ (Cf ∪ Cg) − e ⊆ I3 by (C3). which
contradicts the choice of I3. We conclude that (E, I) is a matroid.

Finally, the definition of I and the property (C2) implies that the family C is
the family of circuits of the matroid (E, I).

Lemma 1.1 and Theorem 1.2 yield the following.

Corollary 1.3. A family C of subsets of a set E is a family of circuits of a
matroid if and only if C satisfies the properties (C1), (C2) and (C3).

We now introduce a notion dual to circuits. Inclusion-wise maximal indepen-
dent sets are called bases; the name used is not a coincidence since bases of a
matroid have a lot of common properties with bases of a vector space. Let us
start with a simple fact that all bases of a matroid have the same size.

Proposition 1.4. If B1 and B2 are two bases of a matroid M, then |B1| = |B2|.

Proof. Suppose that |B1| < |B2|. Then by (I3), there exists an element e ∈
B2 − B1 such that B1 + e is independent which contradicts the maximality of
B1.

As in the case of circuits, the family of bases of a matroid M is denoted by
B(M) or just B if M is clear from the context. We now give several important
properties of bases of a matroid.

Lemma 1.5. Let M be a matroid on E and let B be the family of its bases. The
family B has the following properties:

(B1) B is non-empty, and

(B2) if B1, B2 ∈ B and e ∈ B1 \ B2, then there is an element f ∈ B2 \ B1 such
that (B1 − e) + f ∈ B.



8 CHAPTER 1. DEFINITIONS AND BASIC EXAMPLES

Proof. Since I(M) is non-empty by (I1), the family B must also be non-empty,
i.e., the property (B1) holds.

In order to prove (B2), consider two bases B1 and B2 and an element e ∈
B1 \ B2. Both B1 − e and B2 are independent sets and |B1 − e| < |B2| by
Proposition 1.4. (I3) implies that there exists f ∈ B2 \ (B1 − e) such that
(B1−e)+f is independent. As f ∈ B2 \B1 and |(B1−e)+f | = |B1|, (B1−e)+f
is the sought base of M by Proposition 1.4.

The property (B2) from Lemma 1.5 is usually called the base exchange axiom.
On the other hand, the properties (B1) and (B2) fully characterize families of
sets that can be families of bases of a matroids. Before we prove this fact, we
have to establish the following lemma.

Lemma 1.6. Let E be a set and B be a family of subsets of E. If B satisfies the
properties (B1) and (B2), then all the members of B have the same size.

Proof. Suppose that there are two members of B with different sizes. Choose such
two members B1 andB2, |B1| > |B2| with minimal |B1\B2|. Fox every e ∈ B1\B2,
(B2) yields the existence of an element f ∈ B2 \B1 such that (B1 − e) + f ∈ B.
Clearly, |(B1 − e) + f | = |B1| > |B2| and |((B1 − e) ∪ f)−B2| < |B1 \B2| which
is impossible by the choice of B1 and B2.

We are now ready to show that the properties (B1) and (B2) fully characterize
families of bases of matroids.

Theorem 1.7. Let E be a set and B be a family of subsets of E satisfying the
properties (B1) and (B2). Let I be the family of subsets of E that are contained
in some member of B. Then, the pair (E, I) is a matroid and B are its bases.

Proof. The definition of I implies that the property (I2) holds. Since B 6= ∅ by
(B1), it also holds ∅ ∈ I and the property (I1) is satisfied.

Suppose that (I3) fails, i.e., there are members I1 and I2 of I with |I1| < |I2|
such that for each e ∈ I2 \ I1, the set I1 + e is dependent.

By the definition of I, there are bases B1 and B2 such that I1 ⊆ B1 and
I2 ⊆ B2. Let B2 be chosen that |B2 \ (I2 ∪ B1)| is minimal possible. If there is
an element e ∈ B2 \ (I2 ∪ B1), then there would be an element f ∈ B1 \ B2 by
(B2) such that (B2 − e) + f ∈ B. Since

|((B2 − e) + f) \ (I2 ∪B1)| < |B2 \ (I2 ∪ B1)| ,

this would contradict the choice of B2. We conclude that B2 \ (I2 ∪B1) = ∅, i.e.,
B2 \B1 = I2 \B1. The choice of I1 and I2 implies that I2 \B1 = I2 \I1 (otherwise,
an element of B1 ∩ I2 could be added to I1 to form an independent set). The two
equalities now combine to the following:

B2 − B1 = I2 − I1 . (1.1)
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We next show that B1 \ (I1 ∪ B2) is empty. If not, there exists an element
e ∈ B1\(I1∪B2). The property (B2) yields the existence of an element f ∈ B2\B1

such that (B1 − e) + f ∈ B. Clearly, I1 + f ⊆ (B1 − e) ∪ f is an independent set
which is impossible since f ∈ I2 \ I1 by (1.1). Hence, B1 \ (I1 ∪ B2) = ∅ which
implies that

B1 \B2 = I1 \B2 ⊆ I1 \ I2 . (1.2)

By Lemma 1.6, both B1 and B2 have the same size and thus |B1 \ B2| =
|B2 \B1|. Consequently, (1.1) and (1.2) imply that |I1 \I2| ≥ |I2 \I1| which yields
|I1| ≥ |I2|. This contradicts the choice of I1 and I2.

Lemma 1.5 and Theorem 1.7 together yield the following characterization of
families of subsets that can be a family of bases of a matroid.

Corollary 1.8. Let E be a set and B a family of subsets of E. B is the family
of bases of a matroid if and only if B satisfies conditions (B1) and (B2).

1.2 The rank function

We define the rank function of a matroid M as a function rM from 2E(M) to non-
negative integers where rM(X) is defined to be the size of largest independent
subset ofX. By the property (I3), all inclusion-wise maximal independent subsets
of X have the same size. Instead of r(E(M)), we just write r(M) and we also
use r(X) if M is clear from the context.

Lemma 1.9. Let M be a matroid on a set E. The rank function r of M has
the following properties:

(R1) 0 ≤ r(X) ≤ |X| for every X ⊆ E,

(R2) r(X) ≤ r(Y ) for every X ⊆ Y ⊆ E, and

(R3) r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ) for every X, Y ⊆ E.

Proof. The properties (R1) and (R2) directly follow from the definition of the
rank function. To prove (R3), fix subsets X and Y of E. Let B∩ be an inclusion-
wise maximal independent subset of X ∩ Y and B∪ an inclusion-wise maximal
independent subset of X ∪ Y such that B∩ ⊆ B∪. Clearly, B∪ ∩ X and B∪ ∩ Y
are independent subsets of X and Y , respectively. The properties (R1) and (R2)
imply that |B∪ ∩X| ≤ r(X) and |B∪ ∩ Y | ≤ r(Y ). We now obtain that

r(X) + r(Y ) ≥ |B∪ ∩X| + |B∪ ∩ Y |

= |(B∪ ∩X) ∪ (B∪ ∩ Y )| + |(B∪ ∩X) ∩ (B∪ ∩ Y )|

= |B∪ ∩ (X ∪ Y )| + |B∪ ∩ (X ∩ Y )|

= |B∪| + |B∩| = r(X ∪ Y ) + r(X ∩ Y ) .
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The property (R3) from the lemma is an important property of the rank
function and is known as the submodularity.

As with the previously studied properties of circuits and bases of matroids, we
shall see that the properties (R1), (R2) and (R3) characterize functions that are
rank functions of matroids. Before we prove this formally, we need to establish
an auxiliary lemma.

Lemma 1.10. Let E be a finite set and r a function mapping 2E to non-negative
integers that has the properties (R1), (R2) and (R3). If X and Y are subsets of
E such that r(X + y) = r(X) for every y ∈ Y \X, then r(X ∪ Y ) = r(X).

Proof. The proof proceeds by the induction on the size of Y \X which is further
denoted by k. Let Y \X = {y1, y2, . . . , yk}. If k = 1, the lemma clearly holds.

Assume that k ≥ 2. Using the induction assumption, we infer from (R2) and
(R3) that

r(X) + r(X) = r(X ∪ {y1, y2, . . . , yk−1}) + r(X + yk)

≥ r(X ∪ {y1, y2, . . . , yk}) + r(X) ≥ r(X) + r(X) .

Since the first and last terms of the inequality are the same, the inequalities are
in fact equalities and r(X ∪ {y1, y2, . . . , yk}) = r(X).

We now show that the properties (R1), (R2) and (R3) guarantees that the
considered function is the rank function of a matroid.

Theorem 1.11. Let E be a finite set and r a function mapping 2E to non-
negative integers that has the properties (R1), (R2) and (R3). Let I be a family
of all subsets X of E with r(X) = |X|. Then, the pair (E, I) is a matroid and r
is its rank function.

Proof. By (R1), r(∅) = 0 = |∅| which implies that ∅ ∈ I, i.e., (I1) holds. Suppose
that I ∈ I, i.e., r(I) = |I|, and consider a subset I ′ ⊆ I. The property (R3)
implies that

r(I ′ ∪ (I \ I ′)) + r(I ′ ∩ (I \ I ′)) ≤ r(I ′) + r(I \ I ′)

r(I) + r(∅) ≤ r(I ′) + r(I \ I ′) .

Since r(I ′) ≤ |I ′| and r(I \ I ′) ≤ |I \ I ′| by (R1), we obtain that

|I| ≤ r(I ′) + r(I \ I ′) ≤ |I ′| + |I \ I ′| = |I| .

Since the first and the last terms are equal, the inequalities must be equalities.
We conclude that r(I ′) = |I ′|, i.e., I ′ ∈ I, which proves (I2).

It remains to verify that I also satisfies (I3). Consider two sets I1 and I2
contained in I such that |I1| < |I2|. Assume that I1 + e does not belong to I for
every e ∈ I2 \ I1. Hence, for every e ∈ I2 \ I1, it holds that

|I1| + 1 > r(I1 + x) ≥ r(I1) = |I1|
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which implies r(I1 + e) = |I1|. By Lemma 1.10, it holds that r(I1) = r(I1 ∪ I2).
Since r(I1 ∪ I2) ≥ r(I2) by (R2), we obtain that

r(I2) ≤ r(I1) = |I1| < |I2|

which implies that I2 should not be contained in the family I.
To complete the proof of the theorem, we also need to show that r is the rank

function rM of the matroid M = (E, I). Consider X ⊆ E. If X is independent
in M, then r(X) = |X| = rM(X). Otherwise, let I be a maximal subset of X
independent in M. Since I + x /∈ I for every x ∈ X \ I, Lemma 1.10 yields that
r(X) = r(I) = rM(I). Hence, r and rM coincide, i.e., r is the rank function of
M.

Lemma 1.9 and Theorem 1.11 imply that the properties (R1), (R2) and (R3)
fully characterize those functions that are the rank function of a matroid.

Corollary 1.12. Let E be a set. A non-negative integer function r on 2E is the
rank function of a matroid on E if and only if r satisfies properties (R1), (R2)
and (R3).

It is not hard to give characterizations of independent sets, bases, and circuits
of matroids by their rank functions. We state this in the following proposition.

Proposition 1.13. Let M be a matroid with the rank function r. A set X ⊆
E(M)

(i) is independent if and only if |X| = r(X),

(ii) is a base if and only if |X| = r(X) = r(M), and

(iii) is a circuit if and only if X is non-empty and r(X − x) = |X| − 1 = r(X)
for every x ∈ X.

The set H ⊂ E is called a hyperplane of the matroid M if it is an inclusion-
wise maximal set such that r(H) < r(M). It is easy to see that the properties
of the rank function imply that the rank of any hyperplane is r(M) − 1.

1.3 Vector and affine matroids

Let us start with examples of matroids stemming from linear algebra which will
justify the use of some terms from linear algebra in the matroid theory. Consider
a multiset E of vector of a vector space. A subset of E is called independent if
it is linearly independent. It is clear that conditions (I1)–(I3) are satisfied. Such
a matroid is called the vector matroid. This example is captured in the following
proposition.
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Proposition 1.14. Let E be the set of columns of an m × n matrix A over a
field F, and let I be the family of subsets X of E that are linearly independent in
the m-dimensional vector space over F. The pair (E, I) is a matroid.

The definition of affine matroids is similar to vector matroids but we use affine
independence of vectors instead of the linear independence. Recall that a multiset
{v1, v2, . . . , vk} of d-dimensional vectors over a field F is affinely dependent if k ≥ 1
and there are elements a1, a2, . . . , ak of F such that

∑k
i=1 aivi = 0,

∑k
i=1 ai = 0

and all the elements a1, . . . , ak are not zero. The multiset is affinely independent
if it is not affinely dependent.

We now give an example of matroids based on the notion of affine indepen-
dence.

Proposition 1.15. Let E be the set of columns of an m × n matrix A over a
field F, and let I be the family of subsets X of E that are affinely independent in
the m-dimensional vector space over F. The pair (E, I) is a matroid.

Matroids (E, I) of the type given in the previous proposition are called affine
matroids on E. To familiarize with this notion, we give two particular examples
of such matroids.

Figure 1.1: An affine matroid of rank 3.

We start with affine matroids of rank at most 3 over R. Let E be a multiset of
vectors of R2. Let us view these vectors as points in the plane. A subset A ⊆ E
is affinely dependent if it contains two identical points, three collinear points or
four points. An example of such a matroid can be found in Figure 1.1. The
ground set of this matroid is E = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)} and a
subset A ⊆ E is dependent if |A| ≥ 4 or A is one of the sets {(0, 0), (1, 0), (2, 0)},
{(0, 0), (0, 1), (0, 2)} and {(0, 2), (1, 1), (2, 0)}.

It is also easy to geometrically describe affine matroids of rank four. Again,
we view the vectors of R3 as points in the space. A subset A is affinely dependent
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if it contains two identical points, three collinear points, four coplanar points, or
five or more points.

Figure 1.2: An affine matroid of rank 4.

Matroids of rank at most four can be visualized by diagrams drawn accord-
ing to the rules we now describe. All loops are represented outside the fig-
ure. For each element that is not a loop, there is a point in the diagram la-
beled by this element. Parallel elements are represented by multiple labels of
a single point. If three elements form a circuit, the corresponding points are
collinear in the diagram. Likewise, if four points form a circuit, the correspond-
ing points are coplanar. In Figure 1.2, there is a diagram of an affine matroid of
rank 4 with three dependent sets of size four, {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},
{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)} and {(1, 0, 0), (1, 1, 0), (0, 0, 1), (0, 1, 1)}. Any
subset of the ground set of size at least five is also dependent.

An important example of a matroid is the Fano matroid . It is closely related
to affine matroids but its construction is based on a projective plane of rank
2. Let E be the set of points of the Fano plane, i.e., the projective plane over
GF(2). A subset X of E is independent if the points of X are independent in the
Fano plane, i.e., they are not collinear. The Fano matroid is denoted by F7. Its
diagram can be found in Figure 1.3; note that the collinearity of points {2, 4, 6}
cannot be depicted by a straight line. Hence, diagrams with non-straight lines
and twisted planes are used to represent matroids which are not affine matroids
over R.

Not all diagrams with points, lines and planes are geometric visualizations
of matroids. As an example, consider the diagram in Figure 1.4 which does
not represent a matroid. To see this, consider sets X = {1, 2, 3, 6, 7} and Y =
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Figure 1.3: The Fano matroid.

{1, 4, 5, 6, 7} and observe that r(X) = r(Y ) = 3, r(X ∪Y ) = 4 and r(X ∩Y ) = 3
violating the submodularity of the rank function. Note that if points {1, 6, 7} are
changed to be collinear in Figure 1.5, we obtain a diagram of a matroid of rank
4.

Figure 1.4: A diagram not representing a matroid.

As not every diagram represents a matroid, it is desirable to have a charac-
terization of diagrams representing matroids. Clearly, every line contains at least
two points and any two distinct points lie on a line. Observe that two-element
lines can be omitted in the diagram as they correspond to parallel elements.
Moreover, any plane contains at least three non-collinear points and any three
distinct non-collinear points lie in a common plane (three-element planes can be
omitted). For diagrams of matroids of rank at most three, there is only one
additional rule: any two distinct lines meet in at most one point.

For diagrams representing matroids of rank four, there are three rules instead
of the last one given in the previous paragraph.

i Any line not lying in the plane intersects it in at most one point.
ii Any two intersecting lines lie in the common plane.
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Figure 1.5: A modification of the diagram from Figure 1.4 which represents a
matroid.

iii Any two planes meeting in more than two points do so in a line.

1.4 Representability

Vector matroids described in Proposition 1.14 provide a link between linear alge-
bra and the matroid theory. A matroid given in a different way can be isomorphic
to a vector matroid. This leads us to the notion of a representation.

Let F be any field and let A be an m×n matrix over F. If the vector matroid
given by A is isomorphic to a matroid M, then A is a representation of M over
F. A matroid with a fixed representation over F is said to be represented. In
general, the representation of M over F is not unique. In particular, any of the
following operations yields to another representation of M over F:

i Interchange two rows of A.

ii Multiply a row of A by a non-zero element of F.

iii Replace a row of A by the sum of this row and another one.

iv Delete a zero row of A (unless it is the only row of A).

v Interchange two columns of A (note that this affects the isomorphism
between the vector matroid and M).

vi Multiply a column of A by a non-zero element of F.

vii Replace each entry of A by its image under a fixed automorphism of
F.

We will later see that not every matroid can be represented. The matroids
that have a representation over some field are called representable matroids.

Let A be a representation of a matroid M such that the number of rows of A
is equal to the rank r of M. It is well known (and easy to check) that a non-zero
matrix A can be transformed by a sequence of operations i–viii into a matrix of
the form [Ir|D] where Ir is the r × r identity matrix and D is an r × (n − r)
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e1 . . . er er+1 . . . en


 Ir D





Figure 1.6: A standard representation of a matroid.

matrix over F (see Figure 1.6). Such a matrix is called a standard representation
of M over F.

1.5 Graphic matroids

In this section, we introduce matroids stemming from the graph theory. Let
G = (V,E) be a graph (with loops and parallel edges allowed). The cycle matroid,
or the graphic matroid, M(G) of the graph G is the matroid on the ground set E
with a subset X ⊆ E independent if it is acyclic in G. Circuits of M(G) can be
described using graph-theoretic terms: the family of circuits of M(G) is precisely
the set of edges of cycles of G. A matroid M is called graphic if it is isomorphic
to M(G) for some graph G.

We now observe that every graphic matroid is representable. Consider a graph
G with incidence matrix IG, i.e., IG is an n×m matrix where n is the number of
vertices of G and m is the number of edges such that the rows of IG one-to-one
correspond to vertices of G, the columns of IG one-to-one correspond to edges of
G and the entries in each column equal to 1 correspond to the end-vertices of the
corresponding edge; other entries are equal to zero. The columns corresponding
to loops of G have only zero entries. The oriented incidence matrix OG is obtained
from the usual incidence matrix IG by replacing one ’1’ in each column by −1,
i.e., the inverse element of 1 under the additive operation in a considered field.
Over fields of characteristic two, the matrix OG contains only entries equal to 0
and 1 as 1 = −1 for such fields.

The matrix OG is a representation of M(G) over any field as stated in the
next proposition.

Proposition 1.16. Every graphic matroid is representable over any field; in
particular, the oriented incidence matrix OG of a graph G is a representation of
the matroid M(G).

We finish this section with a proposition on the rank function of graphic
matroids.

Proposition 1.17. Let G = (V,E) and let M = M(G). The rank function of
M satisfies,

rM(X) = |V (G[X])| − c(G[X])
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for any X ⊆ E where G[X] is a spanning subgraph (V,X) of G containing exactly
the edges of X and c(G[X]) denotes the number of components of G[X].

Proof. The rank function rM(X) is defined as the number of edges of a maximal
acyclic subgraph TX of G[X]. For every component of G[X], TX contains one of
its spanning trees, i.e., there are exactly n − 1 edges of that component where
n is the number of its vertices. Summing over all the components of G[X], we
obtain the formula from the statement.

1.6 Other examples

In this section, we give several other constructions of matroids. We let the proofs
as straightforward exercises for readers. Let us start with the most simple one. A
matroid is the uniform matroid Um,n which is described in the next proposition.

Proposition 1.18. Let m ≤ n be non-negative integers, E any n-element set
and I the family of all subsets X of E with |X| ≤ m. The pair Um,n = (E, I)
forms a matroid on E.

A more complex example of matroids are transversal matroids described in
the next proposition.

Proposition 1.19. Let A1, . . . , Ak be a family of disjoint sets and let E = A1 ∪
· · · ∪ Ak. Let I be a family of subsets X of E such that X contains at most one
element from each of the sets A1, . . . , Ak. The pair (E, I) is a matroid on E.

We finish this chapter with a construction of matroids called the matroid
union, also known as the direct sum of matroids which allows us to form larger
matroids using matroids with disjoint ground sets.

Proposition 1.20. Let M1 = (E1, I1) and M2 = (E2, I2) be two matroids with
disjoint ground sets. Let I be a family of subsets X of E1 ∪E2 such that X ∩E1

is independent in M1 and X ∩E2 in M2. The pair (E1 ∪E2, I) is a matroid on
E1 ∪E2.

Let us remark that the matroid (E1 ∪E2, I) from Proposition 1.20 is usually
denoted by M1 ⊕ M2 and is called the union of M1 and M2. We finish this
section with several basic properties of matroid unions. All of them directly follow
from Proposition 1.20.

Proposition 1.21. Let M1 and M2 be two matroids with disjoint ground sets.
The matroid union M1 ⊕M2 satisfies the following:

(i) C(M1 ⊕M2) = C(M1) ∪ C(M2),

(ii) B(M1 ⊕M2) = {B1 ∪B2 | B1 ∈ B(M1), B2 ∈ B(M2), and

(iii) rM1⊕M2
(X) = rM1

(X ∩E(M1)) + rM2
(X ∩E(M2)) for every subset X of

the ground set of M1 ⊕M2.


