Lower bounds for disjointness using
information theory

We follow lecture notes by Mark Braverman (https://www.cs.princeton.
edu/courses/archive/fall11/cos597D/L17.pdf), fleshing out all the de-
tails.

Preliminaries
1 Disjointness and AND function.

DISJ(z,7) =~ \/ =i A wi

2 KL-divergence and mutual information.
D(pllg) = pla)log 22
" q(z)

I(X :¥) = E[D (], || X))

1" Let us now use these notions to measure how much information (as
opposed to communication) is revealed by a protocol.

3 Protocols. Two-player protocols with public randomness (R) and private
randomness (R, Rp); worst-case communication; distributional variant.

4 Information cost.

IC,(7) = I(Y : TI|X, R, Ry) + I(X : TI|Y, R, Ry)

5 Total variation distance. (Twice the statistical distance)

lp =gl =Y Ip(x) - q(=)|
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6 Pinsker inequality.
1
lp =l < /5D (ll9)

7  Pinsker inequality for convex sums. Suppose that p and ¢ are given by
the same convex sum:

px) = a(rp(z)  q@) = a(r)g(),
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where the a(r) are non-negative reals summing to 1. Then

Ip—qlh < \/;Za(r)l?(pr lav).

Proof. From the triangle and Pinkser’s inequalities:

/1
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and then from the concavity of the square-root.

The lower bound

8 Theorem. There is no two-player protocol for computing disjointness
using o(n) bits of information.

1= This theorem was originally shown by Kalyanasundaram and Schitger
in 1987, and later simplified by Razborov in 1990 via a technique that came
to be known as the corruption bound. Then in 2004 Bar-Yossef, Jayram,
Kumar and Sivakumar prove the theorem via information theory, which
allows for a much simpler proof. The proof below was taken from the notes
of a lecture by Mark Braverman — I believe it is due to him — and it is
even simpler.

9 Approach. The proof is split into two parts.

e In the first part, we show that a o(n)-information protocol for disjoint-
ness would give a o(1)-information protocol for the AND function.

e In the second part we show that the latter cannot exist.

e The first part is one of the fundamental techniques of the area. It is
essentially a use of the chain rule for mutual information.



e It is obvious that the AND function needs 1 bit of communication in
order to be computed by two players when each of their inputs is a
uniform independent bit.! This is not exactly the statement we need
to prove though, as we will see.

First Part

1 Let p(z,y) be the uniform distribution on the support {00,01, 10}.

10 Theorem. Let m be a randomized protocol for solving disjointness
with success probability > % using C' bits of communication. Then there is
a protocol 7’ for computing the AND function, with the following properties:

10.1  Correctness. For all x,y, 7'(x;y) = x Ay with probability at least
9

To.

10.2  Low information cost. The protocol 7’ has < % information cost
with respect to the distribution y, i.e., IC,(7") < %

Proof. Define 7’ as follows. On inputs = and y, Alice and Bob use shared
randomness to pick a uniformly-random coordinate I € [n]. They also jointly
sample random bits Y7,...,Y;—; and X;y1,...,X,, to be 0 with probability
2/3 (meaning they pick from the X and Y marginals of u).

Then Alice privately samples X, for j <4, so that X, Y} is distributed
according to p, meaning, she lets X; = 0 if Y; = 1, and she lets X, be a
uniformly-random bit if Y; = 0. Bob does the same to privately sample Y
for j > i.

All pairs X;,Y; for j # ¢ have been d_eﬁned. The players then set X; =z
and Y; = y, and run the protocol 7(X;Y).

It now happens (with probability > %) that m(X;Y) = DISJ(X;Y) =
NAND(z, y), so after running = both players know x A y. Which establishes
§10.1.

Now §10.2 follows from the chain rule. Indeed, if X,Y are drawn from
i, then every pair X;,Y; is equidistributed. We then have that

C I _ _
e I(HiY\X)—n;I(HIYj\nyq‘)—I(Hiyl\nydJ)'
j:

>
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The rightmost term is exactly the information revealed by 7’ to Alice about

! It follows from the fact that AND(z,y) reveals Q(1) information about « and y, hence
by the information processing inequality, the transcript of a protocol for computing AND
must also.



Bob’s input. Together with the symmetric calculation, this establishes that
IC,(n") < % ]

Second Part

1=  The lower bound of §8 follows from §10 and the following;:

11 Theorem. There is no protocol w for the AND function which is both
correct (as in §10.1) and has IC,(7) = o(1).

Proof. First we show that if the information cost of the protocol is o(1),
then the transcript distributions for all inputs in the support of p must be
close in total-variation distance.

Indeed, fix some choice for public randomness preserving the information
cost. Let R, denote Bob’s private randomness, and suppose that a(r) =
Pr[Ry = r]. Then

o(1)
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I(IL: XY, Ry)
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= I XY =0,Ry) + gI(I: XY =1, Ry)

I(I: X|Y =0, Ry)
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(; > a(r)D (oo, || Tzo,) + % > a(r)D (T | H?or)) :
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and hence ) a(r)D (Ilgo, || II2,) and ), o(r) D (110, || 120, ) are both o(1).
From Pinkser’s Inequality for convex sums (§7) it then follows that ||IIoo —
IT7p||; and ||II;9 — II9g||; are both o(1). Now the triangle inequality gives us
[Too — 1oy = o(1).

Doing the same calculation for I(IT : X|Y') shows that ||IIpg — Ig1]j1 =
o(1), and again by the triangle inequality we also find that ||[II;g — g1 |1 =
o(1). So the transcript distributions for all inputs in the support of p is
close in total-variation distance.

However, 7 is also correct on the input (1, 1), which is not on the support
of u, and on which 7 must output a different result. Taking the error
probability into account, we are still forced to conclude that the statistical

distance between Iy, say, and ITy; is at least %, meaning |[TIoo—1I1;; |1 > %.

But now we show the following: because 7 is a protocol, the fact that
IIg0, I11¢ and Ilp; are close to each other must imply that they are also close
to I11q. If we denote by 7,y (2) the probability that II,, = z, then it happens
that m,y(2) = Pr(2)Qy(2) for some Py, Q,. P,(2) is actually the probability



that Alice, when given z, produces a transcript consistent with z. Suppose,
for instance, that Alice speaks on the odd-numbered rounds; then

_ H Py [ Alice sends bit z; on the i-th round,

o if her input is « and she has seen z.;
7 O

For a given transcript z, suppose that mgo(z) > m11(z), and notice the
following:

1. If Pi(2) > Py(2), then m11(2) > mo1(2), and thus |meo(2) — m11(2)] <
[m0(2) — mo1(2)].

2. If Q1(2) > Qo(2), then m1(z) > mio(2), and thus |mo(2) — m11(2)| <
[mo0(2) — m10(2)|-

3. If Pi(2) < Py(z) and Q1(z) < Qo(z), then

(Po(z) — P1(2))(Qo(2) — Q1(2)) =2 0

meaning
—m11(2) < moo(2) — mo(z) — mo1(2),

and then
[m00(2) — m11(2)| < |mo0(2) — m10(2)] + |m00(2) — mo1(2)]-

In either case we find that

> Imoo(z) —ma(z !<Z|7Too ) — mi0(z |+Z\7T00 ) — mo1(2)]

z:roo(z)27r11(z)

The left-hand side is exactly % of || Tlpo—1II14 |1, and the right-hand side is less
than HHOQ—H10||1+HH()0—H01”1 :O( ) Hence + 10 < HHOO_HUHl —0(1)
a contradiction. [



