
Lower bounds for disjointness using
information theory

We follow lecture notes by Mark Braverman (https://www.cs.princeton.
edu/courses/archive/fall11/cos597D/L17.pdf), fleshing out all the de-
tails.

Preliminaries

1 Disjointness and AND function.

DISJ(x̄, ȳ) = ¬
∨
i

xi ∧ yi

2 KL-divergence and mutual information.

D (p ‖ q) =
∑
x

p(x) log
p(x)

q(x)

I(X : Y ) = E
y
[D (X|y ‖X)]

� Let us now use these notions to measure how much information (as
opposed to communication) is revealed by a protocol.

3 Protocols. Two-player protocols with public randomness (R) and private
randomness (Ra, Rb); worst-case communication; distributional variant.

4 Information cost.

ICµ(π) = I(Y : Π|X,R,Ra) + I(X : Π|Y,R,Rb)

5 Total variation distance. (Twice the statistical distance)

‖p− q‖1 =
∑
x

|p(x)− q(x)|
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6 Pinsker inequality.

‖p− q‖1 ≤
√

1

2
D (p ‖ q)

7 Pinsker inequality for convex sums. Suppose that p and q are given by
the same convex sum:

p(x) =
∑
r

α(r)pr(x) q(x) =
∑
r

α(r)qr(x),

where the α(r) are non-negative reals summing to 1. Then

‖p− q‖1 ≤
√

1

2

∑
r

α(r)D (pr ‖ qr).

Proof. From the triangle and Pinkser’s inequalities:

‖p− q‖1 ≤
∑
r

αr‖pr − qr‖1 ≤
∑
r

αr

√
1

2
D (pr ‖ qr),

and then from the concavity of the square-root.

The lower bound

8 Theorem. There is no two-player protocol for computing disjointness
using o(n) bits of information.

� This theorem was originally shown by Kalyanasundaram and Schitger
in 1987, and later simplified by Razborov in 1990 via a technique that came
to be known as the corruption bound. Then in 2004 Bar-Yossef, Jayram,
Kumar and Sivakumar prove the theorem via information theory, which
allows for a much simpler proof. The proof below was taken from the notes
of a lecture by Mark Braverman — I believe it is due to him — and it is
even simpler.

9 Approach. The proof is split into two parts.

• In the first part, we show that a o(n)-information protocol for disjoint-
ness would give a o(1)-information protocol for the AND function.

• In the second part we show that the latter cannot exist.

• The first part is one of the fundamental techniques of the area. It is
essentially a use of the chain rule for mutual information.
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• It is obvious that the AND function needs 1 bit of communication in
order to be computed by two players when each of their inputs is a
uniform independent bit.1 This is not exactly the statement we need
to prove though, as we will see.

First Part

� Let µ(x, y) be the uniform distribution on the support {00, 01, 10}.

10 Theorem. Let π be a randomized protocol for solving disjointness
with success probability ≥ 9

10 using C bits of communication. Then there is
a protocol π′ for computing the AND function, with the following properties:

10.1 Correctness. For all x, y, π′(x; y) = x ∧ y with probability at least
9
10 .

10.2 Low information cost. The protocol π′ has ≤ 2C
n information cost

with respect to the distribution µ, i.e., ICµ(π′) ≤ 2C
n .

Proof. Define π′ as follows. On inputs x and y, Alice and Bob use shared
randomness to pick a uniformly-random coordinate I ∈ [n]. They also jointly
sample random bits Y1, . . . , Yi−1 and Xi+1, . . . , Xn to be 0 with probability
2/3 (meaning they pick from the X and Y marginals of µ).

Then Alice privately samples Xj , for j < i, so that Xj , Yj is distributed
according to µ, meaning, she lets Xj = 0 if Yj = 1, and she lets Xj be a
uniformly-random bit if Yj = 0. Bob does the same to privately sample Yj
for j > i.

All pairs Xj , Yj for j 6= i have been defined. The players then set Xi = x
and Yi = y, and run the protocol π(X̄; Ȳ ).

It now happens (with probability ≥ 9
10) that π(X̄; Ȳ ) = DISJ(X̄; Ȳ ) =

NAND(x, y), so after running π both players know x∧ y. Which establishes
§10.1.

Now §10.2 follows from the chain rule. Indeed, if X,Y are drawn from
µ, then every pair Xj , Yj is equidistributed. We then have that

C

n
≥ 1

n
I(Π : Ȳ |X̄) =

1

n

n∑
j=1

I(Π : Yj |X̄, Y<j) = I(Π : YI |X̄, Y<I , I).

The rightmost term is exactly the information revealed by π′ to Alice about

1 It follows from the fact that AND(x, y) reveals Ω(1) information about x and y, hence
by the information processing inequality, the transcript of a protocol for computing AND
must also.
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Bob’s input. Together with the symmetric calculation, this establishes that
ICµ(π′) ≤ 2C

n . �

Second Part

� The lower bound of §8 follows from §10 and the following:

11 Theorem. There is no protocol π for the AND function which is both
correct (as in §10.1) and has ICµ(π) = o(1).

Proof. First we show that if the information cost of the protocol is o(1),
then the transcript distributions for all inputs in the support of µ must be
close in total-variation distance.

Indeed, fix some choice for public randomness preserving the information
cost. Let Rb denote Bob’s private randomness, and suppose that α(r) =
Pr[Rb = r]. Then

o(1) ≥ I(Π : X|Y,Rb)

=
2

3
I(Π : X|Y = 0, Rb) +

1

3
I(Π : X|Y = 1, Rb)

=
2

3
I(Π : X|Y = 0, Rb)

=
2

3

(
1

2

∑
r

α(r)D (Π00r ‖Π?0r) +
1

2

∑
r

α(r)D (Π10r ‖Π?0r)

)
,

and hence
∑

r α(r)D (Π00r ‖Π?0r) and
∑

r α(r)D (Π10r ‖Π?0r) are both o(1).
From Pinkser’s Inequality for convex sums (§7) it then follows that ‖Π00 −
Π?0‖1 and ‖Π10 −Π?0‖1 are both o(1). Now the triangle inequality gives us
‖Π00 −Π10‖1 = o(1).

Doing the same calculation for I(Π : X|Y ) shows that ‖Π00 − Π01‖1 =
o(1), and again by the triangle inequality we also find that ‖Π10 −Π01‖1 =
o(1). So the transcript distributions for all inputs in the support of µ is
close in total-variation distance.

However, π is also correct on the input (1, 1), which is not on the support
of µ, and on which π must output a different result. Taking the error
probability into account, we are still forced to conclude that the statistical
distance between Π00, say, and Π11 is at least 8

10 , meaning ‖Π00−Π11‖1 ≥ 16
10 .

But now we show the following: because π is a protocol, the fact that
Π00,Π10 and Π01 are close to each other must imply that they are also close
to Π11. If we denote by πxy(z) the probability that Πxy = z, then it happens
that πxy(z) = Px(z)Qy(z) for some Px, Qy. Px(z) is actually the probability
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that Alice, when given x, produces a transcript consistent with z. Suppose,
for instance, that Alice speaks on the odd-numbered rounds; then

Px(z) =
∏
i odd

Pr

[
Alice sends bit zi on the i-th round,
if her input is x and she has seen z<i

]
.

For a given transcript z, suppose that π00(z) ≥ π11(z), and notice the
following:

1. If P1(z) > P0(z), then π11(z) > π01(z), and thus |π00(z) − π11(z)| <
|π00(z)− π01(z)|.

2. If Q1(z) > Q0(z), then π11(z) > π10(z), and thus |π00(z) − π11(z)| <
|π00(z)− π10(z)|.

3. If P1(z) ≤ P0(z) and Q1(z) ≤ Q0(z), then

(P0(z)− P1(z))(Q0(z)−Q1(z)) ≥ 0,

meaning
−π11(z) ≤ π00(z)− π10(z)− π01(z),

and then

|π00(z)− π11(z)| ≤ |π00(z)− π10(z)|+ |π00(z)− π01(z)|.

In either case we find that∑
z:π00(z)≥π11(z)

|π00(z)− π11(z)| ≤
∑
z

|π00(z)− π10(z)|+
∑
z

|π00(z)− π01(z)|

The left-hand side is exactly 1
2 of ‖Π00−Π11‖1, and the right-hand side is less

than ‖Π00−Π10‖1 + ‖Π00−Π01‖1 = o(1). Hence 16
10 ≤ ‖Π00−Π11‖1 = o(1),

a contradiction. �


