NTIN 100 Intro to Info Transmission and Processing summer 2016/2017

4th homework assignment - More on error correcting codes

turn in by May 18, 2017.

Problem 1. Consider a code over the alphabet $\{-1,1\}$. For two vectors $u, v \in \{-1,1\}^n$, what is the relationship between the Hamming distance of u and v and the inner product $\langle u, v \rangle = \sum_{i=1}^{n} u_i \cdot v_i$? Show, that if $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ and $0 < \alpha$ are such that $\langle v_i, v_i \rangle = 1$ a $\langle v_i, v_j \rangle \leq -\alpha$ for all $i \neq j$, then $k \leq 1 + \frac{1}{\alpha}$. Conclude that a binary code with the relative minimum distance $\delta = \frac{1}{2} + \epsilon$ has at most $\frac{1}{2\epsilon} + 1$ codewords. (*Hint:* Take a look at $\langle z, z \rangle$, where $z = \sum_{i=1}^{k} v_i$.)

Problem 2. Consider an undirected graph G = (V, E) with m vertices and n edges. Each subset of the edges of G can be represented by a vector $\{0, 1\}^n$, where each coordinate corresponds to an edge of G and indicates whether the edge is present in the subset. Define a code $C_{\text{cut}} \subseteq \{0, 1\}^n$ of vectors that represent cuts in G, that is subsets of edges $F \subseteq E$ such that for some subset $S \subseteq V$, $F = \{\{u, v\}, u \in S \& v \notin S\}$.

a) Show that C_{cut} is a linear code.

b) Show that if we can efficiently find for each $x \in \{0,1\}^n$ the closest codeword from C_{cut} , then we can efficiently find the largest cut in G. Finding the largest cut in G is so called MAX-CUT problem that is known to be NP-complete.

Problem 3. The *Chinese reminder theorem* postulates that for positive integers m_1, m_2, \ldots, m_ℓ that are pair-wise co-prime and any two distinct integers $0 \le x, y < m_1 \cdot m_2 \cdots m_\ell$,

 $\langle x \mod m_1, x \mod m_2, \dots, x \mod m_\ell \rangle \neq \langle y \mod m_1, y \mod m_2, \dots, y \mod m_\ell \rangle.$

a) Prove the Chinese reminder theorem.

Let $p_1 < p_2 < \cdots < p_n$ be different primes between n^2 and $2n^2$. Let $N = p_1 \cdot p_2 \cdots p_k$, for some k < n. For each integer $0 \le M < N$, define its codeword

 $E(M) = \langle M \mod p_1, M \mod p_2, \dots, M \mod p_n \rangle.$

b) Determine and prove the parameters of the code $C = \{E(M), 0 \le M < N\}$.

Problem 4. How to share a secret. Consider n clerks in a bank. We want to divide a secret code (number) among them so that any group of k of them can recover the secret but no group of k-1 or less of them has any information about the code (that is based on their information the code could still be arbitrary). Construct such a scheme. (You can think of the scheme as a function $f : \{1, \ldots, N\} \times \{1, \ldots, R\} \rightarrow \{1, \ldots, N\}^n$ where each subset of k coordinates in f(x, r) determines x, but for any setting of k-1 coordinates of f(x, r), x can be arbitrary. Here x represents the secret code and r is a parameter that will be chosen at random and kept secret.) What is the connection of such a scheme to error correcting codes?