
Information-theoretic inequalities and
Correlated sampling of a one-bit message
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Information-processing and log-sum inequalities

1 Lemma (log-sum inequality). For any pair of sequences p1, . . . , pn
and q1, . . . , qn of positive real numbers, we have

n∑
i=1

pi log
pi
qi
≥ p log

p

q
,

where p =
∑

i pi and q =
∑

i qi.

Proof. The inequality is equivalent to

n∑
i=1

pi log
qpi
pqi
≥ 0.

But since log 1
x ≥ 1−x for all positive x, and λqi

pi
is positive, given that pi, qi

and p/q are positive, then:

n∑
i=1

pi log
pi
λqi
≥

n∑
i=1

pi

(
1− pqi

qpi

)
= (p− p

q
q) = 0. �

2 Information Processing Inequality. For any f ,

DKL(f(X), f(Y )) ≤ DKL(X,Y ).
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Proof. By using the log-sum inequality, we derive:

DKL(X,Y ) =
∑
w∈X

PX(w) log
PX(w)

PY (w)

=
∑

i∈f(X )

∑
w∈f−1(i)

PX(w) log
PX(w)

PY (w)

≥
∑

i∈f(X )

Pf(X)(i) log
Pf(X)(i)

Pf(Y )(i)

= DKL(f(X), f(Y ))

�

3 Corollary. For any f , I(X : Y ) ≥ I(f(X) : Y ).

Pinsker’s inequality

4 ∆ vs DKL — Pinsker’s inequality.

‖X − Y ‖1 ≤
√

2DKL(X ‖Y ) i.e.,
1

2
‖X − Y ‖21 ≤ DKL(X ‖Y )

Proof. Let us first prove it when X,Y are distributions over one bit. Let
p = Pr[X = 0], q = Pr[Y = 0]. Define

g(q) = DKL(X ‖Y )− 1

2
‖X − Y ‖21 = p log

p

q
+ (1− p) log

1− p
1− q

− 2(p− q)2.

Then g′ is

g′(q) = −p
q

+
1− p
1− q

+ 4(p− q) =
(1− p)q − p(1− q)

q(1− q)
− 4(q − p)

= (q − p)
[

1

q(1− q)
− 4

]
The second factor is always non-negative. Hence g′(q) is negative for q < p,
positive for q > p, and 0 for q = p. Hence q = p is a minimum for g, but
g(p) = 0, so g is non-negative.

If X,Y are not one bit, then define f(w) = 1 if PX(w) ≤ PY (w) and
f(w) = 0 otherwise. Then by what we just proved,

DKL(f(X) ‖ f(Y ) ≥ 1

2
‖f(X)− f(Y )‖21.
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But also:

‖X − Y ‖1 =
∑
w

|PX(w)− PY (w)|

=
∑

w∈f−1(0)

(PX(w)− PY (w)) +
∑

w∈f−1(1)

(PY (w)− PX(w))

= Pr[f(X) = 0]− Pr[f(Y ) = 0] + Pr[f(Y ) = 1]− Pr[f(X) = 1]

= ‖f(X)− f(Y )‖1

The result for any (not-necessarily 1-bit) distribution now follows from
the information-processing inequalityDKL(f(X) ‖ f(Y )) ≤ DKL(X ‖Y ). �

Correlated sampling of a one-bit message

5 Correlated sampling of a one-bit message. Suppose Alice has input X
and Bob Y . Alice wants to send a 1-bit message M = M(X,Ra) to Bob, and
this message reveals little information about X to Bob, i.e. I = I(M : X|Y )
is close to zero. Let us show how to do this with zero communication, and

error probability
√

1
2I (which is also close to zero, if not quite as close as I).

6 How Alice samples M . We can think of M as being sampled in the
following way. To each possible input X = x corresponds a value px =
Pr[M = 0|X = x]. Alice will pick a uniformly-random real-number v ∈ [0, 1],
and set M = 0 if v ≤ px and set M = 1 if v > px.

7. Bob doesn’t know pX because he doesn’t know X, but to the extent
that X and Y are correlated, Bob will have some estimate of what X is,
and hence some estimate for px. His best guess for px is the value

qy = Pr[M = 0|Y = y] = E
X|Y=y

[qx] .

How close are qy and qx? It turns out that because I(X : M |Y ) is small, we
can expect them to be pretty close.

8. Indeed, the distributions of M when one knows x versus M when one
knows only y are close, in terms of KL-divergence, because:

I = I(X : M |Y ) = E
Y

[
E
X

[DKL(M |x,y ‖M |y)]
]

(and we think of I as being small). Because M = M(x), it follows that
M |x,y = M |x. Let us define

Ix,y = DKL(M |x ‖M |y)
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9. Now from the Pinsker inequality, it follows that√
2Ix,y ≥ ‖M |x −M |y‖1 = 2|px − qy|.

And so |px − qy| ≤
√

1
2Ix,y, which is small on average.

10 The correlated sampling protocol. So here is a strategy for jointly sam-
pling the bit M without communication: Alice and Bob use shared random-
ness to sample v, Alice chooses M as before, and Bob assumes that M = 0
if v ≤ qy, and that M = 1 otherwise.

The only case when he is wrong is when v happens to be greater than
px but smaller than qy (if px ≤ qy, or the other way around if px > qy). So
he will be wrong, on inputs x, y, with probability exactly |px − qy|.

Over the input distributions X and Y , the probability that Bob is wrong
about M is

E
X,Y

[|px − qy|] ≤ E
X,Y

[√
2Ix,y

]
≤
√

2 E
X,Y

[Ix,y] =
√

2I,

where the last inequality follows from the concavity of the square-root.


