Homework Assignment 3 - NP-completeness

Deadline: 2.12.2021, 9:00 in Moodle.

Problem 1. For each function decide and justify whether the relationship is true or false:

- a) $n^2 \in o(2n^2), \ 2n^2 \in o(n^3)$
- b) $2^n \in o(3^n), 2n \in O(n)$
- c) $n \log n \in o(n^2), 1 \in o(1/n)$
- d) $n \log n \in O(2^{3 \log n}), 2^n \in O(2^{\log^2 n})$

Problem 2. For a set $S \subseteq \{0,1\}^n$ design a Boolean formula $\phi(x_1, x_2, \ldots, x_n)$ in CNF form such that for each $a \in \{0,1\}^n$: $\phi(a_1, a_2, \ldots, a_n)$ is TRUE if and only if $a \in S$. How large is ϕ relative to n? For bonus points show that for each $n \ge 10$ and some set $S \subseteq \{0,1\}^n$ such a formula must be of size at least $\frac{2^n}{10n}$.

Problem 3. Show that if P = NP then there is an algorithm which for each satisfiable Boolean formula $\phi(x_1, x_2, \ldots, x_n)$ finds a satisfying assignment in polynomial time.

Problem 4. Let $LPATH = \{\langle G, s, t, k \rangle, G \text{ is an undirected graph in which s and t are connected by a path of length at least k}. (No vertex can repeat twice on a path.) Show that <math>LPATH$ is NP-complete.

Problem 5. Let DOUBLE- $SAT = \{\langle \phi \rangle, \phi \text{ is a Boolean formula with at least two distinct satisfying assignments}\}. Show that <math>DOUBLE$ -SAT is NP-complete.