Information-theoretic inequalities and
Correlated sampling of a one-bit message
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Information-processing and log-sum inequalities
For any pair of sequences py,...,pn

1 Lemma (log-sum inequality).

and q1,...,q, of positive real numbers, we have

Zpllog— >plog
1=1 qi

where p=> ", p; and ¢ =), ¢;.

Proof. The inequality is equivalent to

Zpllog@ > 0.

But since log% > 1—x for all positive x, and % is positive, given that p;, g;

and p/q are positive, then:

szlogf >sz <1—pq’> :(p—gq)zo.

2 Information Processing Inequality. For any f,
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Proof. By using the log-sum inequality, we derive:

Dxn(X,Y) = ZPX(w)IogP

_ Px (w)
= Z Z Px (w)log Pj(w)

3 Corollary. For any f, [(X:Y) > I(f(X):Y).

Pinsker’s inequality
4 A vs Dgy — Pinsker’s inequality.

. 1
X =Y < V2D (X [[Y) e, SIIX =Y} < D (X [Y)

Proof. Let us first prove it when X,Y are distributions over one bit. Let
p = Pr[X =0], ¢ = Pr[Y = 0]. Define

1 P -p
9(q) = Dxr(X||Y) = 5[1X — Y|} =plog5 +(1—p)log 1— . 2(p — q)*.
Then ¢ is
p 1-—p 1—p)g—p(l—q
J(q) = —*+7+4(p—Q):( ) ( )—4(q—p)

¢ l—g¢ q(1—q)

The second factor is always non-negative. Hence ¢’(q) is negative for ¢ < p,
positive for ¢ > p, and 0 for ¢ = p. Hence ¢ = p is a minimum for g, but
g(p) =0, so g is non-negative.

If X,Y are not one bit, then define f(w) = 1 if Px(w) < Py(w) and
f(w) = 0 otherwise. Then by what we just proved,

Drw (FCX) | £(Y) = SI7 () — 702,
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But also:

IX =Yl = ) [Px(w) - Pr(w)

= > (Px(w)-Pr(w)+ > (Pr(w)—Px(w))

wef—1(0) wef~1(1)
= Pr[f(X) =0]=Pr[f(Y) = 0] + Pr[f(Y) = 1] = Pr[f(X) = 1]
= [f(X) = FY)[h

The result for any (not-necessarily 1-bit) distribution now follows from
the information-processing inequality Dy, (f(X) || f(YV)) < Dxn(X || Y). B

Correlated sampling of a one-bit message

5 Correlated sampling of a one-bit message. Suppose Alice has input X
and Bob Y. Alice wants to send a 1-bit message M = M (X, R,) to Bob, and
this message reveals little information about X to Bob, i.e. I = I(M : X|Y)
is close to zero. Let us show how to do this with zero communication, and

error probability 4/ %I (which is also close to zero, if not quite as close as I).

6 How Alice samples M. We can think of M as being sampled in the
following way. To each possible input X = z corresponds a value p, =
Pr[M = 0|X = z]. Alice will pick a uniformly-random real-number v € [0, 1],
and set M =0if v < p, and set M =1 if v > p,.

7. Bob doesn’t know px because he doesn’t know X, but to the extent
that X and Y are correlated, Bob will have some estimate of what X is,
and hence some estimate for p,. His best guess for p, is the value

=PrM=0Y=yl=_ E [g].
qy = Pr| V=vl= E

How close are g, and ¢,? It turns out that because I(X : M|Y) is small, we

can expect them to be pretty close.

8. Indeed, the distributions of M when one knows x versus M when one
knows only y are close, in terms of KL-divergence, because:

I=1I(X:M|Y)=EE[DkL(Mlay | Mly)]

(and we think of I as being small). Because M = M/(x), it follows that
M|z = M|,. Let us define

Iy = DxrL(M | || M|y)
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9. Now from the Pinsker inequality, it follows that
V 21171; > ||M|£D - M|y||1 = 2‘]7:2 - Qy‘-

And so |p; — qy] < %Ix,y, which is small on average.

10 The correlated sampling protocol. So here is a strategy for jointly sam-
pling the bit M without communication: Alice and Bob use shared random-
ness to sample v, Alice chooses M as before, and Bob assumes that M =0
if v < gy, and that M = 1 otherwise.

The only case when he is wrong is when v happens to be greater than
Pz but smaller than g, (if p, < gy, or the other way around if p, > ¢,). So
he will be wrong, on inputs ,y, with probability exactly |p, — qy|.

Over the input distributions X and Y, the probability that Bob is wrong
about M is

where the last inequality follows from the concavity of the square-root.



